1. Trang chủ
  2. » Mẫu Slide

ĐỀ THI TUYỂN SINH VÀO 10 MÔN TOÁN TỈNH ĐỒNG NAI NĂM 2017 VÀ ĐÁP ÁN

4 49 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 162,73 KB

Nội dung

Để tăng sự an toàn nên đến khi thực hiện, đội xe được bổ sung thêm 4 chiếc xe, lúc này số tấn hàng của mỗi xe chở ít hơn số tấn hàng của mỗi xe dự định chở là 1 tấn. Tính số tấn hàng của[r]

(1)

SỞ GIÁO DỤC VÀ ĐÀO TẠO THI TUYỂN SINH VÀO LỚP 10 THPT TỈNH ĐỒNG NAI NĂM HỌC 2017 – 2018

ĐỀ CHÍNH THỨC Mơn thi : TOÁN

Thời gian làm : 120 phút ( Đề gổm trang, có câu ). Câu ( 2,25 điểm )

1) Giải phương trình x2 9x20 0 2) Giải hệ phương trình :

7x 3y = 4 4x y =5

  

  3) Giải phương trình x4 2x2 3 0 Câu ( 2,25 điểm )

Cho hai hàm số

2 1 2 y x

y x  4 có đồ thị ( P ) ( d ) 1) Vẽ hai đồ thị ( P ) ( d ) mặt phẳng tọa độ.

2 ) Tìm tọa độ giao điểm hai đồ thị ( P ) ( d ). Câu ( 1,75 điểm )

1) Cho a > a4 Rút gọn biểu thức

2 .

2

a a

T a

a a a

     

     

   

 

2) Một đội xe dự định chở 120 hàng Để tăng an toàn nên đến thực hiện, đội xe bổ sung thêm xe, lúc số hàng xe chở số hàng xe dự định chở Tính số hàng xe dự định chở, biết số hàng xe chở dự định nhau, thực

Câu : ( 0,75 điểm )

Tìm giá trị tham số thực m để phương trình: x2 + ( 2m – )x + m2 – = có hai nghiệm phân biệt x1, x2 cho biểu thức P = ( x1 )2 + ( x2 )2 đạt giá trị nhỏ

Câu : ( 3,0 điểm )

Cho tam giác ABC có ba đường cao AD, BE, CF cắt H Biết ba góc

 ,  ,

CAB ABC BCAđều góc nhọn Gọi M trung điểm đoạn AH.

1) Chứng minh tứ giác AEHF nội tiếp đường tròn 2) Chứng minh CE.CA = CD.CB.

3) Chứng minh EM tiếp tuyến đường tròn ngoại tiếp tam giác BEF.

4) Gọi I J tương ứng tâm đường tròn nội tiếp hai tam giác BDF EDC Chứng minh

 

DIJ DFC

(2)

BÀI GIẢI ĐỀ TUYỂN SINH 10 TỈNH ĐỒNG NAI NĂM 2017-2018 Câu ( 2,25 điểm )

1) Giải phương trình x2 9x20 0 Cách 1:x2 9x20 0

=81-80=1>0 nên phương trình có hai nghiệm phân biệt

9

5;

2

x    x   

Vậy phương trình có tập nghiệm S={4;5}

Cách 2:

2 9 20 0 5 4 20 0 ( 5)( 4) 0 5

4

0 x x

x x x x x

x x

x    x               

  

 

 

Vậy phương trình có tập nghiệm S={4;5}

2) Giải hệ phương trình :

7

4

x y

x y   

  

7 19 19

4 12 15

x y x y x x

x y x y x y y

     

   

  

   

      

   

Vậy hệ phương trình có nghiêm (x;y)=(1;1) 3) Giải phương trình x4 2x2 30(1)

Cách 1:

2

4 2 2

2 2

3

2 3 ( 3)( 1)

1 ( 0)

0 x x

x x x x x

x Vn x x

x   x               

      

 

 

Vây phương trình có tập nghiệm S   3; 3

Cách 2: Đặt t=x2 (t 0) ta có phương trình t2-2t-3=0 (2)

Ta có a-b+c=1+2-3=0 nên phương trình (2) có nghiệm t1=-1(loại);t2=3(nhận) Với t2=3 x2  3 x

Vây phương trình có tập nghiệm S   3; 3

Câu ( 2,25 điểm )

1) Vẽ hai đồ thị ( P ) ( d ) mặt phẳng tọa độ *

2 1 2 y x

Hàm số xác định với x 

Bảng giá trị

x -2 -1

y -2 -0,5 -0,5 -2

Nhận xét: Đồ thị hs parabol qua gốc tọa độ,nhận trục tung làm trục đối xứng nằm phía trục hoành,O điểm cao

