Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
584 KB
Nội dung
Đoàn Hoài Hận Hình học 11 CHƯƠNG III: VECTƠ TRONG KHÔNG GIAN QUAN HỆ VUÔNG GÓC TRONG KHÔNG GIAN I. VECTƠ TRONG KHÔNG GIAN 1. Đònh nghóa và các phép toán • Đònh nghóa, tính chất, các phép toán về vectơ trong không gian được xây dựng hoàn toàn tương tự như trong mặt phẳng. • Lưu ý: + Qui tắc ba điểm: Cho ba điểm A, B, C bất kỳ, ta có: AB BC AC+ = uuur uuur uuur + Qui tắc hình bình hành: Cho hình bình hành ABCD, ta có: AB AD AC+ = uuur uuur uuur + Qui tắc hình hộp: Cho hình hộp ABCD.A′B′C′D′, ta có: ' 'AB AD AA AC+ + = uuur uuur uuur uuuur + Hêï thức trung điểm đoạn thẳng: Cho I là trung điểm của đoạn thẳng AB, O tuỳ ý. Ta có: 0IA IB+ = uur uur r ; 2OA OB OI+ = uuur uuur uur + Hệ thức trọng tâm tam giác: Cho G là trọng tâm của tam giác ABC, O tuỳ ý. Ta có: 0; 3GA GB GC OA OB OC OG+ + = + + = uuur uuur uuur uuur uuur uuur uuur r + Hệ thức trọng tâm tứ diện: Cho G là trọng tâm của tứ diện ABCD, O tuỳ ý. Ta có: 0; 4GA GB GC GD OA OB OC OD OG+ + + = + + + = uuur uuur uuur uuur uuur uuur uuur uuur uuur r + Điều kiện hai vectơ cùng phương: ( 0) ! :a và b cùng phương a k R b ka≠ ⇔∃ ∈ = r r r r r r + Điểm M chia đoạn thẳng AB theo tỉ số k (k ≠ 1), O tuỳ ý. Ta có: ; 1 OA kOB MA k MB OM k − = = − uuur uuur uuur uuur uuuur 2. Sự đồng phẳng của ba vectơ • Ba vectơ được gọi là đồng phẳng nếu các giá của chúng cùng song song với một mặt phẳng. • Điều kiện để ba vectơ đồng phẳng: Cho ba vectơ , ,a b c r r r , trong đó a và b r r không cùng phương. Khi đó: , ,a b c r r r đồng phẳng ⇔ ∃! m, n ∈ R: c ma nb= + r r r • Cho ba vectơ , ,a b c r r r không đồng phẳng, x r tuỳ ý. Khi đó: ∃! m, n, p ∈ R: x ma nb pc= + + r r r r 3. Tích vô hướng của hai vectơ • Góc giữa hai vectơ trong không gian: · · 0 0 , ( , ) (0 180 )AB u AC v u v BAC BAC= = ⇒ = ≤ ≤ uuur uuur r r r r • Tích vô hướng của hai vectơ trong không gian: + Cho , 0u v ≠ r r r . Khi đó: . . .cos( , )u v u v u v= r r r r r r + Với 0 0u hoặc v= = r r r r . Qui ước: . 0u v = r r + . 0u v u v⊥ ⇔ = r r r r VẤN ĐỀ 1: Chứng minh một đẳng thức vectơ. Dựa vào qui tắc các phép toán về vectơ và các hệ thức vectơ. 1.Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của AB và CD, I là trung điểm của EF. a) Chứng minh: 0IA IB IC ID+ + + = uur uur uur uur r . b) Chứng minh: 4MA MB MC MD MI+ + + = uuur uuur uuuur uuuur uuur , với M tuỳ ý. 1 Hình học 11 Trần Só Tùng 2. Cho hình họp ABCD.A’B’C’D’. Chứng minh rằng a) + + = uuur uuuuur uuuur uuuur ' ' ' 'AB B C DD AC b) − − = uuur uuuuur uuuur uuur ' ' 'BD D D B D BB c) + + + = uuur uuur uuur uuuur r ' ' 0AC BA BD C D 3. Cho hình bình hành ABCD. Gọi S là một điểm nằm trong mặt phẳng chứa hình bình hành. Chứng minh rằng: + = + uur uuur uur uuur SA SC SB SD 4. Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. CMR a) = + uuuur uuur uuur 1 ( ) 2 MN AD BC b) = + uuuur uuur uuur 1 ( ) 2 MN AC BD 5. Cho tứ diện ABCD. Hãy xác đònh E và F sao cho: a) = + + uuur uuur uuur uuur AE AB AC AD b) = + − uuur uuur uuur uuur AF AB AC AD 6. Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABC. CMR + + = uuur uuur uuur uuur 3DA DB DC DG 7. Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC và BD. Gọi I là trung điểm của MN và P là điểm bất kì. CMR a) + + + = uur uur uur uur r 0IA IB IC ID b) = + + + uur uuur uuur uuur uuur 4IP PA PB PC PD VẤN ĐỀ 2: Chứng minh ba vectơ đồng phẳng. Phân tích một vectơ theo ba vectơ không đồng phẳng • Để chứng minh ba vectơ đồng phẳng, ta có thể chứng minh bằng một trong các cách: + Chứng minh các giá của ba vectơ cùng song song với một mặt phẳng. + Dựa vào điều kiện để ba vectơ đồng phẳng: Nếu có m, n ∈ R: c ma nb= + r r r thì , ,a b c r r r đồng phẳng • Để phân tích một vectơ x r theo ba vectơ , ,a b c r r r không đồng phẳng, ta tìm các số m, n, p sao cho: x ma nb pc= + + r r r r 1.Cho tam giác ABC. Lấy điểm S nằm ngoài mặt phẳng (ABC). Trên đoạn SA lấy điểm M sao cho 2MS MA= − uuur uuur và trên đoạn BC lấy điểm N sao cho 1 2 NB NC= − uuur uuur . Chứng minh rằng ba vectơ , ,AB MN SC uuur uuuur uuur đồng phẳng. HD: Chứng minh 2 1 33 MN AB SC= + uuuur uuur uuur . 2.Cho hình hộp ABCD.EFGH. Gọi M, N, I, J, K, L lần lượt là trung điểm của các cạnh AE, CG, AD, DH, GH, FG; P và Q lần lượt là trung điểm của NG và JH. a) Chứng minh ba vectơ , ,MN FH PQ uuuur uuur uuur đồng phẳng. b) Chứng minh ba vectơ , ,IL JK AH uur uuur uuur đồng phẳng. HD: a) , ,MN FH PQ uuuur uuur uuur có giá cùng song song với (ABCD). b) , ,IL JK AH uur uuur uuur có giá cùng song song với (BDG). 3.Cho hình lăng trụ tam giác ABC.A′B′C′ có ' , ,AA a AB b AC c= = = uuur uuur uuur r r r . Hãy phân tích các vectơ ' , 'B C BC uuuur uuuur theo các vectơ , ,a b c r r r . HD: a) 'B C c a b= − − uuuur r r r b) 'BC a c b= + − uuuur r r r . 4.Cho tứ diện OABC. Gọi G là trọng tâm của tam giác ABC. a) Phân tích vectơ OG uuur theo các ba , ,OA OB OC uuur uuur uuur . b) Gọi D là trọng tâm của tứ diện OABC. Phân tích vectơ OD uuur theo ba vectơ , ,OA OB OC uuur uuur uuur . 2 Đoàn Hoài Hận Hình học 11 HD: a) ( ) 1 3 OG OA OB OC= + + uuur uuur uuur uuur b) ( ) 1 4 OD OA OB OC= + + uuur uuur uuur uuur . 5.Cho hình hộp OABC.DEFG. Gọi I là tâm của hình hộp. a) Phân tích hai vectơ OI và AG uur uuur theo ba vectơ , ,OA OC OD uuur uuur uuur . b) Phân tích vectơ BI uur theo ba vectơ , ,FE FG FI uuur uuur uur . HD: a) ( ) 1 2 OI OA OC OD= + + uur uuur uuur uuur , AG OA OC OD= − + + uuur uuur uuur uuur . b) BI FE FG FI= + − uur uuur uuur uur . 6.Cho hình lập phương ABCD.EFGH. a) Phân tích vectơ AE uuur theo ba vectơ , ,AC AF AH uuur uuur uuur . b) Phân tích vectơ AG uuur theo ba vectơ , ,AC AF AH uuur uuur uuur . HD: a) ( ) 1 2 AE AF AH AC= + − uuur uuur uuur uuur b) ( ) 1 2 AG AF AH AC= + + uuur uuur uuur uuur . VẤN ĐỀ 3: Tích vô hướng của hai vectơ trong không gian 1.Cho hình lập phương ABCD.A′B′C′D′. a) Xác đònh góc giữa các cặp vectơ: ' 'AB và A C uuur uuuuur , ' 'AB và A D uuur uuuuur , 'AC và BD uuuur uuur . b) Tính các tích vô hướng của các cặp vectơ: ' 'AB và A C uuur uuuuur , ' 'AB và A D uuur uuuuur , 'AC và BD uuuur uuur . 