Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 27 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
27
Dung lượng
549,5 KB
Nội dung
Giáo án đạisố10 nâng cao Vũ Chí Cơng --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Ngày soạn 1/10/2007 Tuần 5 - Tiết 14. Chơng II Hàm số bậc nhất và bậc hai Bài 1. Đại cơng về hàm số A.Mục tiêu. Giúp HS :Về kiến thức: +Chính xác hoá khái niệm hàm số và đồ thị của hàm số mà HS đã học. +Nắm vững khái niệm hàm số đồng biến,nghịch biến trên một khoảng,khái niệm hàm số chẵn, hàm số lẻ và sự thể hiện các tính chất ấy qua đồ thị. +Học sinh nắm đợc phép tịnh tiến một điểm , một đồ thị song song với các trục toạ độ. +Học sinh nắm vững định lí về phép tịnh tiến đồ thị , xác định đợc hàm số của đồ thị sau khi tịnh tiến. Về kĩ năng: +HS biết cách tìm TXĐ của hàm số. +HS biết tìm giá trị của hàm số tại một điểm cho trớc thuộc TXĐ. +Hiểu hai phơng pháp chứng minh tính đồng biến,nghịch biến của hàm số trên một khoảng. Biết chứng minh tính đồng biến và nghịch biến của hàm số trên một khoảng cho trớc bằng cách xét tỉ số biến thiên. +Biết chứng minh hàm số chẵn, hàm số lẻ bằng định nghĩa. +Học sinh rèn luyện cách xác định tính chẵn lẻ và tính đồng biến , nghịch biến của hàm số trên các khoảng trong tập xác định. B.Chuẩn bị Của thày và trò GV:Chuẩn bị bảng nêu trong ví dụ 1 và đồ thị. HS :Các kiến thức về hàm số đã học. C. Tiến trình bàigiảng I. Kiểm tra bài cũ : Không kiểm tra II. Bài học mới Hoạt động 1 1.Khái niệm về hàm số. a)Hàm số. GV nêu định nghĩa và giải thích thế nào là quy tắc đặt tơng ứng Cho một tập hợp khác rỗng D R. Hàm số f xác định trên D là một quy tắc đặt tơng ứng mỗi số x thuộc D với một và chỉ một số, kí hiệu là f(x) ; số f(x) đó gọi là giá trị của hàm số f tại x. Tập D gọi là tập xác định (hay miền xác định ), x gọi là biến số hay đối số của hàm số f. Kí hiệu f: D R x y = f(x). GV hớng dẫn HS quan sát ví dụ 1, trong SGK và đa ra hàm số s = f(k). Giúp cho HS hiểu rõ hàm số đợc định nghĩa là một quy tắc và hiểu thế nào là tập xác định của một hàm số. b)Hàm số cho bằng biểu thức. 1 Giáo án đạisố10 nâng cao Vũ Chí Cơng --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Nếu f(x) là một biểu thức của biến x thì với mỗi giá trị của biến x ,ta tính đợc một giá trị t- ơng ứng duy nhất của f(x) (nếu nó xác định).Do đó ta có hàm số y = f(x).