PHỊNG GDDT ĐƠNG HƯNG Trường TH&THCS Thăng Long ĐỀ KHẢO SÁT HỌC SINH GIỎI LỚP CẤP HUYỆN Mơn: Tốn – Lớp Thời gian làm bài: 120 phút (Không kể thời gian giao đề) Câu 1: (4 điểm) Tính: a) A 2013 2014 2015 2016 b) B 2.4.10 4.6.8 14.16.20 3.6.15 6.9.12 21.24.30 Câu 2: (6 điểm) a) So sánh A 102014 2016 102015 2016 B 102015 2016 102016 2016 1 1 119 ).x 7.8.9.10 720 b) Tìm x biết: 1.2.3.4 2.3.4.5 3.4.5.6 ( c) Chứng minh rằng: p p2+2 số nguyên tố p3+2 số nguyên tố Câu 3: (4 điểm) 2n a) Tìm số tự nhiên n để phân số n phân số rút gọn b) Trong đợt tổng kết năm học trường THCS, tổng số học sinh giỏi ba lớp 6A, 6B, 6C 90 em Biết số học sinh giỏi lớp 6A số học sinh giỏi lớp 6B số học sinh giỏi lớp 6C Tính số học sinh giỏi lớp Câu 4: (4 điểm) � Cho tam giác ABC có ACB 60 , AB=6cm Trên cạnh AB lấy điểm D (D khác A,B) cho AD=2cm a) Tính độ dài đoạn thẳng BD � � b) Tính số đo DCB biết ACD 20 � � c) Dựng tia Cx cho DCx 90 Tính ACx d) Trên cạnh AC lấy điểm E (E khác A,C) Chứng minh hai đoạn thẳng CD BE cắt 1 Câu 5: (2 điểm) Tìm ba số nguyên dương a, b, c cho: a b c HẾT Họ tên thí sinh: Số báo danh: PHỊNG GDDT ĐƠNG HƯNG HƯỚNG Trường TH&THCS Thăng Long DẪN CHẤM ĐỀ KHẢO SÁT HỌC SINH GIỎI LỚP CẤP HUYỆN Mơn: Tốn – Lớp Thời gian làm bài: 120 phút (Không kể thời gian giao đề) Câu Đáp án Điểm 1.1 (2.0 điểm) Tính A 2013 2014 2015 2016 A 2013 2014 2015 2016 Tính số số hạng A (2016 - 1) : + = 2016 số hạng 0,75 Nhóm số hạng liên tiếp vào nhóm: A (1 4) (5 8) (2013 2014 2015 2016) 0.75 A (44) 4 ( 4) 1444 444 4424 444 44 43 4.504 2016 có 504 sơ' Vậy A=-2016 B 2.4.10 4.6.8 14.16.20 3.6.15 6.9.12 21.24.30 B 0.5 1.2 (2.0 điểm) 2.4.10 4.6.8 14.16.20 8.(1.2.5 2.3.4 7.8.10) 3.6.15 6.9.12 21.24.30 27.(1.2.5 2.3.4 7.8.10) 27 1.75 Vậy B= 27 0.25 2.1 (2.0 điểm) 102014 2016 102015 2016 A 2015 B 2016 10 2016 10 2016 So sánh Ta có A 102014 2016 (102014 2016)(102016 2016) 102015 2016 (102015 2016)(102016 2016) 104030 2016.(102014 102016 ) 20162 (102015 2016)(102016 2016) 104030 2016.102014.101 20162 (102015 2016)(102016 2016) (1) 0.75 Ta có B 102015 2016 (102015 2016)(10 2015 2016) 102016 2016 (102016 2016)(102015 2016) 104030 2.2016.102015 20162 (102016 2016)(102015 2016) 104030 20.2016.102014 20162 (102016 2016)(102015 2016) (2) 0.75 Từ (1) (2) suy A>B 0.25 Vậy A>B 0.25 2.2 (2.0 điểm) 1 1 119 ).x 7.8.9.10 720 (1) Tìm x biết: 1.2.3.4 2.3.4.5 3.4.5.6 ( 1 1 7.8.9.10 Ta có: 1.2.3.4 2.3.4.5 3.4.5.6 1 1 1 ( ) 1.2.3 2.3.4 2.3.4 2.3.4 7.8.9 8.9.10 1 1 119 ( ) 720 720 1,25 119 119 x 720 =>x=3 Nên từ (1) suy ra: 720 0.5 Vậy x=3 0.25 2.3 (2.0 điểm) Chứng minh rằng: p p +2 số nguyên tố p3+2 số nguyên tố Ta nhận xét số nguyên tố lớn chia cho có dạng * p=3k+1 p=3k+2 ( k �N ) 0.5 Với p=3k+1 p2+2=9k2+6k+3 chia hết cho Với p=3k+2 p2+2=9k2-6k+6 chia hết cho 0.5 Vì p nguyên tố nên p �2 trường hợp p 2+2 lớn chia hết cho Tức p2+2 hợp số => p2+2 nguyên tố p=3 (khi p2+2=11 số nguyên tố) => p3+2=27+2=29 số nguyên tố 0.75 Vậy p p2+2 số nguyên