1. Trang chủ
  2. » Cao đẳng - Đại học

mạng wireless2 tin học 6 bùi thị minh nguyệt thư viện tư liệu giáo dục

13 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 154,84 KB

Nội dung

Tổng quát hơn, khi so sánh hai số, hai biểu thức hoặc chứng minh một bất đẳng thức , ta có thể sử dụng các tính chất của bất đẳng thức được tóm tắt trong bảng sau.. Chú ý.[r]

(1)

Ôn tập bất đẳng thức 1 Khái niệm bất đẳng thức

Các mệnh đề dạng " " " " gọi bất đẳng thức. 2 Bất đẳng thức hệ bất đẳng thức tương đương

Nếu mệnh đề đúng ta nói bất đẳng thức là bất đẳng thức hệ của bất đẳng thức .

Ta viết .

Chẳng hạn, ta biết

(tính chất bắc cầu)

tùy ý (tính chất cộng hai vế bất đẳng thức với số) Nếu bất đẳng thức là hệ bất đẳng thức và ngược lại ta nói hai bất đẳng thức tương đương với

Ta viết

3 Tính chất bất đẳng thức

Như để chứng minh bất đẳng thức ta cần chứng minh

Tổng quát hơn, so sánh hai số, hai biểu thức chứng minh bất đẳng thức, ta sử dụng tính chất bất đẳng thức tóm tắt bảng sau

Chú ý

Ta gặp mệnh đề dạng Các mệnh đề dạng gọi bất đẳng thức Để phân biệt ta gọi bất đẳng thức không ngặt gọi bất đẳng thức dạng bất đẳng thức ngặt Các tính chất nêu bảng cho bất đẳng thức không ngặt

II Bất đẳng thức trung bình cộng trung bình nhân (bất đẳng thức cơ-si)

(2)

Định lí

Trung bình nhân hai số không âm nhỏ trung bình cộng chúng. , (1)

Đẳng thức xảy

Chứng minh

Ta có

Vậy

Đẳng thức xảy , tức 2 Các hệ quả

Hệ 1

Tổng số dương với nghịch đảo lớn 2.

Hệ 2

Nếu x, y dương có tổng khơng đổi tích lớn khi khi .

Chứng minh Đặt Áp dụng bất đẳng thứcCơ-si ta có

,

Đẳng thức xảy

Vậy tích đạt giá trị lớn

Ý NGHĨA HÌNH HỌC

(3)

Hệ 3

Nếu cùng dương có tích khơng đổi tổng nhỏ khi khi

.

Ý NGHĨA HÌNH HỌC

Trong tất hình chữ nhật có diện tích hình vng có chu vi nhỏ (h.27).

III Bất đẳng thức chứa dấu giá trị tuyệt đốiTừ định nghĩa giá trị tuyệt đối, ta có tính chất cho bảng sau

Ví dụ. Cho Chứng minh

Chuyên đề bổ sung:

Chuyên đề hệ thức bất đẳng thức lượng giác tam giác Kĩ thuật Cô-Si ngược dấu

Phương pháp tam thức bậc hai chứng minh bất đẳng thức MỘT KĨ THUẬT CHỨNG MINH BĐT CÓ ĐIỀU KIỆN

bất đẳng thức Schur

(4)

bất đẳng thức becnuli

Chọn điểm rơi Bất Đẳng Thức Cô-Si BẤT ĐẲNG THỨC SVACXƠ VÀ ỨNG DỤNG Các phương pháp biến đổi chứng minh BĐT

Kỹ thuật chọn điểm rơi toán BĐT cực trị

bất đẳng thức becnuli

Tác giả: ngoduykhanh đưa lên lúc: 21:03:25 Ngày 01-02-2008

bất đẳng thức Bernoulli bất đẳng thức cho phép tính gần lũy thừa + x

Bất đẳng thức phát biểu sau:

với số nguyên r ≥ với số thực x > −1 Nếu số mũ r chẵn, bất đẳng thức với số thực x Bất đẳng thức trở thành bất đẳng thức nghiêm ngặt sau:

với số nguyên r ≥ với số thực x ≥ −1 với x ≠

Bất đẳng thức Bernoulli thường dùng việc chứng minh bất đẳng thức khác Bản thân chứng minh phương pháp quy nạp toán học:

Chứng minh:

Khi r=0, bất đẳng thức trở thành tức mà rõ ràng

Bây giả sử bất đẳng thức với r=k: Cần chứng minh:

Thật vậy, (vì theo giả

(5)

(vì )

=> Bất đẳng thức với r=k+1

Theo nguyên lý quy nạp, suy bất đẳng thức với Số mũ r tổng qt hố thành số thực sau: x > −1,

với r ≤ or r ≥ 1,

với ≤ r ≤

Có thể chứng minh bất đẳng thức tổng qt hố nói cách so sánh đạo hàm

Một lần nữa, bất đẳng thức trở thành bất đẳng thức nghiêm ngặt x ≥ -1 ≤ r thuộc tập số tự nhiên

Các bất đẳng thức liên quan

Bất đẳng thức ước lượng lũy thừa bậc r + x theo chiều khác Với số thực x bất kỳ, r > 0, có