(Hàm số cho bằng biểu thức f(x).) Tập xác định của hàm số y = f(x) là tập hợp tất cả các số thực x sao cho giá trị của biểu thức f(x) đợc xác định . Hoạt động của giáo viên Hoạt động của học sinh Hãy chọn kết luận đúng: a)Tập xác định của hàm số y = )2)(1( xx x là:1) R + 2){x \ x 2,1 x } 3)R + \ {1;2} 4)(0 ; + ). b)Tập xác định của hàm số d(x) = < = 01 00 01 x x x 1)R - 2)R 3)R + 4){-1 ; 0 ; 1}. HS chọn phơng án đúng. a)3 do cần có x 0 và (x 1)(x 2) 0. HS chọn phơng án đúng. b)2. HS làm bài tập 1 để khắc sâu khái niệm tập xác định của hàm số. Chú ý :Ta gọi x là biến số độc lập còn y là biến số phụ thuộc của hàm số f. Chúng có thể đợc kí hiệu bởi các chữ cái khác. c)Đồ thị của hàm số. Cho hàm số y = f(x) xác định trên tập D. Đồ thị của hàm số f là G = {M(x ; y) Oxy | x D ; y = f(x)}. Nói cách khác M (x 0 ; y 0 ) G x 0 D và y 0 = f(x 0 ). Qua đồ thị ta có thể nhận biết đợc nhiều tính chất của hàm số đó. GV hớng dẫn HS quan sát ví dụ 2 và giúp HS nhận biết các tính chất của hàm số qua đồ thị của hàm số đó. Hoạt động 2 2.Sự biến thiên của hàm số. a)Hàm số đồng biến,hàm số nghịch biến. Khi nghiên cứu một hàm số,ta thờng quan tâm đến sự tăng hay giảm của giá trị hàm số khi đối số tăng. Hoạt động của giáo viên Hoạt động của học sinh Xét hàm số f(x) = x 2 . Gọi x 1 , x 2 là hai giá trị tuỳ ý của đối số. Khi x 1 , x 2 thuộc nửa khoảng [0 ; + ) ta có 0 )()( 21 222 121 xfxfxxxx << . Khi x 1 , x 2 thuộc nửa khoảng (- ; 0] ,ta có Khi đối số tăng, hàm số tăng khi x [0 ; + ). 2 Giáo án đạisố10 nâng cao Vũ Chí Cơng --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- )()(0 21 222 12121 xfxfxxxxxx >>>< . Vậy khi đối số tăng ,trong trờng hợp nào thì : a)Giá trị hàm số tăng? b)Giá trị hàm số giảm? hàm số giảm khi x ]0;( Chú ý rằng ta luôn xét khi đối số tăng. Định nghĩa :Cho hàm số f(x) xác định trên K. Hàm số f đợc gọi là đồng biến trên K nếu )()(,, 212121 xfxfxxKxx << ; Hàm số f đợc gọi là nghịch biến trên K nếu )()(,, 212121 xfxfxxKxx >< ; GV hớng dẫn HS quan sát và nhận xét đồ thị hàm số y = x 2 .Tổng quát ta có: Nếu một hàm số đồng biến trên K thì trên đó, đồ thị của nó đi lên từ trái sang phải. Nếu một hàm số nghịch biến trên K thì trên đó, đồ thị của nó đi xuống từ trái sang phải. Hoạt động của giáo viên Hoạt động của học sinh Hàm số cho bởi đồ thị trên H 2.1 đồng biến trên khoảng nào, nghịch biến trên khoảng nào trong các khoảng (-3 ; -1) , (-1 ;2) ,(2 ; 8)? Hãy nêu một hàm số luôn đồng biến trên R. Hãy nêu một hàm số luôn nghịch biến trên R. Hàm số đồng biến trên khoảng (-3 ;-1), nghịch biến trên khoảng (-1 ; 2). y = ax + b với a > 0. y = ax + b với a < 0. Chú ý Nếu f(x 1 ) = f(x 2 ) với mọi x 1 ;x 2 thuộc K, tức là f(x) = c với mọi x thuộc K thì ta có hàm số không đổi ( hàm hằng ) trên K. Đồ thị là đờng thẳng song song với trục Ox. *.Củng cố kiến thức. +Định nghĩa hàm số. Hàm số cho bởi biểu thức, cho bởi đồ thị, cho bằng bảng, cho bằng biểu đồ. +Đồ thị của hàm số. +Sự biến thiên của hàm số, tính chất đồ thị của hàm số đồng biến,nghịch biến. III.Hớng dẫn về nhà. +Học kĩ lí thuyết. +Làm bài tập 1, 2 . 