2.Cho hình lập phương ABCD.EFGH. Hãy xác đònh góc giữa các cặp vecto sau đây: a) uuur uuur AB và EG b) uuur uuur AF và EG c) uuur uuur AB và HD 3. Cho tứ diện ABCD a) Chứng minh rằng: + + = uuur uuur uuur uuur uuur uuur r . . . 0AB CD AC BD AD BC b) Từ đẳng thức trên nếu ⊥ ⊥ ⊥ thì AB CD và AC CD AD BC II. HAI ĐƯỜNG THẲNG VUÔNG GÓC 1. Vectơ chỉ phương của đường thẳng: 0a ≠ r r là VTCP của d nếu giá của a r song song hoặc trùng với d. 2. Góc giữa hai đường thẳng: • a′//a, b′//b ⇒ ¶ ( ) · ( ) , ', 'a b a b= • Giả sử u r là VTCP của a, v r là VTCP của b, ( , )u v = r r α . Khi đó: ¶ ( ) 0 0 0 0 0 0 180 , 180 90 180 nếu a b nếu ≤ ≤ = − < ≤ α α α α • Nếu a//b hoặc a ≡ b thì ¶ ( ) 0 , 0a b = Chú ý: ¶ ( ) 0 0 0 , 90a b≤ ≤ 3. Hai đường thẳng vuông góc: • a ⊥ b ⇔ ¶ ( ) 0 , 90a b = • Giả sử u r là VTCP của a, v r là VTCP của b. Khi đó . 0a b u v⊥ ⇔ = r r . • Lưu ý: Hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau. VẤN ĐỀ 1: Chứng minh hai đường thẳng vuông góc Phương pháp: Có thể sử dụng 1 trong các cách sau: 1. Chứng minh góc giữa hai đường thẳng đó bằng 90 0 . 2. Chứng minh 2 vectơ chỉ phương của 2 đường thẳng đó vuông góc với nhau. 3. Sử dụng các tính chất của hình học phẳng (như đònh lí Pi–ta–go, …). 3 Hình học 11 Trần Só Tùng 1.Cho hình chóp tam giác S.ABC có SA = SB = SC và · · · ASB BSC CSA= = . Chứng minh rằng SA ⊥ BC, SB ⊥ AC, SC ⊥ AB. HD: Chứng minh .SA BC uur uuur = 0 2.Cho tứ diện đều ABCD, cạnh bằng a. Gọi O là tâm đường tròn ngoại tiếp ∆BCD. a) Chứng minh AO vuông góc với CD. b) Gọi M là trung điểm của CD. Tính góc giữa AC và BM. HD: b) · 3 cos( , ) 6 AC BM = . 3.Cho S là diện tích tam giác ABC. CMR = − uuur uuur uuur uuur 2 2 2 1 . ( . ) 2 S AB AC AB AC 4.Cho hình chóp SABCD, có đáy là hình bình hành với AB = a, AD = 2a, SAB là tam giác vuông cân tại A, M là điểm trên cạnh AD (M ≠ A và D). Mặt phẳng (P) qua M song song với mp(SAB) cắt BC, SC, SD lần lượt tại N, P, Q. a) Chứng minh MNPQ là hình thang vuông. b) Đặt AM = x. Tính diện tích của MNPQ theo a và x. 5.Cho hình hộp ABCD.A′B′C′D′ có tất cả các cạnh đều bằng nhau. Chứng minh rằng AC ⊥ B′D′, AB′ ⊥ CD′, AD′ ⊥ CB′. III. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG 1. Đònh nghóa d ⊥ (P) ⇔ d ⊥ a, ∀a ⊂ (P) 2. Điều kiện để đường thẳng vuông góc với mặt phẳng , ( ), ( ) , a b P a b O d P d a d b ⊂ ∩ = ⇒ ⊥ ⊥ ⊥ 3. Tính chất • Mặt phẳng trung trực của một đoạn thẳng là mặt phẳng vuông góc với đoạn thẳng tại trung điểm của nó. Mặt phẳng trung trực của đoạn thẳng là tập hợp các điểm cách đều hai đầu mút của đoạn thẳng đó. • ( ) ( ) a b P b P a ⁄⁄ ⇒ ⊥ ⊥ • ( ), ( ) a b a b a P b P ≠ ⇒ ⁄⁄ ⊥ ⊥ • ( ) ( ) ( ) ( ) P Q a Q a P ⁄⁄ ⇒ ⊥ ⊥ • ( ) ( ) ( ) ) ( ) ,( ) P Q P Q P a Q a ≠ ⇒ ⁄⁄( ⊥ ⊥ • ( ) ( ) a P b a b P ⁄⁄ ⇒ ⊥ ⊥ • ( ) ) ,( ) a P a P a b P b ⊄ ⇒ ⁄⁄( ⊥ ⊥ 4. Đònh lí ba đường vuông góc Cho ( ), ( )a P b P⊥ ⊂ , a′ là hình chiếu của a trên (P). Khi đó b ⊥ a ⇔ b ⊥ a′ 5. Góc giữa đường thẳng và mặt phẳng • Nếu d ⊥ (P) thì · ( ) ,( )d P = 90 0 . • Nếu ( )d P⊥ thì · ( ) ,( )d P = · ( ) , 'd d với d′ là hình chiếu của d trên (P). Chú ý: 