[r]
(1)Đề kiểm tra học kì 2(Năm học 2009-2010) Môn : Toán 7
Thời gian: 90 phút Đề số 01
Câu 1
Viết dới dạng thu gän a) -
3 x
5y (−3
7)xy
2z
b) 2x5-x3-x5+2x3-x+1
C©u 2
Cho đa thức: A= 2x2-5x3+1
B = x3-4x2-x+3
Tính A+B A-B Câu 3
Tìm nghiệm đa thức f(x) = x2+2x
Câu 4
Cho f(x) = x2+2x-1
TÝnh f(-1) vµ f(
2 )
C©u 5
Cho ABC cân A hai trung tuyến BM CN cắt D Chứng minh rằng:
a) Δ BNC = Δ CMB b) Δ BDC c©n tai D c) BC< 4DM
Đáp án kiểm tra học kì 2 Môn: Toán 7
Đề số 01 Câu 1( 1đ)
a) = (-
3( 7)(x
5
x)( y y2)z 0,25®
=
7 x
6
y3z 0,25®
b) = (2x5-x5)+(-x3+2x3)-x+1 = x5+x3-x+1 0,5®
Câu (3đ)
(2)B = x3 -4x2 - x +3
A+B = -4x3 -2x2-x+4
1®
A- B = -6x3 +6x2 +x-2
1đ Câu (1®)
f(x) = x2+2x = x(x+2) =0 0,25®
x=0 x=-2 0,25đ
Vậy nghiệm f(x) x=0 x=-2 0,5đ
Câu (1đ)
f(-1) = (-1)2 +2(-1)-1 0,25®
= 1- 2-1 =-2 0,25®
f(
2¿ = ( 2¿
2
+2.1
2−1 0,25®
=
4+1 −1=
4 0,25đ
Câu5 (4đ)
V hỡnh viết GT, KL 0,5đ
a) Δ BNC CMB 0,25đ
có: BN =CM (GT) 0,25®
∠NBC=∠ MBC (gt) 0,25®
BC Chung 0,25®
⇒ Δ BNC = Δ CMB (c-g-c) 0,5® b) Từ c/m câu a có:
NCB= MBC 0,5đ
DBC cân D 0,5đ
c) BC<DB+DC 0,25đ
mà DB=2DM DC= 2DN
Mặt khác DB =DC; DM=DN 0,5đ
Nên DB =2DM =DC
BC
¿
2DM+2DM
⇔ BC< 4DM 0,25®
Đề kiểm tra học kì 2(Năm học 2009-2010) Môn : Toán 7
Thời gian: 90 phút Đề số 02
Câu 1
Viết dới dạng thu gän a) 10a2b3c(-
2¿ a3b2c
b) x5+x3-2x5-2x3+x-3
Câu 2
Cho đa thức A= x3-4x2+3x-2
B = 2x3+5x2+2x-4
TÝnh A+B vµ A-B C©u 3
Cho f(x) = x2-2x
TÝnh f(-1) f(
(3)Câu 4
Tìm nghiệm đa thức f(x) =x2-3x
Câu
Cho tam giác MNP cân M hai trung tuyÕn NK; PI c¾t O Chøng minh:
a) Δ NIP = Δ PKN b) Δ NOP c©n O c) NP<4OK
Đáp án kiểm tra học kì 2 Môn: Toán 7
Đề số 02 Câu (1®)
a) =10(-
2¿ (a2a3)(b3b2)(cc) 0,25®
= -5a5b5c2 0,25®
b) = (x5-2x5)+(x3-2x3)+x-3 0,25®
= -x5 x3 +x-3 0,25đ
Câu (3®)
A = x3-4x2+3x-2 0,25®
B = 2x3+5x2+2x-4 0,25®
A +B = 3x3+x2+5x-6 1®
A-B = -x3-9x2+x +2 1đ
Câu3 (1đ)
f(-1) = (-1)2-2(-1)+1 0,25®
= 1+2+1 =4 0,25®
f(-
2¿ = ( 2¿
2− 2.1
2+2 0,25®
=
41+1=
4 0,25đ
Câu (1đ)
f(x) =x2-3x= x(x-3)
x=0 x=-3 0,5đ
Vậy f(x) có nghiệm x=0 x=-3 0,5đ
Câu (4đ) O
N
P M
(4)Vẽ hình GT, KL 0,25đ
a) NIP PKN 0,25đ
Có: IN=KP (gt) 0,25®
∠INP=∠ KPN (gt) 0,25®
NP chung 0,25®
⇒ Δ NIP = Δ PKN (c-g-c) 0,5® b) Từ c/m câu a
IPN =KNP 0,5đ
ONP cân tai O 0,5đ
c) NP<ON+OP 0,25®
NP<2OK+2OI 0,25®