3 Giáo án đạisố10 nâng cao Vũ Chí Cơng --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Ngày soạn 1/10/2007 Tuần 5 - Tiết 15 đại cơng về hàm số (tiếp theo) C. Tiến trình bàigiảng I. Kiểm tra bài cũ +Nêu định nghĩa hàm số và đồ thị của hàm số. +Nêu định nghĩa hàm số đồng biến,hàm số nghịch biến và tính chất của đồ thị tơng ứng. II. Bài học mới Hoạt động 1 2.Sự biến thiên của hàm số. b)Khảo sát sự biến thiên của hàm số. GV hớng dẫn HS quan sát SGK trả lời câu hỏi: Khảo sát sự biến thiên của hàm số là gì? Khảo sát sự biến thiên của hàm số là xét xem hàm số đồng biến , nghịch biến , không đổi trên các khoảng nào trong tập xác định của nó. Để xét tính đồng biến, hoặc nghịch biến của hàm số trên một khoảng ta có thể dùng định nghĩa (? ) hoặc có thể dùng nhận xét sau: Hàm số f đồng biến trên K khi và chỉ khi 0 )()( ,;, 12 12 2121 > xx xfxf xxKxx . Hàm số f nghịch biến trên K khi và chỉ khi 0 )()( ,;, 12 12 2121 < xx xfxf xxKxx . Nh vậy để khảo sát sự biến thiên của hàm số f trên K ,ta có thể xét dấu của tỉ số 12 12 )()( xx xfxf trên K. HS : Hãy giải thích vì sao có thể dùng xét dấu tỉ số trên thay cho định nghĩa khi xét sự biến thiên của hàm số trên một khoảng? Hoạt động của giáo viên Hoạt động của học sinh Ví dụ 4. Khảo sát sự biến thiên của hàm số f(x) = ax 2 với (a > 0) trên mỗi khoảng (- ; 0) và (0 ; + ). GV gợi ý các bớc yêu cầu HS thực hiện. +Lấy x 1 ; x 2 khác nhau,tính f(x 1 ) f(x 2 ). +Lập tỉ số 12 12 )()( xx xfxf và xét dấu tỉ số trên mỗi khoảng đã cho. HS thao tác từng bớc: 12 12 )()( xx xfxf = a(x 1 + x 2 ). +Nếu x 1 < 0 và x 2 < 0 thì tỉ số < 0,hàm số nghịch biến trên khoảng ( - ; 0 ); + Nếu x 1 > 0 và x 2 > 0 thì tỉ số > 0,hàm số đồng biến trên khoảng ( 0 ;+ ); Ngời ta thờng ghi lại kết quả khảo sát sự biến thiên của một hàm số bằng cách lập bảng biến thiên của nó. Ví dụ bảng biến thiên của hàm số y = a x 2 nh sau: x - 0 + 4 Giáo án đạisố10 nâng cao Vũ Chí Cơng --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- f(x) = ax 2 (a > 0) + + 0 Trong bảng biến thiên mũi tên đi lên thể hiện tính đồng biến, mũi tên đi xuống thể hiện tính nghịch biến của hàm số. GV giải thích rõ ý nghĩa của các kí hiệu trong bảng biến thiên cho HS hiểu và biết cách áp dụng . Hoạt động của giáo viên Hoạt động của học sinh Khảo sát sự biến thiên của hàm số f(x) = ax 2 với (a < 0) trên