0 0 ≤ · ( ) ,( )d P ≤ 90 0 . VẤN ĐỀ 1: Chứng minh đường thẳng vuông góc với mặt phẳng 4 Đoàn Hoài Hận Hình học 11 Chứng minh hai đường thẳng vuông góc * Chứng minh đường thẳng vuông góc với mặt phẳng Để chứng minh d ⊥ (P), ta có thể chứng minh bởi một trong các cách sau: • Chứng minh d vuông góc với hai đường thẳng a, b cắt nhau nằm trong (P). • Chứng minh d vuông góc với (Q) và (Q) // (P). • Chứng minh d // a và a ⊥ (P). * Chứng minh hai đường thẳng vuông góc Để chứng minh d ⊥ a, ta có thể chứng minh bởi một trong các cách sau: • Chứng minh d vuông góc với (P) và (P) chứa a. • Sử dụng đònh lí ba đường vuông góc. • Sử dụng các cách chứng minh đã biết ở phần trước. 1.Cho tứ diện ABCD có hai mặt ABC và BCD là hai tam giác cân. Gọi I là trung điểm của BC. a) CMR: BC vuông góc với (ADI) b) Gọi AH là đường cao của tam giác ADI. CMR AH vuông góc với (BCD) 2.Cho hình chóp SABCD, có đáy là hình vuông tâm O. SA ⊥ (ABCD). Gọi H, I, K lần lượt là hình chiếu vuông góc của A trên SB, SC, SD. a) CMR: BC ⊥ (SAB), CD ⊥ (SAD), BD ⊥ (SAC). b) CMR: AH, AK cùng vuông góc với SC. Từ đó suy ra 3 đường thẳng AH, AI, AK cùng nằm trong một mặt phẳng. c) CMR: HK ⊥ (SAC). Từ đó suy ra HK ⊥ AI. 3.Cho tứ diện SABC có tam giác ABC vuông tại B; SA ⊥ (ABC). a) Chứng minh: BC ⊥ (SAB). b) Gọi AH là đường cao của ∆SAB. Chứng minh: AH ⊥ SC. 4.Cho hình chóp SABCD, có đáy ABCD là hình thoi tâm O. Biết: SA = SC, SB = SD. a) Chứng minh: SO ⊥ (ABCD). b) Gọi I, J lần lượt là trung điểm của các cạnh BA, BC. CMR: IJ ⊥ (SBD). 5.Cho tứ diện ABCD có ABC và DBC là 2 tam giác đều. Gọi I là trung điểm của BC. a) Chứng minh: BC ⊥ (AID). b) Vẽ đường cao AH của ∆AID. Chứng minh: AH ⊥ (BCD). 6.Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Gọi H là hình chiếu vuông góc của điểm O trên mp(ABC). Chứng minh rằng: a) BC ⊥ (OAH). b) H là trực tâm của tam giác ABC. c) 2 2 2 2 1 1 1 1 OH OA OB OC = + + . d) Các góc của tam giác ABC đều nhọn. 7.Cho hình chóp SABCD, có đáy là hình vuông cạnh a. Mặt bên SAB là tam giác đều; SAD là tam giác vuông cân đỉnh S. Gọi I, J lần lượt là trung điểm của AB và CD. a) Tính các cạnh của ∆SIJ và chứng minh rằng SI ⊥ (SCD), SJ ⊥ (SAB). b) Gọi H là hình chiếu vuông góc của S trên IJ. CMR: SH ⊥ AC. c) Gọi M là một điểm thuộc đường thẳng CD sao cho: BM ⊥ SA. Tính AM theo a. HD: a) a, 3 , 2 2 a a c) 5 2 a 8.Cho hình chóp SABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và SC = a 2 . Gọi H và K lần lượt là trung điểm của các cạnh AB và AD. a) CMR: SH ⊥ (ABCD). 5 Hình học 11 Trần Só Tùng b) Chứng minh: AC ⊥ SK và CK ⊥ SD. 9.Cho hình chóp SABCD, có đáy là hình chữ nhật có AB = a, BC = a 3 , mặt bên SBC vuông tại B, mặt bên SCD vuông tại D có SD = a 5 . a) Chứng minh: SA ⊥ (ABCD) và tính SA. b) Đường thẳng qua A và vuông góc với AC, cắt các đường thẳng CB, CD lần lượt tại I, J. Gọi H là hình chiếu của A trên SC. Hãy xác đònh các giao điểm K, L của SB, SD với mp(HIJ). CMR: AK ⊥ (SBC), AL ⊥ (SCD). c) Tính diện tích tứ giác AKHL. HD: a) a 2 . c) 2 8 15 a .S = 2 5 6 18 a VẤN ĐỀ 2: Góc giữa đường thẳng và mặt phẳng Phương pháp: Xác đònh góc giữa đường thẳng a và mặt phẳng (P). • Tìm giao điểm O của a với (P). • Chon điểm A ∈ a và dựng AH ⊥ (P). Khi đó · · ( ,( ))AOH a P= 1.Cho hình chóp SABCD, có đáy ABCD là hình vuông cạnh a, tâm O; SO ⊥ (ABCD). Gọi M, N lần lượt là trung điểm của các cạnh SA và BC. Biết · 0 ( ,( )) 60MN ABCD = . a) Tính MN và SO. b) Tính góc giữa MN và (SBD). HD: a) MN = 10 2 a ; SO = 30 2 a b) sin · 5 ( ,( )) 5 MN SBD = . 2.Cho hình chóp SABCD, có đáy ABCD là hình vuông cạnh a; SA ⊥ (ABCD) và SA = a 6 . Tính góc giữa: a) SC và (ABCD) b) SC và (SAB) c) SB và (SAC) d) AC và (SBC) HD: a) 60 0 b) arctan 1 7 c) arcsin 1 14 d) arcsin 21 7 . 3.Cho hình chóp SABCD, có đáy ABCD là hình chữ nhật; SA ⊥ (ABCD). Cạnh SC = a hợp với đáy góc α và hợp với mặt bên SAB góc β. a) Tính SA. b) CMR: AB = a cos( ).cos( )+ − α β α β . HD: a) a.sin α IV. HAI MẶT PHẲNG VUÔNG GÓC 1. Góc giữa hai mặt phẳng • · ( ) ¶ ( ) ( ) ( ),( ) , ( ) a P P Q a b b Q ⊥ ⇒ = ⊥ • Giả sử (P) ∩ (Q) = c. Từ I ∈ c, dựng ( ), ( ), a P a c b Q b c ⊂ ⊥ ⊂ ⊥ ⇒ · ( ) ¶ ( ) ( ),( ) ,P Q a b= Chú ý: · ( ) 0 0 0 ( ),( ) 90P Q≤ ≤ 2. Diện tích hình chiếu của một đa giác Gọi S là diện tích của đa giác (H) trong (P), S′ là diện tích của hình chiếu (H′) của (H) trên (Q), ϕ = · ( ) ( ),( )P Q . Khi đó: S′ = S.cosϕ 3. Hai mặt phẳng vuông góc 6 Đoàn Hoài Hận Hình học 11 • (P) ⊥ (Q) ⇔ · ( ) 0 ( ),( ) 90P Q = • Điều kiện để hai mặt phẳng vuông góc với nhau: ( ) ( ) ( ) ( ) P a P Q a Q ⊃ ⇒ ⊥ ⊥ 4. Tính chất • ( ) ( ),( ) ( ) ( ) ( ), P Q P Q c a Q a P a c ⊥ ∩ = ⇒ ⊥ ⊂ ⊥ • ( ) ( ) ( ) ( ) , ( ) P Q A P a P a A a Q ⊥ ∈ ⇒ ⊂ ∋ ⊥ • ( ) ( ) ( ) ( ) ( ) ( ) ( ) P Q a P R a R Q R ∩ = ⊥ ⇒ ⊥ ⊥ VẤN ĐỀ 1: Góc giữa hai mặt phẳng Phương pháp: Muốn tìm góc giữa hai mặt phẳng (P) và (Q) ta có thể sử dụng một trong các cách sau: • Tìm hai đường thẳng a, b: a ⊥ (P), b ⊥ (Q). Khi đó: · ( ) ¶ ( ) ( ),( ) ,P Q a b= . • Giả sử (P) ∩ (Q) = c. Từ I ∈ c, dựng ( ), ( ), a P a c b Q b c ⊂ ⊥ ⊂ ⊥ ⇒ · ( ) ¶ ( ) ( ),( ) ,P Q a b= 1.Cho hình chóp SABC, có đáy ABC là tam giác vuông cân với BA = BC = a; SA ⊥ (ABC) và SA = a. Gọi E, F lần lượt là trung điểm của các cạnh AB và AC. a) Tính góc giữa hai mặt phẳng (SAC) và (SBC). b) Tính góc giữa 2 mặt phẳng (SEF) và (SBC). HD: a) · ( ) ( ),( )SAC SBC = 60 0 b) cos · 3 (( ),( )) 10 SEF SBC = . 2.Cho hình vuông ABCD cạnh a, tâm O; SA ⊥ (ABCD). Tính SA theo a để số đo của góc giữa hai mặt phẳng (SCB) và (SCD) bằng 60 0 . HD: SA = a. 3.Cho hình chóp SABCD, có đáy ABCD là nửa lục giác đều nội tiếp đường tròn đường kính AB = 2a; SA ⊥ (ABCD) và SA = a 3 . a) Tính góc giữa 2 mặt phẳng (SAD) và (SBC). b) Tính góc giữa 2 mặt phẳng (SBC) và (SCD). HD: a) tan · (( ),( )) 7SAD SBC = b) cos · 10 (( ),( )) 5 SBC SCD = . 4.Cho hình vuông ABCD cạnh a, SA ⊥ (ABCD) và SA = a 3 . Tính góc giữa các cặp mặt phẳng sau: a) (SBC) và (ABC) b) (SBD) và (ABD) c) (SAB) và (SCD) HD: a) 60 0 b) arctan 6 c) 30 0 . 5.Cho hình thoi ABCD cạnh a, tâm O, OB = 33 a ; SA ⊥ (ABCD) và SO = 6 3 a . a) Chứng minh · ASC vuông. b) Chứng minh hai mặt phẳng (SAB) và (SAD) vuông góc. c) Tính góc giữa hai mặt phẳng (SBC) và (ABC). HD: c) 60 0 . 7 Hình học 11 Trần Só Tùng 6.Cho hình chóp SABCD có SA ⊥ (ABCD) và SA = a 2 , đáy ABCD là hình thang vuông tại A và D với AB = 2a, AD = DC = a. Tính góc giữa các cặp mặt phẳng: a) (SBC) và (ABC) b) (SAB) và (SBC) c) (SBC) và (SCD) HD: a) 45 0 b) 60 0 c) arccos 6 3 . VẤN ĐỀ 2: Chứng minh hai mặt phẳng vuông góc. Chứng minh đường thẳng vuông góc với mặt phẳng. * Chứng minh hai mặt phẳng vuông góc Để chứng minh (P) ⊥ (Q), ta có thể chứng minh bởi một trong các cách sau: • Chứng minh trong (P) có một đường thẳng a mà a ⊥ (Q). • Chứng minh · ( ) 0 ( ),( ) 90P Q = * Chứng minh đường thẳng vuông góc với mặt phẳng Để chứng minh d ⊥ (P), ta có thể chứng minh bởi một trong các cách sau: • Chứng minh d ⊂ (Q) với (Q) ⊥ (P) và d vuông góc với giao tuyến c của (P) và (Q). • Chứng minh d = (Q) ∩ (R) với (Q) ⊥ (P) và (R) ⊥ (P). • Sử dụng các cách chứng minh đã biết ở phần trước. 1.Cho tam giác đều ABC, cạnh a. Gọi D là điểm đối xứng với A qua BC. Trên đường thẳng vuông góc vơi mp(ABC) tại D lấy điểm S sao cho SD = a 6 . Chứng minh hai mặt phẳng (SAB) và (SAC) vuông góc với nhau. 2.Cho hình chóp S.ABCD có đáy là hình thoi cạnh a và SA = SB = SC = a. CMR a) (ABCD) vuông góc (SBD) b) Tam giác SBD là tam giác vuông. 3.Cho hình chóp tam giác đều S.ABC có SH là đường cao. CMR ⊥ ⊥ và SA BC SB AC 4.Cho hình chóp tứ giác đều S.ABCD có các cạnh bền và cạnh đáy đều bằng a. Gọi O là tâm của mặt đáy. a) Tính độ dài SO b) Gọi M là trung điểm của SC. CMR (MBD) và (SAC) vuông góc với nhau c) Tính độ dài OM và tính góc giữa hai mặt phẳng (MBD) và (ABCD) 5.Cho hình chóp S.ABCD có đáy là hình thoi tam I cạnh a và có góc A bằng 60 0 , cạnh = 6 2 a SC và SC vuông góc với (ABCD) a) CMR (SBD) vuông góc với (SAC) b) Trong tam giác SCA kẻ IK vuông góc với SA tại K. Tính độ dài IK c) Chứng minh góc BKD là góc vuông và từ đó suy ra mặt phẳng (SAB) vuông với mặt phẳng (SAD) 6.Cho hình tứ diện ABCD có hai mặt ABC và ABD cùng vuông góc với đáy DBC. Vẽ các đường cao BE, DF của ∆BCD, đường cao DK của ∆ACD. a) Chứng minh: AB ⊥ (BCD). b) Chứng minh 2 mặt phẳng (ABE) và (DFK) cùng vuông góc với mp(ADC). c) Gọi O và H lần lượt là trực tâm của 2 tam giác BCD và ADC. CMR: OH ⊥ (ADC). 7.Cho hình chóp SABCD, đáy ABCD là hình vuông, SA ⊥ (ABCD). a) Chứng minh (SAC) ⊥ (SBD). b) Tính góc giữa hai mặt phẳng (SAD) và (SCD). 8 Đoàn Hoài Hận Hình học 11 c) Gọi BE, DF là hai đường cao của ∆SBD. CMR: (ACF) ⊥ (SBC), (AEF) ⊥ (SAC). HD: b) 90 0 . 8.Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, SA ⊥ (ABCD). Gọi M, N là 2 điểm lần lượt ở trên 2 cạnh BC, DC sao cho BM = 2 a , DN = 3 4 a . Chứng minh 2 mặt phẳng (SAM) và (SMN) vuông góc với nhau. 9.Cho tam giác ABC vuông tại A. Vẽ BB′ và CC′ cùng vuông góc với mp(ABC). a) Chứng minh (ABB′) ⊥ (ACC′). b) Gọi AH, AK là các đường cao của ∆ABC và ∆AB′C′. Chứng minh 2 mặt phẳng (BCC′B′) và (AB′C′) cùng vuông góc với mặt phẳng (AHK). 