*y=x-4

(3)

2)Hoành độ giao điểm (P) (d) nghiệm phương trình

2

1

4

2x x x x       

' 1 0

     nên phương trình có nghiệm phân biệt x1=2;x2=-4 x1=2  y1=-2 ; x2=-4 y2=-8

Vậy tọa độ giao điểm (P) (d) (2;-2) (-4;-8) Câu ( 1,75 điểm )

1) Với a > a4 , ta có

2

2

a a

T a

a a a

     

     

   

 

   

   

2

2 4

a a a

a

a a

    

 

 

   

   

 

 

4 4 4

a a a a a

a a

         

   

  

 

8 a 8 a

 

2)Cách 1:Gọi x(xe) số xe đội lúc đầu ( x nguyên dương) Số hàng xe dự định chở

120 x (tấn) x+4(xe) số xe đội lúc sau

Số hàng xe thực chở 120

4 x  (tấn) Theo đề ta có phương trình

120 120

xx 

Giải phương trình ta x=20(thỏa đk);x=-24(khơng thỏađk) Vậy số hàng xe dụ định chở 120:20=6(tấn)

Cách 2:

Gọi x số hàng xe ban đầu dự định chở ( x nguyên dương, x > ) Số hàng xe lúc sau chở: x – ( )

Số xe dự định ban đầu :

120

x ( xe )

Số xe lúc sau :

120 1

x  ( xe )

Theo đề ta có phương trình :

120 1

x  – 120x =

Giải pt ta : x1 = ( nhận ); x2 = –5 ( loại )

Vậy số hàng xe ban đầu dự định chở : 6( ) Câu : ( 0,75 điểm )

Để phương trình: x2 + ( 2m – )x + m2 – = có hai nghiệm phân biệt x1, x2

5

0 4 5 0

4

m m

       

Với m 

thì phương trình có nghiện phân biệt x1, x2 theo hệ thức vi ét Ta có: x1 + x2 = 1-2m ; x1.x2 = m2 – 1

Nên P = ( x1 )2 + ( x2 )2 = (x1 + x2 )2 – 2x1.x2 = ( 1-2m)2 – 2(m2 – 1)= 1-4m+4m2-2m2+2 =2m2-4m+2+1 = 2( m – )2 + 1 1

(4)

Pmin = m = <

5 4

Vậy với m=1 biểu thức P đạt giá trị nhỏ Câu : ( 3,0 điểm )

1) Chứng minh tứ giác AEHF nội tiếp đường tròn.

BE đường cao ABC  900

BE AC AEH

   

CF đường cao ABC  900

CF AB AFH

   

Tứ giác AEHF có AEHAFH 1800 nên tứ giác AEHF nội tiếp đường tròn

2) Chứng minh CE.CA = CD.CB ADC BEC có

ADC BEC 900

  (AD,BE đường cao) C chung

Do ADC BEC(g-g)

DC AC

DC BC CE AC

EC BC

   

3) Chứng minh EM tiếp tuyến đường tròn ngoại tiếp tam giác BEF

Tứ giác BFEC có BEC BFC 900

 tứ giác BFEC nội tiếp đường trịn đường kính BC

Gọi O tâm đường trịn ngoại tiếp tứ giác BFEC O tâm đường tròn ngoại tiếp tam giác BEF

OBE cân O (do OB=OE)  OBE OEB

N J I

H F

E

C A

O B

D M

AEH vng E có EM trung tuyến ứng với cạnh huyền AH(Vì M trung điểm AH)  ME=AH:2= MH MHE cân M MEH MHEBHD

BHD OBE  900 (HBDvuông D) Nên OEB MEH  900Suy MEO900

EM OE

  E thuộc ( O )  EM tiếp tuyến đường tròn ngoại tiếp tam giác BEF

4)) Gọi I J tương ứng tâm đường tròn nội tiếp hai tam giác BDF EDC Chứng minh DIJ DFC  Tứ giác AFDC cóAFCADC900 nên tứ giác AFDC nội tiếp đường tròn  BDFBAC

BDF BAC có BDFBAC (cmt);Bchung BDF BAC(g-g) Chứng minh tương tự ta có DEC ABC(g-g)

Do DBF DEC  BDFEDC  BDI IDF EDJ JDC  IDJ FDC (1) Vì DBF DEC (cmt);DI phân giác,DJ phân giác

DI DJ

DF DC

 

Ngày đăng: 08/04/2021, 18:35

TỪ KHÓA LIÊN QUAN

w