mỗi khoảng (- ; 0) và (0 ; + ) và lập bảng biến thiên của nó. GV gợi ý các bớc yêu cầu HS thực hiện. +Lấy x 1 ; x 2 khác nhau,tính f(x 1 ) f(x 2 ). +Lập tỉ số 12 12 )()( xx xfxf và xét dấu tỉ số trên mỗi khoảng đã cho. HS thao tác từng bớc: 12 12 )()( xx xfxf = a(x 1 + x 2 ). +Nếu x 1 < 0 và x 2 < 0 thì tỉ số > 0,hàm số đồng biến trên khoảng ( - ; 0 ); + Nếu x 1 > 0 và x 2 > 0 thì tỉ số < 0,hàm số nghịch biến trên khoảng ( 0 ;+ ); Bảng biến thiên x - 0 + f(x) = ax 2 (a < 0) 0 -- Hoạt động 2 3.Hàm số chẵn, hàm số lẻ. a)Khái niệm hàm số chẵn,hàm số lẻ. Định nghĩa : Cho hàm số y = f(x) với tập xác định D. Hàm số f gọi là hàm số chẵn nếu với mọi x thuộc D, ta có - x cũng thuộc D và f(-x) = f(x). Hàm số f gọi là hàm số lẻ nếu với mọi x thuộc D, ta có - x cũng thuộc D và f(-x)= - f(x). Hoạt động của giáo viên Hoạt động của học sinh Ví dụ 5: a) Chứng minh rằng hàm số f(x) = xx + 11 là hàm số lẻ. b)Chứng minh rằng hàm số g(x) = ax 2 (a 0) là hàm số chẵn. TXĐ: D = [-1 ;1] DxDx và f(-x) = - f(x). TXĐ: D = R. DxDx và f(-x) = f(x). Để xét hàm số là chẵn hay lẻ em cần kiểm tra những tính chất gì của hàm số đó? b)Đồ thị của hàm số chẵn và hàm số lẻ. 5 Giáo án đạisố10 nâng cao Vũ Chí Cơng --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Giả sử f với tập xác định D là hàm số chẵn và có đồ thị G . Với mỗi điểm M(x 0 ;y 0 ) sao cho x 0 thuộc D ,ta xét điểm đối xứng của nó qua trục tung là M (-x 0 ; y 0 ). *)Từ định nghĩa hàm số chẵn , ta có x 0 D và f(-x 0 ) = f(x 0 ) . Do đó )()()()( ' 0000 GMxfyxfyGM == .Chứng tỏ rằng (G) có trục đối xứng là trục tung. Nếu f là hàm lẻ thì tơng tự ta suy ra (G) có tâm đối xứng là gốc toạ độ O. GV chỉ rõ các điểm đối xứng trên đồ thị hàm số chẵn cho HS thấy hình ảnh trực quan. Định lí: Đồ thị của hàm số chẵn nhận trục tung làm trục đối xứng. Đồ thị của hàm số lẻ nhận gốc toạ độ làm tâm đối xứng. GV vẽ minh hoạ đồ thị một hàm số chẵn và đồ thị một hàm số lẻ cho HS tự kiểm nghiệm định lí. Ví dụ : y= x 2 và y = x 1 . Lu ý rằng có những hàm số không chẵn cũng không lẻ. ( Vi phạm một trong hai điều kiện trên). Ví dụ : y = x + 1. Đồ thị không có tính đối xứng qua trục tung hay đối xứng qua gốc toạ độ. Hoạt động của giáo viên Hoạt động của học sinh Cho hàm số f xác định trên R có đồ thị nh H 2.5. Hãy ghép mỗi ý ở cột trái với một ý ở cột phải để đợc một mệnh đề đúng: 1)Hàm số f là a)Hàm số chẵn 2)Hàm số f đồng biến b)Hàm số lẻ 3)Hàm số f nghịch biến c)Trên khoảng (- ; 0) d)Trên khoảng (0 ;+ ) e)Trên khoảng (- + ; ). *.Củng cố kiến thức. +Hai cách xét tính đồng biến,nghịch biến của hàm số trên một khoảng. Bảng biến thiên của hàm số. +Định nghĩa hàm số chẵn,hàm số lẻ. Cách xét tính chẵn lẻ của hàm số. Đồ thị của hàm số mang tính chẵn hoặc lẻ. III.Hớng dẫn về nhà. +Học kĩ lí thuyết. +Làm bài tập 3 ,4, 5. Ngày soạn 8/10/2007 Tuần 6 - Tiết 16. 