tố p3+2 số nguyên tố 0.25 3.1 (2.0 điểm) 2n Tìm số tự nhiên n để phân số n phân số rút gọn * Gọi d ƯCLN(2n+1,n+2) (d �N ) Ta có 2n+1Md, n+2Md => [(2n+4)-(2n+1)] Md => Md 0.75 * Vì d �N nên d �{1;3} 2n Để phân số n rút gọn d=3 0.75 * => n+2=3k ( k �N ) * => n=3k-2 ( k �N ) 2n Vậy với n=3k-2 ( k �N ) phân số n phân số rút gọn * 0.5 3.2 (2.0 điểm) Trong đợt tổng kết năm học trường THCS, tổng số học sinh giỏi ba lớp 6A, 6B, 6C 90 1 em Biết số học sinh giỏi lớp 6A số học sinh giỏi lớp 6B số học sinh giỏi lớp 6C Tính số học sinh giỏi lớp Số học sinh giỏi lớp 6B : 5 ( số học sinh giỏi lớp 6A) Số học sinh giỏi lớp 6C : 5 ( số học sinh giỏi lớp 6A) Số học sinh giỏi lớp 1 3 5 ( số học sinh giỏi lớp 6A) Vậy số học sinh giỏi lớp 6A 90: = 30 học sinh, lớp 6B 36 học sinh lớp 6C 24 học sinh 0.5đ 0.5đ 0.5đ 0.5đ (4.0 điểm) � Cho tam giác ABC có ACB 60 , AB=6cm Trên cạnh AB lấy điểm D cho AD=2cm a) Tính độ dài đoạn thẳng BD � b) Tính số đo góc DCB biết ACD 20 � � c) Dựng tia Cx cho DCx 90 Tính ACx d) Trên cạnh AC lấy điểm E Chứng minh hai đoạn thẳng CD BE cắt E E Trường hợp Trường hợp a) D nằm A B => AD+BD=AB=>BD=6-2=4cm KL 0.75 0.25 b) Tia CD nằm hai tia CA tia CB � � � => ACD DCB ACB � => DCB =400 KL 0.75 0.25 c) Xét hai trường hợp: - Trường hợp 1: Hai tia CD Cx nằm phía so với đường thẳng CB � Tính góc ACx = 900- ACD = 700 K.L - Trường hợp 2: Hai tia CD Cx nằm hai phía so với đường thẳng CB � Tính góc ACx = 900 + ACD = 1100 K.L 0.5 0.5 - Xét đường thẳng CD Do CD cắt AB nên đường thẳng CD chia mặt phẳng làm nửa: nửa MP có bờ CD chứa điểm B nửa MP bờ CD chứa điểm A => tia CA thuộc nửa MP chứa điểm A E thuộc đoạn AC => E thuộc nửa MP bờ CD chứa điểm A => E B nửa MP bờ CD => đường thẳng CD cắt đoạn EB - Xét đường thẳng BE Lập luận tương tự: ta có đường thẳng EB cắt đoạn CD Vậy đoạn thẳng EB CD cắt 0.5 0.5 (1.0 điểm) 1 Tìm ba số nguyên dương a, b, c cho: a b c Khơng làm tính tổng qt, ta giả sử: a �b �c ta có: 15 � , a� a Nếu a=1 khơng thể được, a= a=3 0.5 1 Nếu a=2 b c 10 20 � , b� Suy b 10 Suy b=4 b= b=6 10 < Suy số a, b, c thỏa mãn (a=2,b=4,c=20) (a=2,b=5,c=10) 0.5 1 Nếu a=3 b c 15 30 � , b� suy b=3 b=4 Khơng có trường hợp thỏa mãn từ b 15 0.5 K.L có 12 số thỏa mãn hoán vị hai ba số (2,4,20) (2,5,10) 0.5 Điểm toàn 20 điểm Ghi chú: - Bài hình khơng có hình vẽ hình vẽ sai khơng chấm điểm - Học sinh làm cách khác mà cho điểm tối đa ... 20 16 So sánh Ta có A 102014 20 16 (102014 20 16) (1020 16 20 16) 102015 20 16 (102015 20 16) (1020 16 20 16) 104030 20 16. (102014 1020 16 ) 20 162 (102015 20 16) (1020 16 20 16) ... 104030 20 16. 102014.101 20 162 (102015 20 16) (1020 16 20 16) (1) 0.75 Ta có B 102015 20 16 (102015 20 16) (10 2015 20 16) 1020 16 20 16 (1020 16 20 16) (102015 20 16) 104030 2.20 16. 102015... 20 16) (102015 20 16) 104030 2.20 16. 102015 20 162 (1020 16 20 16) (102015 20 16) 104030 20.20 16. 102014 20 162 (1020 16 20 16) (102015 20 16) (2) 0.75 Từ (1) (2) suy A>B 0.25 Vậy A>B 0.25