10. Cho hình chóp SABCD, đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và vuông góc với đáy. Gọi I là trung điểm của AB. a) Chứng minh rằng SI ⊥ (ABCD), AD ⊥ (SAB). b) Tính góc giữa BD và mp(SAD). c) Tính góc giữa SD và mp(SCI). HD: b) arcsin 6 4 c) arcsin 10 5 11. Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I cạnh a và có góc A bằng 60 0 , cạnh SC = 6 2 a và SC ⊥ (ABCD). a) Chứng minh (SBD) ⊥ (SAC). b) Trong tam giác SCA kẻ IK ⊥ SA tại K. Tính độ dài IK. c) Chứng minh · 0 90BKD = và từ đó suy ra (SAB) ⊥ (SAD). HD: b) 2 a IK = . VẤN ĐỀ 3: Tính diện tích hình chiếu của đa giác Phương pháp: Gọi S là diện tích của đa giác (H) trong (P), S ′ là diện tích của hình chiếu (H ′ ) của (H) trên (Q), ϕ = · ( ) ( ),( )P Q . Khi đó: S ′ = S.cos ϕ 1.Cho hình thoi ABCD có đỉnh A ở trong mặt phẳng (P), các đỉnh khác không ở trong (P), BD = a, AC = a 2 . Chiếu vuông góc hình thoi lên mặt phẳng (P) ta được hình vuông AB′C′D′. a) Tính diện tích của ABCD và AB′C′D′. Suy ra góc giữa (ABCD) và (P). b) Gọi E và F lần lượt là giao điểm của CB, CD với (P). Tính diện tích của tứ giác EFDB và EFD′B′. HD: a) 450 b) S EFDB = 2 3 2 4 a ; S EFD ′ B ′ = 2 3 4 a 2.Cho tam giác cân ABC có đường cao AH = a 3 , đáy BC = 3a; BC ⊂ (P). Gọi A′ là hình chiếu của A trên (P). Khi ∆A′BC vuông tại A′, tính góc giữa (P) và (ABC). HD: 30 0 3.Cho tam giác đều ABC cạnh a, nằm trong mặt phẳng (P). Trên các đường thẳng vuông góc với (P) vẽ từ B và C lấy các đoạn BD = 2 2 a , CE = a 2 nằm cùng một bên đối với (P). a) Chứng minh tam giác ADE vuông. Tính diện tích của tam giác ADE. 9 Hình học 11 Trần Só Tùng b) Tính góc giữa hai mặt phẳng (ADE) và (P). HD: a) 2 3 4 a b) arccos 33 IV. KHOẢNG CÁCH 1. Khoảng cách từ một điểm đến một đường thẳng, đến một mặt phẳng ( , ) ( ,( )) d M a MH d M P MH = = trong đó H là hình chiếu của M trên a hoặc (P). 2. Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song d(a,(P)) = d(M,(P)) trong đó M là điểm bất kì nằm trên a. d((P),(Q) = d(M,(Q)) trong đó M là điểm bất kì nằm trên (P). 3. Khoảng cách giữa hai đường thẳng chéo nhau • Đường thẳng ∆ cắt cả a, b và cùng vuông góc với a, b được gọi là đường vuông góc chung của a, b. • Nếu ∆ cắt a, b tại I, J thì IJ được gọi là đoạn vuông góc chung của a, b. • Độ dài đoạn IJ được gọi là khoảng cách giữa a, b. • Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó với mặt phẳng chứa đường thẳng kia và song song với nó. • Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó. VẤN ĐỀ 1: Khoảng cách giữa hai đường thẳng chéo nhau Phương pháp: Dựng đoạn vuông góc chung của hai đường thẳng chéo nhau a và b. Cách 1: Giả sử a ⊥ b: • Dựng mặt phẳng (P) chứa b và vuông góc với a tại A. • Dựng AB ⊥ b tại B ⇒ AB là đoạn vuông góc chung của a và b. Cách 2: Sử dụng mặt phẳng song song. • Dựng mặt phẳng (P) chứa b và song song với a. • Chọn M ∈ a, dựng MH ⊥ (P) tại H. • Từ H dựng đường thẳng a ′ // a, cắt b tại B. • Từ B dựng đường thẳng song song MH, cắt a tại A. ⇒ AB là đoạn vuông góc chung của a và b. Chú ý: d(a,b) = AB = MH = a(a,(P)). Cách 3: Sử dụng mặt phẳng vuông góc. • Dựng mặt phẳng (P) ⊥ a tại O. • Dựng hình chiếu b ′ của b trên (P). • Dựng OH ⊥ b ′ tại H. • Từ H, dựng đường thẳng song song với a, cắt b tại B. • Từ B, dựng đường thẳng song song với OH, cắt a tại A. ⇒ AB là đoạn vuông góc chung của a và b. Chú ý: d(a,b) = AB = OH. 1.Cho hình tứ diện OABC, trong đó OA, OB, OC = a. Gọi I là trung điểm của BC. Hãy dựng và tính độ dài đoạn vuông góc chung của các cặp đường thẳng: a) OA và BC. b) AI và OC. 10 [...]... a2 6 b) c) 2 3 2 0 4.Cho hai tia chéo nhau Ax, By hợp với nhau góc 60 , nhận AB = a làm đoạn vuông góc chung Trên By lấy điểm C với BC = a Gọi D là hình chiếu của C trên Ax a) Tính AD và khoảng cách từ C đến mp(ABD) b) Tính khoảng cách giữa AC và BD a a 3 a 93 HD: a) AD = ; d(C,(ABD)) = b) 2 2 31 · 5 Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và BAD = 60 0 Gọi O là giao điểm 3a của AC và... thẳng AD đến mặt phẳng (SBC) c) Tính diện tích của thiết diện của hình chóp SABCD với mặt phẳng (P) song song với a 3 4 a 2 a 6 a2 6 HD: a) d(A,(SCD)) = a 2 ; d(B,(SCD)) = b) c) 2 3 2 2.Cho hình lăng trụ ABC.A′B′C′ có AA′ ⊥ (ABC) và AA′ = a, đáy ABC là tam giác vuông tại A có BC = 2a, AB = a 3 a) Tính khoảng cách từ AA′ đến mặt phẳng (BCC′B′) b) Tính khoảng cách từ A đến (A′BC) c) Chứng minh rằng AB ⊥...Đoàn Hoài Hận Hình học 11 a 2 a 5 b) 2 5 2.Cho hình chóp SABCD, đáy ABCD là hình vuông tâm O, cạnh a, SA ⊥ (ABCD) và SA = a Tính khoảng cách giữa hai đường thẳng: a) SC và BD b) AC và SD HD: a) a 6 a 3 b) 6 3 3.Cho tứ diện SABC có SA ⊥ (ABC) Gọi H, K lần lượt là trực tâm của các tam giác ABC và SBC a) Chứng minh ba đường thẳng AH, SK, Bc đồng qui b) Chứng minh SC ⊥ (BHK), HK ⊥ (SBC) c) Xác đònh đường vuông... (BCC′B′) b) Tính khoảng cách từ A đến (A′BC) c) Chứng minh rằng AB ⊥ (ACC′A′) và tính khoảng cách từ A′ đến mặt phẳng (ABC′) mp(SAD) và cách (SAD) một khoảng bằng 11 Hình học 11 Trần Só Tùng a 3 a 21 a 2 b) c) 2 7 2 3. Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, SA ⊥ (ABCD) và SA = 2a a) Tính khoảng cách từ A đến mp(SBC), từ C đến mp(SBD) b) M, N lần lượt là trung điểm của AB và AD Chứng minh... b′ Chứng minh a = a′, b = b′ 5 Cho hình vuông ABCD cạnh bằng a, I là trung điểm của AB Dựng IS ⊥ (ABCD) và IS = HD: a) a 3 Gọi M, N, P lần lượt là trung điểm của các cạnh BC, SD, SB Hãy dựng và tính độ 2 dài đoạn vuông góc chung của các cặp đường thẳng: a) NP và AC b) MN và AP a a 3 HD: a) b) 2 4 VẤN ĐỀ 2: Tính khoảng cách từ một điểm đến đường thẳng, mặt phẳng Khoảng cách giữa đường thẳng và mặt phẳng... 60 0 Gọi O là giao điểm 3a của AC và BD Đường thẳng SO ⊥ (ABCD) và SO = Gọi E là trung điểm của BC, F 4 là trung điểm của BE a) Chứng minh (SOF) ⊥ (SBC) b) Tính các khoảng cách từ O và A đến (SBC) 3a 3a HD: b) d(O,(SBC)) = , d(A,(SBC)) = 8 4 HD: a) a 2 ; 12 . EFD′B′. HD: a) 450 b) S EFDB = 2 3 2 4 a ; S EFD ′ B ′ = 2 3 4 a 2.Cho tam giác cân ABC có đường cao AH = a 3 , đáy BC = 3a; BC ⊂ (P). Gọi A′ là hình chiếu. arctan 6 c) 30 0 . 5.Cho hình thoi ABCD cạnh a, tâm O, OB = 3 3 a ; SA ⊥ (ABCD) và SO = 6 3 a . a) Chứng minh · ASC vuông. b) Chứng minh hai mặt phẳng