6 Giáo án đạisố10 nâng cao Vũ Chí Cơng --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bài 1.(tiếp theo) đại cơng về hàm số I.Mục tiêu bài giảng. B.Chuẩn bị Của thày và trò +GV: Các bảng vẽ sẵn các đồ thị và phép tịnh tiến. +HS : Định nghĩa đồ thị của hàm số. C. Tiến trình bàigiảng I. Kiểm tra bài cũ +Nêu định nghĩa hàm số chẵn , hàm số lẻ. +Nêu tính chất đồ thị của hàm số chẵn và hàm số lẻ. II. Bài học mới Hoạt động 1 4.Sơ lợc về tịnh tiến đồ thị song song với trục toạ độ. a)Tịnh tiến một điểm. Trong mặt phẳng toạ độ, xét điểm M 0 (x 0 ; y 0 ). Với số k > 0 đã cho, ta có thể dịch chuyển điểm M 0 : +Lên trên hoặc xuống dới (theo phơng của trục tung ) k đơn vị . +Sang trái hoặc sang phải( theo phơng của trục hoành) k đơn vị. Khi đó, ta nói rằng tịnh tiến điểm M 0 song song với trục toạ độ. Hoạt động của giáo viên Hoạt động của học sinh Giả sử M 1 , M 2 , M 3 và M 4 là các điểm có đợc khi tịnh tiến M 0 (x 0 ; y 0 ) theo thứ tự lên trên ,xuống dới,sang phải và sang trái 2 đơn vị. Hãy cho biết toạ độ của các điểm M 1 , M 2 , M 3 và M 4 . M 1 (x 0 ; y 0 + 2) M 2 (x 0 ; y 0 - 2) M 3 (x 0 +2; y 0 ) M 4 (x 0 -2 ; y 0 ). b)Tịnh tiến một đồ thị . Cho số k > 0 .Nếu ta tịnh tiến tất cả các điểm của đồ thị (G) lên trên k đơn vị thì tập hợp các điểm thu đợc tạo thành hình (G 1 ). Tịnh tiến đồ thị G lên trên k đơn vị thì đợc hình G 1 , hoặc hình G 1 có đợc khi tịnh tiến đồ thị G lên trên k đơn vị . Phát biểu tơng tự khi tịnh tiến G xuống dới,sang phải hoặc sang trái . ? Khi đó G 1 có là đồ thị của một hàm số nào không ? Định lí. Trong mặt phẳng toạ độ O xy , cho đồ thị (G) của hàm số y =f(x) ; p và q là hai số dơng tuỳ ý . Khi đó : 1)Tịnh tiến (G) lên trên q đơn vị thì đợc đồ thị của hàm số y = f(x) + q. 2) Tịnh tiến (G) xuống dới q đơn vị thì đợc đồ thị của hàm số y = f(x) - q. 3) Tịnh tiến (G) sang trái p đơn vị thì đợc đồ thị của hàm số y = f(x+p) . 4) Tịnh tiến (G) sang phải p đơn vị thì đợc đồ thị của hàm số y = f(x p ) . 