(6)

I.Các hệ thức lượng giác:

(7)

III.Bất đẳng thức sở:

Định nghĩa

Nhị thức có giá trị dấu với hệ số lấy giá trị khoảng trái dấu với hệ số lấy giá trị khoảng . Chứng minh Ta có

Với nên dấu với hệ số

Với nên trái dấu với hệ số Các kết thể qua bảng sau

(8)

Khi nhị thức có giá trị khơng ta nói số nghiệm nhị thức

Nghiệm nhị thức chia trục số thành hai khoảng (h.28) Minh họa đồ thị

3 Áp dụng

Ví dụ 1 Xét dấu nhị thức với tham số cho

Giải Nếu

Nếu nhị thức bậc có nghiệm

Ta có bảng xét dấu nhị thức hai trường hợp sau II Xét dấu tích, thương nhị thức bậc nhất

Giả sử tích nhị thức bậc Áp dụng định lý dấu nhị thức bậc xét dấu nhân tử Lập bảng xét dấu chung cho tất nhị thức bậc nhât có mặt ta suy dấu Trường hợp thương xét tương tự

Ví dụ 2. Xét dấu biểu thức

Giải

khơng xác định Các nhị thức có nghiệm viết theo thứ tự tăng Các nghiệm chia khoảng thành bốn khoảng, khoảng nhị thức xét có dấu hồn tồn xác định

Từ bảng xét dấu ta thấy

(9)

không xác định (trong bảng ký hiệu ||) III Áp dụng vào giải bất phương trình

Giải bất phương trình thực chất xét xem biểu thức nhận giá trị dương với giá trị (do biết nhận giá trị âm với giá trị , làm ta nói xét dấu biểu thức

1 Bất phương trình tích, bất phương trình chứa ẩn mẫu thức

Ví dụ 3 Giải bất phương trình

Giải Ta biến đổi tương đươngbất phương trình cho

Xét biểu thức

Ta suy nghiệm bất phương trình cho

2 Bất phương trình chứa ẩn dấu giá trị tuyệt đối

Một cách giải bất phương trình chứa ẩn dấu giá trị tuyệt đối sử dụng định nghĩa để khử dấu giá trị tuyệt đối Ta thường phải xét bất phương trình nhiều khoảng (nửa khoảng, đoạn) khác biểu thức nằm dấu giá trị tuyệt đối có dấu xác định

Ví dụ 4. Giải bất phương trình

Giải

Theo định nghĩa giá trị tuyệt đối ta có

(10)

Do ta xét bất phương trình hai khoảng

a) Với ta có hệ bất phương trình

hay

Hệ có nghiệm

b) Với ta có hệ bất phương trình

hay

Hệ có nghiệm

Tổng hợp lại tập nghiệm bất phương trình cho tập hai khoảng

Kết luận Bất phương trình cho có nghiệm

Bằng cách áp dụng tính chất giá trị tuyệt đối ta dễ dàng giải bất phương trình

dạng với cho

Ta có

(a > 0)

Tam thức bậc hai

Tam thức bậc hai biểu thức có dạng , trong là hệ số .

2 Dấu tam thức bậc hai

(11)

Định lí

Cho

Nếu thì ln dấu với hệ số .

Nếu thì ln dấu với hệ số , trừ .

Nếu thì cùng dấu với hệ số hoặc , trái dấu với hệ số khi trong nghiệm .

Chú ý Trong định lí trên, thay biệt thức biệt thức thu gọn

Minh họa hình học

3 Áp dụng

Ví dụ 1.

a) Xét dấu tam thức

b) Lập bảng xét dấutam thức Giải

a) có hệ số nên

b) có hai nghiệm phân biệt

Ta có bảng xét dấu sau:

Tương tự tích, thương nhị thức bậc nhất, ta xét dấu tích, thương tam thức bậc hai

Ví dụ Xét dấu biểu thức

(12)

1 Bất phương trình bậc 2

Bất phương trình bậc ẩn là bất phương trình dạng (hoặc

), là số thực cho, .

2 Giải bất phương trình bậc hai

Giải bất phương trình bậc hai thực chất tìm khoảng mà dấu với hệ số (khi ) hay trái dấu với hệ số (khi )

Ví dụ Giải bất phương trình sau: a) ; b) ; c) ; d)

Giảia) Tam thức có

Do tập nghiệm bất phương trình b) Tam thức có nghiệm

Vậy bất phương trình có tập nghiệm khoảng c) Tam thức có nghiệm

Vậy tập nghiệm bất phương trình

d) Tam thức có hệ số

có nghiệm kép với

(13)

Ví dụ 4Tìm giá trị tham số để phương trình sau có nghiệm trái dấu

Giải Phương trình bậc có hai nghiệm trái dấu hệ số trái dấu, tức phải thỏa mãn điều kiện sau

Vì tam thức có nghiệm hệ số dương nên

p ngoduykhanh ng phương pháp quy nạp toán lượng giác Phương trình bậc 2

Ngày đăng: 15/04/2021, 11:38

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w