7 Giáo án đạisố10 nâng cao Vũ Chí Cơng --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- GV hớng dẫn học sinh quan sát ví dụ 6 và ví dụ 7. Ví dụ 6. Nếu tịnh tiến đờng thẳng (d) : y = 2x 1 sang phải 3 đơn vị thì ta đợc đồ thị của hàm số nào? Hớng dẫn : Đặt f(x) = 2x 1 .Theo định lí trên ta có , khi tịnh tiến (d) sang phải 3 đơn vị ta đợc (d 1 ), đó là đồ thị của hàm số y = f(x - 3) = 2x 7 . Ví dụ 7 . Cho đồ thị (H) của hàm số y = x 1 . Hỏi muốn có đồ thị hàm số y = x x 12 + thì ta phải tịnh tiến (H) nh thế nào? Hớng dẫn . Kí hiệu g(x) = x 1 ,ta có x x 12 + = -2 + x 1 = g(x) 2 .Vậy ta phải tịnh tiến (H) xuống d- ới 2 đơn vị . Hoạt động của giáo viên Hoạt động của học sinh Chọn phơng án trả lời đúng : Khi tịnh tiến parabol y = 2x 2 sang trái 3 đơn vị ,ta đợc đồ thị của hàm số : a)y = 2(x+3) 2 ; b)y = 2x 2 + 3 ; c)y = 2( x 3 ) 2 ; d)y = 2x 2 3. c) *.Củng cố kiến thức. +Nêu định lí về hàm số nhận đợc khi tịnh tiến đồ thị song song với trục toạ độ. III.Hớng dẫn về nhà. +Học kĩ định lí. +Làm bài tập 6 và phần luyện tập trong sách giáo khoa. Ngày soạn 8/10/2007 8 Giáo án đạisố10 nâng cao Vũ Chí Cơng --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Tuần 6 - Tiết 17 Luyện tập A.Mục tiêu bài giảng. Giúp học sinh ôn tập về hàm số ,rèn luyện và củng cố các kĩ năng: tìm tập xác định của hàm số, xét tính đồng biến ,nghịch biến của hàm số trên khoảng cho trớc ,xét tính chẵn lẻ của hàm số, lập bảng biến thiên của hàm số thông qua đồ thị và ngợc lại, nhận xét tính chất của đồ thị nhờ vào bảng biến thiên . B.Chuẩn bị Của thày và trò C. Tiến trình bàigiảng I. Kiểm tra bài cũ +Định nghĩa hàm số.Tập xác định của hàm số cho bởi biểu thức. Đồ thị của hàm số. +Định nghĩa hàm số đồng biến, nghịch biến trên từng khoảng.Tính chất đồ thị . +Khái niệm hàm số chẵn , hàm số lẻ.Tính chất đồ thị. +Trình bày định lí về phép biến đổi đồ thị. III.Luyện tập. Hoạt động của giáo viên Hoạt động của học sinh GV gọi học sinh đứng tại chỗ trả lời các câu hỏi 7 , 8 . GV gọi HS 1 lên bảng làm bài tập 9 phần a) và b). GV gọi HS 2 lên bảng làm bài tập 9 phần c) và d) GV gọi HS 3 lên bảng làm bài tập 10 . GV nhận xét lời giải lời giải trên bảng và chữa chi tiết các lỗi sai. GV gọi HS lên bảng làm bài tập 12 phần a) GV gọi HS lên bảng làm bài tập 13. 7 .Không do mỗi số thực dơng có hai giá trị căn bậc hai. 8 .a)Khi a D. b)d có thể không có hoặc có duy nhất một điểm chung với (G). c)Không vì mỗi giá trị của x cho hai giá trị của y. Bài 9:a) D = R \ {-3 ; 3}. b)D = (- ; -1) ( -1 ; 0]. Bài 9: c) D = ( -2 ; 2]; d) D = [1 ; 4 ] \ {2 ; 3 }. Bài10 :a)D = [-1 ; + ) b) Bài 12 : Xét dấu tỉ số k .Hàm số nghịch biến trên các khoảng ( - ; 2) và ( 2 ; + ). Bài 13: Hàm số nghịch biến trên các khoảng ( - ; 0) và ( 0 ; + ). Bài 16: a) y = - x 2 + 1. b) y = - 3 2 + x 9 Giáo án đạisố10 nâng cao Vũ Chí Cơng --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- GV gọi HS lên bảng làm bài tập 16. c)y = - 3 2 + x + 1. GV đọc bài tập thêm cho học sinh ghi và làm ở dới . Sau đó quan sát lớp và chuẩn bị kết hợp với HS chữa chi tiết các lỗi sai trên bảng. Bài tập thêm 1: Hãy điền vào chỗ trống để đợc một định nghĩa về hàm số a) DR và D b) Một hàm số f xác định trên D là nhờ đó với mỗi số x luôn xác định một số thực y , y gọi là tại x , kí hiệu y = c) D gọi là .x gọi là . d) Ta viết f : D . x . Bài tập thêm 2 : Hãy ghép một trong hai hàm số y = f(x) = xx 1 và y = g(x) = 1 xx với một trong hai tập hợp D 1 = [1 ; + ) , D 2 = [0 ; 1] để đợc mệnh đề đúng. a)Hàm số y = f(x) = có tập xác định là b)Hàm số y = g(x) = có tập xác định là Bài tập thêm 3: Cho hàm số y = 54 2 + xx (1) và điểm A ( 2 ; m) .Tính m để A thuộc đồ thị hàm số (1). a) m = 1 b) m = 1 c) m = -1 d) m = 2. Hoạt động 1: HS đọc kĩ đề bài ,phân tích và hiểu rõ câu hỏi. GV quan sát trên bảng. Hoạt động 2: HS tìm hớng giải quyết,nếu cần GV hỗ trợ qua hệ thống câu hỏi về lí thuyết nh ở phần kiểm tra kiến thức cũ. Hoạt động 3: HS thực hiện lời giải vào vở. Hoạt động 4: GV yêu cầu HS cùng quan sát lời giải bài cũ trên bảng, kiểm tra sai sót, lời giải có đầy đủ không, căn cứ có chính xác không? Sau đó GV và HS cùng thảo luận lời giải bài tập thêm . *.Củng cố kiến thức. +Các khái niệm liên quan đến hàm số. +Tịnh tiến đồ thị song song với các trục toạ độ. III.Hớng dẫn về nhà. +Làm bài tập thêm. +Tự ôn tập kiến thức đã học trong bài trên. Ngày soạn 9/10/2007 Tuần 6 - Tiết 18 10 [...]... và y = x - 3 trên cùng hệ trục x 2 x 2 y = f (x) = x+ 2 x< 2 x 3 x 0 y = f (x) = x 3 x< 0 a = 1,5 a = 1,5 2a + b = 5 b =2 23 a) y = 2 x + 3 b)y = 2 x +3 1 c) y = 2 x 2Bài 24 1 2 Nếu tịnh tiến đồ thị của hàm số f1sang trái 2 đơn vị rồi lại tịnh tiến xuống dới 3 đơn vị ta đ15 ợc đồ thị của hàm số f2 GV hớng dẫn HS làm bài tập 25 và bài 26 Bài 26 y =-1 ,5x + 2 Giáo án đại số10 nâng cao... hoành($ 3bài3 5a) ($ 3bài3 5a) ($ 3bài3 5b) x 2 + 2 x + 3 x 0 b)Vẽ đồ thị hàm số y = ($ 3bài3 5b) 2 x 2 x + 3 x < 0 c)Vẽ đồ thị hàm số y = 1 22 x x + 2 x 1 1 x2 + x x < 1 2 ($ 3bài3 5c) ($ 3bài3 5c) Gv yêu cầu học sinh lên bảng vẽ câu b) Bài 37 23 Giáo án đại số10 nâng cao Vũ Chí Cơng a) Giả sử h = f(t) = at2 +... 61 22 21 Giáo án đại số10 nâng cao Vũ Chí Cơng - Ngày soạn 21 / 10 / 20 07 Tuần 8 - Tiết 22 Luyện tập Hàm số bậc hai A.Mục tiêu bàigiảng +Về kiến thức : Ôn tập sự biến thiên của hàm số bậc hai Cách vẽ đồ thị hàm số y = ax2 + bx + c và đồ thị hàm số y = ax +bx +c +Về kĩ năng : Vẽ đồ thị hàm số bậc hai và hàm số y... thuyết +Làm bài tập về hàm số trong sách bài tập đạisố nâng cao 16 Giáo án đại số10 nâng cao Vũ Chí Cơng Ngày soạn 15 / 10 / 20 07 Tuần 7 - Tiết 20 Bài 3 A.Mục tiêu bàigiảng Hàm số bậc hai +Về kiến thức :Ôn tập lại định nghĩa hàm số bậc hai Học sinh hiểu quan hệ giữa đồ thị hàm số y = ax2 và hàm số y = ax2 + bx +... 2. 16 ; H 2. 17 b)Đồ thị hàm số y = ax2 + bx + c (a 0 ) Ta đã biết ax2 + bx + c = a( x2 + 2 b 2a Do đó nếu đặt = b2 4ac ; p = - x+ b 2a b2 4a 2 b 2 b 2 4ac b2 + c = a(x + ) 2a 4a 4a = - 4a thì hàm số có dạng y = a(x )- ; và q p )2 + q GV yêu cầu HS tìm các phép tịnh tiến để từ đồ thị hàm số y = ax2 ta có đợc đồ thị hàm số y = a(x p )2 + q Ta tịnh tiến (P0) liên tiếp nh sau : +Tịnh tiến (P0) sang phải... hàm số Vẽ đồ thị BC , CD Với A ( -2 ; 0) ; B ( - 1 ; 2) ; C của hàm số Hãy xét sự biến thiên của hàm số (1 ; -2 ) ;D (3 ; 0).(hình1) Hãy lập bảng biến thiên GV gọi HS 2 lên bảng làm bài 19 Bài 19 : a)Vẽ đồ thị hai hàm số y = 2 x và y = 2 x + trên cùng một mặt phẳng toạ độ 5 b)Cho biết phép tịnh tiến đồ thị f1 thành đồ thị f2 (hình 2) (hình1) Đờng thẳng x = a không là đồ thị của hàm số (hình 2) Bài. .. hàm số bậc hai , đồ thị hàm số bậc hai III.Hớng dẫn về nhà +Học kĩ lí thuyết +Làm bài tập 27 ,28 ,29 ,30 Ngày soạn 15 / 10 / 20 07 18 Giáo án đạisố10 nâng cao Vũ Chí Cơng Tuần 7 - Tiết 21 Bài 3 A.Mục tiêu bàigiảng Hàm số bậc hai +Về kiến thức :Nắm vững sự biến thiên của hàm số bậc hai.Từ đó suy ra đồ thị hàm số y... Bài 20 GV cho học sinh đứng tại chỗ trả lời và nhận xét GV gọi HS 3 lên bảng làm bài 21 a)Đồ thị đi qua điểm M ( -2 ; 5) và có hệ số góc bằng - 1,5 b)Vẽ đồ thị hàm số tìm đợc GV gọi HS 4 lên bảng làm bài 22 Các đỉnh còn lại của hình vuông là B (-3 ; 0) ; C ( 0 ; -3 ) và D ( 0 ; 3) Từ đó suy ra các đờng thẳng chứa các cạnh Bài 23 GVgọi HS đứng tại chỗ trả lời : Bài 24 Vẽ đồ thị hai hàm số y = x 2. .. Đồ thị đi qua điểm A ( -1 ; 1) ; B ( 1 ; 1 ) và gốc toạ độ Ví dụ 3 Xét hàm số y = 2 x 4 Y= 2x 4 x 22 x + 4 x < 2 *TXĐ : R *Sự biến thiên : Hàm số đồng biến trên khoảng ( 2 ; + ) Hàm số nghịch biến trên khoảng ( - ; 2 ) Bảng biến thiên: x -2 + + + y= 2 x 4 0 *Đồ thị : Gồm hai nửa đờng thẳng có chung điểm M ( 2; 0) Đồ thị đi qua điểm A ( 1 ; 2) ; B ( 3 ; 2 ) và M ( 2 ; 0) Chú ý : Ta có thể... 6x + 9 x =- 1 2 17 4 x=3 0 y = - 4x + 4x - 1 2 x= 1 2 0 22 Giáo án đại số10 nâng cao Vũ Chí Cơng Hoạt động của giáo viên Hoạt động của học sinh Bài 34 GV hỏi , học sinh đứng tại chỗ trả lời a) a > 0 và < 0; b) a < 0 và < 0; c) a < 0 và > 0; Bài 35 a)Vẽ pa ra bol y = x2 + 2 x , và pa rabol y = - ( x2 + 2 x ) Chúng . -- -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -. -- -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -