1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Giáo án chi tiết Hình học 10 nâng cao

20 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 330,28 KB

Nội dung

o Bước đầu biết qui lạ về quen đối với các đẳng thức véctơ, biết dựng các véctơ tổng o Hiểu được quá trình xây dựng định nghĩa véctơ tổng  .Về thái độ: Cẩn thẩn, chính xác.hoạt động tíc[r]

(1)Chương I VECTƠ §1 CÁC ĐỊNH NGHĨA Tiết 1: I MỤC TIÊU Về kiến thức -Hiểu và biết vận dụng: Khái niệm véctơ; véctơ cùng phương, cùng hướng; độ dài véctơ; véctơ nhau, véctơ không bài tập Về kỹ -Biết xác định: điểm gốc (hay điểm đầu), điểm (hay điểm cuối) véctơ; giá, phương, hướng véctơ; độ dài (hay môđun) véctơ, véctơ nhau; véctơ không -Biết cách dựng điểm M cho AM = u với điểm A và u cho trước Về tư và thái độ -Rèn luyện tư lôgíc và trí tưởng tượng không gian; Biết quy lạ quen -Cẩn thận, chính xác tính toán, lập luận II CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH -Chuẩn bị HS: +Đồ dùng học tập, như: Thước kẻ, compa,…; +Bài cũ +Bản và bút cho hoạt động cá nhân và hoạt động nhóm -Chuẩn bị GV: +Các bảng phụ và các phiếu học tập +Computer và projecter (nếu có) +Đồ dùng dạy học GV: Thước kẻ, compa,… III GỢI Ý VỀ PHƯƠNG PHÁP DẠY HỌC -Sử dụng các phương pháp dạy học sau cách linh hoạt nhằm giúp học sinh tìm tòi, phát hiện, chiếm lĩnh tri thức: -Gợi mở, vấn đáp -Phát và giải vấn đề -Đan xen hoạt động nhóm IV TIẾN TRÌNH BÀI HỌC TIẾT1 HĐ GV HĐ HS Ghi bảng *HĐ1: Củng cố định 1).Véctơ nghĩa véctơ và định nghĩa hướng véctơ cách -ĐN (SGK) trực quan HĐTP1: Tiếp cận kiến -Quan sát hình vẽ SGK thức -Cho học sinh quan sát -Đọc câu hỏi và hiểu -Một người từ diểm A đến điểm hình vẽ SGK Lop10.com (2) -Đọc chiếu câu hỏi -Giúp HS hiểu có khác hai chuyển động nói trên -Hãy biểu thị điều nhận biết đó HĐTP2: Hình thành định nghĩa -Yêu cầu HS phát biểu điều cảm nhận -Chính xác hoá, hình thành khái niệm -Yêu cầu HS ghi nhớ các tên gọi, kí hiệu HĐTP3: Củng cố định nghĩa -Yêu cầu HS phát biểu lại định nghĩa -Yêu cầu HS nhấn mạnh các tên gọi mới: véctơ điểm đầu, véctơ điểm cuối, giá véctơ -Củng cố kiến thức thông qua ví dụ, cho HS hoạt động theo nhóm nhiệm vụ B, người khác ngược lại Vẽ sơ đồ biểu thị chuyển đông -Phát hướng chuyển người động và phân biệt -Hai chuyển động đó có hướng khác ngược chuyển động nói trên -Phát vấn đề -Với hai điểm A&B cho trước có hai hướng khác nhau, tuỳ thuộc việc chọn điểm nào là điểm đầu, điểm nào là điểm cuối -Phát biểu điều cảm nhận  B A   B A -Ghi nhớ các tên gọi và kí -ĐN (SGK, tr.5) hiệu -Kí hiệu : AB,MN , a,b, -Phát biểu lại định nghĩa -Nhấn mạnh các tên gọi -HĐ nhóm: Bước đầu vận *VD1: Cho điểm phân biệt không dụng kiến thức thông qua thẳng hàng A, B, C Hãy đọc tên các ví dụ véc tơ (khác nhau) có điểm đầu, điểm cuối lấy các điểm đã cho?   -Phân biệt AB và a *Giải:- AB, BA, AC , CA, BC , CB *Chú ý: véctơ AB có điểm đầu là A, -Giúp HS hiểu kí hiệu  điểm cuối là B AB và a -Véc tơ a không rõ điểm đầu và điểm cuối -Biết kiến thức véctơ có môn học -Trong vật lí ta thường gặp các đại HĐTP4: Hệ thống hoá lượng lực, vận tốc, v.v… đó là -GV cho HS liên hệ kiến khác và thực tiễn các đại lượng có hướng thức véctơ với các môn -Trong đời sống ta thường dùng học khác và thực Lop10.com (3) tiễn véctơ hướng chuyển động -Véctơ có điểm đầu và điểm cuối trùng gọi là véctơ không HĐTP5: Giới thiệu khái niệm véctơ không *HĐ2: Kiến thức véctơ cùng phương, véctơ cùng hướng HĐTP1: Tiếp cận -Cho HS quan sát hình SGK trang 5, cho nhận xét vị trí tương đối giá trị các cặp véctơ đó -Yêu cầu HS phát các véctơ có giá song song trùng -Yêu cầu HS phát các véctơ có giá không song song không trùng HĐTP2: Khái niệm véctơ cùng phương -Giới thiệu véctơ cùng phương -Cho HS phát biểu lại định nghĩa 2) Hai véctơ cùng phương, cùng hướng -Phát vị trí tương đối giá các cặp véctơ a) Hình SGK hình SGK -Phát các véctơ có giá song song trùng -Phát các véctơ có giá không song song không trùng -Phát biểu điều phát -ĐN (SGK) -Ghi nhận kiến thức hai véctơ cùng phương -Phát các véctơ cùng hướng và các véctơ ngược -Cho HS quan sát hình hướng (SGK) và cho nhận xét -Ghi nhận kiến thức hướng các cặp véctơ hai véctơ cùng hướng đó -Giới thiệu hai véctơ cùng -Đọc hiểu câu hỏi hướng, ngược hướng *Câu hỏi 1: Các khẳng định sau đây có đúng không? a) Hai véctơ cùng phương với véctơ thứ ba thì cùng phương HĐTP3: Củng cố khái niệm cùng phương, cùng hướng hai véctơ thông Lop10.com (4) qua các câu hỏi b) Hai véctơ cùng phương với  véctơ thứ ba khác thì cùng phương c) Hai véctơ cùng hướng với véctơ thứ ba thì cùng hướng d) Hai véctơ cùng hướng với  véctơ thứ ba khác thì cùng hướng e) Hai véctơ ngược hướng với véctơ khác thì cùng hướng f) Điều kiện cần và đủ để hai véctơ là chúng có độ dài -Đọc hiểu yêu cầu bài * Đáp án: b; d và e là đúng -Chia HS thành nhóm, toán *VD 2: Cho hình bình hành ABCD chiếu đề bài tâm O các véctơ sau: AB, AD, BC , CD, DA, CB, DC , BA, AO, OA, -Phát đề bài và yêu cầu HS điền kết theo nhóm OC , CO, OB, BO, OD, DO a) Hãy tìm các véctơ cùng phương b) Hãy tìm các véctơ cùng hướng B A -Theo dõi hoạt động HS -Hoạt động nhóm: Thảo theo nhóm, giúp đỡ luận để tìm kết cần thiết bài toán O D C -Yêu cầu đại diện -Đại diện nhóm trình bày nhóm lên trình bày và đại diện nhóm khác nhận xét -Đại diện nhóm khác nhận *Kết quả: lời giải nhóm bạn xét lời giải bạn a) Các véc tơ cùng phương: -Sửa chữa sai lầm -Phát sai lầm và sửa * AD, DA, BC , CB chữa khớp đáp số với GV * AB, BA, CD, DC -Chính xác hoá kết và chiếu kết lên bảng * AO, OA, OC , CO, AC , CA * OB, BO, DO, OD, BD, DB b) Các véc tơ cùng hướng: Lop10.com (5) * AO, OC , AC * CO, OA, CA * DO, OB, DB * BO, OD, BD * AB, DC * BA, CD * AD, BC * DA, CB TIẾT HĐ GV HĐ HS Ghi bảng *HĐ3: Hai véctơ HĐTP1: Khái niệm độ dài véctơ -Với hai điểm A và B xác định đoạn thẳng ? Xác định bao nhiêu véctơ -Nhận biết khái niệm ? -Giới thiệu độ dài véctơ -Véctơ không có độ dài bao nhiêu? HĐTP2: Khái niệm hai -Phát tri thức véctơ -Cho HS tiếp cận khái niệm -Khái niệm độ dài véctơ (SGK) *Câu hỏi: Cho hình bình hành ABCD tâm O.Trong các véctơ sau: AB, AD, BC , CD, DA, CB, DC , BA, AO, OA, OC , CO, OB, BO, OD, DO Hãy tìm các véctơ *Giải: Lop10.com (6) B A O D C -Các véctơ nhau: * AB, DC.; BA, CD; BO, OD; AO, OC ; * BC , AD; CB, DA; DO, OB; CO, OA * AB, DC ; BA, CD; BO, OD; HĐTP3: Củng cố -Chia HS thành nhóm, thực hoạt động -Đọc hiểu yêu cầu bài toán * AO, OC ; BC , AD; CB, DA * DO, OB; CO, OA *Bài toán: Cho lục giác ABCDEF có tâm O các véctơ có gốc, tuỳ ý các điểm A, B, C, D, E, F hayc tìm véctơ véctơ: a) AB b) AC -Theo dõi hoạt động -Hoạt động nhóm: thảo * Giải: HS theo nhóm, giúp đỡ luận để tìm kết C B cần thiết bài toán -Yêu cầu đại diện nhóm lên trình bày và đại -Đại diện nhóm trình bày A O diện nhóm khác nhận xét -Đại diện nhóm nhận xét D lời giải nhóm bạn lời giải bạn -Sửa chữa sai lầm -Chính xác hoá kết và -Phát sai lầm và sửa F E chiếu kết lên bảng chữa khớp đáp số với GV *Kết quả: a) Các véc tơ FO, OC , ED có giá song song với giá AB, cùng hướng Mặt khác, AB AB  FO  OC  ED -Yêu cầu HS giải bài toán FO  OC  ED  AB -Đọc hiểu yêu cầu bài và nêu nhận xét toán b) Vì AC //  FD & AC , FD cùng hướng nên AC  FD -Giải bài toán đặt và *HĐ4: Véctơ không nêu nhận xét * Bài toán: Cho véctơ a và điểm O bất kì Hãy xác định điểm A Lop10.com (7) HĐTP1: Tiếp cận véctơ không -Với hai điểm A và B xác -Tri giác vấn đề định đoạn thẳng? -Xác định véctơ? cho OA  a Có bao nhiêu điểm A vậy? * Giải: Có điểm A cho OA  a -Giới thiệu véctơ có điểm đầu trùng với điểm cuối -Nhắc lại định nghĩa hai véctơ -Xét véctơ trường hợp điểm đầu trùng với điểm cuối -Phát và ghi nhận tri thức -Khi tác động vào vật đứng yên với lực không vật chuyển động nào? Vẽ véctơ biểu thị chuyển động vật trường hợp đó? HĐTP2: Củng cố -Yêu cầu HS phát biểu lại véctơ không -Chiếu phát ví dụ -Nói rõ điểm đầu, điểm -Khái niệm véctơ - không (SGK) cuối, phương, chiều, độ dài, kí hiệu véctơ không -Vận dụng kiến thức vào giải bài tập -Chia HS thành nhóm -Đọc hiểu yêu cầu bài thực VD4 toán -Theo dõi hoạt động HS theo nhóm, giúp đỡ -Hoạt động nhóm: thảo cần thiết luận để tìm kết bài toán -Yêu cầu đại diện nhóm lên trình bày và đại -Đại diện nhóm trình bày diện nhóm khác nhận xét -Đại diện nhóm nhận xét lời giải nhóm bạn lời giải bạn -Sửa chữa sai lầm  *VD4: Cho AB khác Biết AM  AB , kết luận điều gì điểm M? * Kết quả:  -Khi cho AB khác tức là cho AB có phương và hướng và độ dài xác -Chính xác hoá kết và -Phát sai lầm và sửa định chiếu kết lên bảng chữa khớp đáp số với GV *Vì AM  AB nên: - AM & AB cùng phương Vì chúng có chung điểm đầu A nên giá chúng trùng hay ba điểm A, M , B cùng nằm trên đường thẳng - AM & AB cùng hướng Hai điểm M , B cùng nằm phía điểm A 10 Lop10.com (8) AM  AB hay AM  AB Từ đó suy ra: : M  B *HĐ5: Củng cố toàn bài -HĐTP: Mỗi mệnh đề sau đây đúng hay sai: a) Véctơ là đoạn thẳng b) Véctơ – không ngược hướng với véctơ bất kì c) Hai véctơ thì cùng phương d) Có vô số véctơ    e) Cho trước véctơ a và điểm O có vô số điểm A thoả mãn OA  a ? *HĐ6: Hướng dẫn học bài và bài tập nhà Làm các bài tập 1, 2, 3, 4, 5/ Tr.9 SGK §1TỔNG CỦA HAI VÉCTƠ Ngày soạn : Ngày giảng : Tiết :3 - I)MỤC TIÊU:  Về kiến thức: Học sinh cần hiểu đúng và ghi nhớ o Định nghĩa tổng hai véctơ ,các tính chất phép cộng véctơ ,qui tắc tam giác, qui tắc hình bình hành,qui tắc trung điểm, qui tắc trọng tâm tam giác  Về kĩ năng, tư duy: o Vận dụng qui tắc ba điểm, qui tắc hình bình hành và các tính chất phép cộng véctơ để biến đổi các hệ thức véctơ , tìm các đẳng thức véctơ thông dụng o Bước đầu biết qui lạ quen các đẳng thức véctơ, biết dựng các véctơ tổng o Hiểu quá trình xây dựng định nghĩa véctơ tổng  Về thái độ: Cẩn thẩn, chính xác.hoạt động tích cực xây dựng bài II)CHUẨN BỊ:  Giáo viên: Các câu hỏi gợi mở, nêu, dẫn dắt vấn đề, phiếu học tập máy chiếu (nếu có)  Học sinh: Các kiến thức véctơ, phép dựng véctơ véctơ cho trước qua điểm cho trước, bài soạn nhà III) PHƯƠNG PHÁP:  Phương pháp phát vấn, nêu vấn đề, gợi mở, đan xen với hoạt động nhóm V)TIẾN TRÌNH: 1) Ổn định lớp, kiểm tra bài cũ 11 Lop10.com (9) Câu Nêu các đặc trưng véctơ; Định nghĩa hai véctơ bằngnhau  Câu Cho a và điểm A hãy dựng qua A véctơ a 2) Tiến trình bài dạy: Tiết 1: Hoạt động giáo viên Hoạt động học sinh Nôi dung ghi bảng +) GV dùng hành động dịch +) Nhìn vào hình I) Định nghĩa tổng hai  chuyển vật (không xoay vật) (SGK) so sánh AA ' và véctơ:  để hình thành khái niệm tịnh tiến BB ' (SGK) +)GV kết hợp với hình 8(sgk)để +)Nếu tịnh tiến vật là B hình thành khái niệm tịnh tiến đường thẳng ta đường thẳng có b a quan hệ gì với đường +) GV thực hai hành động để thẳng ban đầu? C A mô hình (SGK) +) Nếu tịnh tiến mà a+b  Hành động 1: Tịnh tiến vật từ A xoay vật thì có phải đến C qua vị trí trung gian B Ví dụ: Vẽ tam giác xác phép tịnh tiến không? định các véctơ sau đây:  Hành động 2: Tịnh tiến vật từ A +) Phải hai hành   động trên cùng đến trực tiếp đến C  CB a) AB   +)Từ cảm nhận kết mục đích (Còn b) AC  BC hai hành động trên Gv hình thành hành động nào khác Giải: đến mục đích định nghĩa tổng hai véctơ a) vậy?) +)Tổng hai véctơ là véctơ   +)Để tính AB  CB C ta dựng véctơ cóđiểm  đầu là B và CB B (Còn cách nào khác?) +) Để tính A   AC  BC ta dựng véctơ C" có điểm cuối là B và  +)Gv gợi trí tò mò học sinh AC (Còn cách nào các tính chất giao hoán,kết Lấy  C'’ đối xứng với Cqua B ta khác?)     hợp phép cộng số thực có: CB = BC '' suy ra: AB  CB =  AC '' +) HS thực b) HS làm tương tự câu a     +) Nêu vấn đề : a  b  b  a ? A b B +) Dựng B' cho OABB' là II) Các tính chất phép cộng hình bình hành các véctơ: a a+b 1) Các tính chất: O a     a) a b b  a    B' b) (a  b)  c  a  (b  c) b    c) a   a +) HS kiểmb chứng tính 12 Lop10.com (10) +) Từ tính chất kết hợp véctơ hình thành định nghĩa tổng nhiều véctơ Lưu ý: HS nhận dạng qui tắc điểm chất kết hợp +) Dựa vào tính chất kết    hợp để nêu a  b  c +)? Khẳng định đúng    hay sai AB  CB  AC +) Dùng qui tắc điểm  để triển khai MN theo véctơ có gốc và là điểm H.?       (*) Chú ý: (a  b)  c  a  (b  c)    viết đơn giản a b  c gọi là tổng véctơ a, b, c III) Các qui tắc cần nhớ: 1) Qui tắc điểm: Với điểm A, B, C bất kì ta có:    AB  BC  AC B A C    AB  BC     AC +)HS nhận dạng qui tắc hình bình +) Học sinh trả lời ? hành  Minh hoạ hình học    2) Qui tắc hình bình hành: Nếu OABC là hình bình hành thì    ta có : OA  OC  OB OA  OC     OB +) GV hướng dẫn hs triển khai các véctơ đường chéo còn lại hình bình hành Tiết 2: +) Hướng chứng minh đẳng thức véctơ Lưu ý: Ta có thể biến đổi tương đương để đến đẳng thức véctơ hiển nhiên   +)Để ý hai véctơ AB, AC có cùng điểm đầu ta thực phép cộng chúng theo qui tắc hbh +)Nhắc lại bất đẳng thức tam giác? (*) Các ví dụ: Ví dụ1: CMR với điểm A, B,     C ta có: AC  BD  AD  BC Giải:    AD  DC  BD VT =      AD  BD  DC = +) Hai véctơ AC và AD = VP có đặt điểm gì chung. Viết véctơ AC theo AD Ví dụ 2:Cho tam giác ABC có cạnh a tính độ dài véctơ   tổng   ? Hai véctơ DC và BD AB  AC có đặt điểm gì chung ? Cách giải khác +)Thực phép dựng Giải: hbh có hai cạnh liên tiếp AD = a = a là AB và AC ntn? +)Hình bình hành ABDC có gì đặt biệt? 13 Lop10.com (11)    +) AB  AC  AD  AD ? +)Tính AD? Bài toán a)Gọi M là trung điểm đoạn thẳng AB chứng minh    MA  MB   +)Có thể thay MA  véctơ nào?; MB bỏi véctơ nào?   +)Độ dài đường cao tam giác cạnh a +)Để tính tổng GB  GC ta làm gì? Xác định điêm C' thoả mãn điều kiện gì để tứ giác GBC'C là hình bình hành? +) Nhận xét gì vị trí điểm G so với A và C'từ đó suy gì? +)Các nhóm thực    phép tính GA  GB  GC ? b)Gọi G là trọng tâm tam giác ABC chứng minh     GA  GB  GC  a) Theo quy tắc điểm, có:     MA  AM  MM  Mặt khác, vì M là trung điểm AB nên     AM  MB Vậy MA  MB  b)Gọi M là trung điểm BC,lấy C' đối xứng với G qua M ta có :     GB  GC  GC '  AG suy       GA  GB  GC  GA  AG  (đpcm) Ghi nhớ SGK +)Lưu ý học sinh hai kết a),b) bài toán cần ghi nhớ để vận dụng +) ứng dụng qui tắc hình bình hành vào vật lý để xác định lực tổng hợp HĐ 5: Hướng dẫn học bài và bài tập nhà - Qua bài học các em cần nhớ nội dung chính sau: Định nghĩa tổng vectơ, cách xác định vectơ tổng vectơ, các tính chất phép cộng vectơ, quy tắc ba điểm và quy tắc hình bình hành - Làm BTVN: 6, 7, 8, 9, 10, 11, 12, 13 14 Lop10.com (12) Tiết HIỆU CỦA HAI VÉC TƠ I.Mục tiêu: Về kiến thức: -Hiểu cách xác định hiệu hai véc tơ -Qui tắc ba điểm -Qui tắc hình bình hành -Các tính chất phép trừ Về kỉ năng: -Vận dụng qui tắc ba điểm, qui tắc hình bình hành lấy hiệu hai vếc tơ    -Vận dụng qui tắc ba điểm phép trừ: OB  OC  CB vào chứng minh các đẳng thức véc tơ Về tư và thái độ: -Rèn luyện tư Logic, qui lạ quên -Cẩn thận, chính xác tính toán và lập luận II.Chuẩn bị giáo viên và học sinh Chuẩn bị học sinh -Đồ dùng học tập học sinh: thước kẻ, com pa -Bài cũ: nắm định nghĩa phép cộng, tính chất nhân số với véc tơ, véctơ đối chuẩn bị giáo viên: -Bảng phụ và phiếu học tập -Đồ dùng dạy học: thước, compa III.Gợi ý phương pháp dạy học: - Gợi mở, vấn đáp - Phát và giải vấn đề - Xen hoạt động nhóm IV.Tiến trình bài giảng: Hoạt động giáo viên Hoạt động học sinh Nội dung ghi bảng 15 Lop10.com (13) HĐ1:Véc tơ đối vec tơ HĐTP1:Bài cũ: -Nhắc lại định nghĩa cộng hai véc tơ? Nhắc lại định nghĩa véc tơ không? Chú ý, lắng nghe, định nghĩa cộng hai véc tơ, véc tơ không học sinh nắm véc tơ đối thông qua tổng hai véc tơ véc tơ không.  -Cho đoạn thẳng AB, Ta có -Véc tơ AB và véc tơ BA có cùng véc tơ đối véc tơ AB là độ dài ngược hướng nên véc tơ nào? chúng là hai véc tơ đối -Học sinh nắm định nghĩa -Mọi véc tơ cho trước có véc tơ đối, nhận định véc tơ véc tơ đối không? có véc tơ đối. Nhận xét:véc tơ a và véc tơ đối  -Nhận xét véc tơ a và véc tơ nó:chúng có cùng độ dài đối nó? ngược hướng HĐTP2:Cũng cố véc tơ đối: Cho học sinh quan sát hình vẽ trang 18.Đọc kết các véc tơ đối HĐ2:Hiệu hai véc tơ HĐTP1:Định nghĩa hai véctơ Hướng dẫn học sinh chuyển phép hiệu sang phép cộng hai véc tơ Yêu cầu học sinh nắm hiệu hai véc tơ thông qua phép cộng hai véc tơ HĐTP2:cách dựng véc tơ hiệu hai véc tơ Các bước thực nào? HĐTP3:Quy tắc hiệu véc tơ: Tính chính xác,tổng quát cho quy tắc hiệu hai vec tơ Dựa trên sở:     AB  CD; CD   AB     BC   DA; DA   BC     OA  OC ; OB  OD I)Véc tơ đối vec tơ: Định nghĩa: sgk Kí hiệu véc tơ a là véc  tơ - a    Suy a + (- a ) = Nhận xét: sgk -Học sinh định nghĩa hiệu hai véc tơ thông qua tổng hai véc tơ Định nghĩa:sgk Dựa vào định nghĩa véc tơ đối và định nghĩa hiệu hai véc tơ để đưa cách dựng véc tơ hiệu hai véc tơ    MN  ON  OM 16 Lop10.com (14)    BA  BO  OA    OA  OB Có thể thay vai trò O M, I    Học sinh quan sátvà rút  AB  OB  OA nhận xét véc tơ BA   MB  MA hiệu hai véc tơ có chung Ví dụ :     điểm O.Có thể thay vai trò O  IB  IA với M, I, khác không?    AB  OB  OA    CD  OD  OC    AD  OD  OA    CB  OB  OC HĐTP4:Cũng cố hiệu hai vec tơ và qui tắc hiệu hai vec tơ Bài toán: sgk Bài toán:sgk Gợi ý, phân tích các véc tơ Học sinh cùng thảo luận thành hiệu hai véc tơ có theo nhóm để đưa kết chung điểm đầu thích hợp cho bài học Học sinh làm theo nhóm trả lời kết V)Củng cố: Trả lời các bài tập sau: 1) cho tam giác ABC với M, N, P là trung điểm các cạnh AB, AC, BC  Véctơ đối véc tơ MN là:   a)  BP b) MA   c) PC d) PB 2) Cho hình bình hành ABCD có tâm O.Khi đó ta có:     BO  BA a) AO    OA  OB  BA b)     c) OA  OB  AB 3) Cho hình vuông ABCD, khi đó ta  có:     BC AD   BC a) AB b)     c) AC   BD d) AD  CB  4) Cho tam giác ABC cạnh a Khi đó độ dài véc tơ hiệu hai véc tơ AB và  AC là: a) b) a c) a d) a   5) Cho tam giác ABC có cạnh a, M là trung điểm BC Véc tơ CA  MC có độ dài bao nhiêu? 17 Lop10.com (15) 3a 2a c) a) a a d) b) 18 Lop10.com (16) Tiết 6: TÍCH CỦA VECTƠ VỚI MỘT SỐ (TIẾT 1) I MỤC TIÊU: Kiến thức: - Hiểu tích vectơ với số (tích số với vectơ) - Biết các tính chất phép nhân vectơ với số - Biết điều kiện để hai vectơ cùng phương; để ba điểm thẳng hàng - Biết định lý biểu thị vectơ theo hai vectơ không cùng phương Kỹ năng:    - Xác định vectơ b  k a cho trước số k và vectơ a - Biết diễn đạt vectơ : ba điểm thẳng hàng, trung điểm đoạn thẳng, trọng tâm tam giác, hai điểm trùng và sử dụng các điều đó để giải số bài toán hình học Tư duy: - Quy lạ quen, từ đơn giản đến phức tạp Thái độ: - Tích cực thảo luận theo nhóm, tập trung chú ý nhận công việc II CHUẨN BỊ : HS: - Đồ dùng học tập, - Bài cũ GV: - Giáo án, đồ dùng dạy học, - Phiếu học tập III PHƯƠNG PHÁP: - Gợi mở, vấn đáp, giải các vấn đề thông qua các hoạt động nhóm IV TIẾN TRÌNH BÀI HỌC: Tiết thứ 1: Hoạt động giáo viên Hoạt động học sinh Tóm tắt ghi bảng 19 Lop10.com (17) HĐ 1: Định nghĩa tích vectơ a với số k HĐTP 1: Tiếp cận kiến thức  * Cho a  Xác định độ dài và hướngcủa vectơ tổng    a  a , (a)  (a) ?     * a  a = 2a (tích a với số 2)   ( a )  ( a ) = (2)a (tích  a với số -2) HĐTP 2: Định nghĩa Tổng quát: tích a với số k A , k ? HĐTP 3: Củng cố định nghĩa * Cho G là trọng tâm  ABC, D, E là trung điểm AB và BC Tìm mối liên hệ các cặp vectơ sau:     AC và DE ; AG và AE ;     EG và CB ; GE và AE HĐ 2: Tính chất phép nhân vectơ với số * Cho a, b, c  A Nêu các phép toán trên các số thực ? * Thừa nhận các tính chất phép nhân vectơ với số là phép nhân các số Định nghĩa: (Sgk) - Nghe và nhận câu hỏi - Làm việc theo nhóm - Báo cáo kết - Nhận xét hướng và độ dài   a  a với a ; hướng và độ dài  (a)  (a) với a  - HS nêu định nghĩa tích a với số k  A ,k  Định nghĩa: (Sgk) - Vẽ hình minh hoạ,   Qui ước: a = 0 , k0 = Các tính chất: (Sgk) - Nêu mối liên hệ a(b + c) = ab + ac, a(bc) = (ab)c 1.a = a; (-1).a = - a  - Nhắc lại vectơ đối a ? Kí hiệu ? - Tìm vectơ đối các vectơ đã cho * Áp dụng: Tìm vectơ đối   của các vectơ sau: k a và a - 4b ? HĐ 3: Trung điểm đoạn thẳng và trọng tâm    tam giác  IA + IB = * I là trung điểm AB thì      IA + IB = ?  GA  GB  GC = * Glà trọng tâm  ABC thì    GA  GB  GC = ? HS làm việc theo nhóm * Với I là trung điểm AB và M là điểm bất kỳ, biểu thị Tính chất phép nhân vectơ với số Tính chất phép nhân vectơ với số SGK Bài toán 1: Trung điểm đoạn thẳng: (Sgk)    MA  MB = MI Bài toán 2: Trọng tâm tam giác:     MA  MB  MC = MG 20 Lop10.com (18)    MA  MB theo MI ? * Với G là trọng tâm  ABC và M là điểm bất kỳ,  biểu thị     MA  MB  MC theo MG ? HĐ 4: Củng cố kiến thức thông qua các câu hỏi trắc nghiệm 1) Cho đoạn thẳng AB, gọi M là trung điểm AB và N là trung điểm MB Đẳng thức nào sau đây là đúng ?   (A) AM = NB ,  (B) MN =  BM ,   (C) AN = -3 NM ,  (D) MB =  AN 2) Cho hình bình hành ABCD có tâm là M Ghép ý cột trái với ý cột phải để đẳng thức đúng ? (a) (b) (c) (d)   AB  AD   AD  CD   CB  CD   BA  BC   (1) (2) (3)  CM   BM  AM (4) (5)  MD  DM  Tiết thứ 2: 21 Lop10.com (19) HĐ 5: Điều kiện để hai vectơ cùng phương HĐTP 1: Tiếpcận tri thức - Nếu có b  k a thì có nhận  a và b xét gì hai vectơ   a và b cùng phương - Nếu   thì b  k a ? HĐTP 2: Trả lời câu hỏi ?1 và ?2: - Nhìn hình 24 SGK để trả lời câu hỏi Điều kiện để hai vectơ cùng phương   a và b cùng phương  + +     - Với a  0 và b  , tìm số k thoả mãn b  k a - Tổng quát hoá điều kiện cùng phương hai vectơ HĐTP 4: Điều kiện để điểm thẳng hàng - Khi có điểm phân biệt thẳng hàng Nhận xét vectơ   AB, AC   - Nếu có AB  k AC , nhận xét gì vị trí điểm A, B, C  điều kiện để ba điểm phân biệt thẳng hàng HĐ 6: Bài toán - Chiếu đề bài bài toán SGK, giao nhiệm vụ học sinh hoạt động theo nhóm: 3  5 c a  3 b c 5  x  3u   y  u + b a ) (m=  ) (n=  ) (k= + ( p = -3 ) + ( q = -1 ) - Không có số k nào thoả  mãn b  k a    AB, AC cùng phương Do đó   có số k thoả mãn AB  k AC Tổng quát: Vectơ b cùng    phương a ( a  ) khi và  b  k a có số k cho     Lưu ý: Nếu a  và b  thì hiểnnhiên không có số k  nào để b  k a * Điều kiện để điểm thẳng hàng - A, B, C thẳng hàng - HS phát biểu điều cảm nhận - Đọc đề bài bài toán 3, - Các thành viên nhóm cùng vẽ hình - Tìm lời giải cho câu a), b), c) - Phân công người đại diện - Điều kiện cần và đủ để ba điểm phân biệt A, B, C thẳng hàng là có số k cho  AB  k AC Bài toán Cho tam giác ABC, có H là trực tâm, G là trọng tâm và O là tâm đường tròn ngoại 22 Lop10.com (20) + Vẽ hình, + Tìm lời giải - GV giúp đỡ cần thiết - Cử đại diện các nhóm lên trình bày , nhận xét lời giải nhóm khác, - GV chính xác hoá lời giải HĐ 7: Củng cố - Điều kiện cùng phương hai vectơ - Điều kiện để ba điểm phân biệt thẳng hàng nhóm lên trình bày , nhận xét tiếp, I là trung điểm BC lời giải nhóm khác Chứng minh:    2OI , a) AH     b) OH  OA  OB  OC , c) Ba điểm A, B, C thẳng hàng     + b cùng phương a ( a  )    k  A , b  k a + A, B,  C thẳng hàng   k  A , AB  k AC Tiết TÍCH CỦA VECTƠ VỚI MỘT SỐ I MỤC TIÊU: Kiến thức: Cũng cố: - Các tính chất phép nhân vectơ với số - Điều kiện để hai vectơ cùng phương; để ba điểm thẳng hàng Nắm định lý biểu thị vectơ theo hai vectơ không cùng phương Kỹ năng: - Biết diễn đạt vectơ : ba điểm thẳng hàng, trung điểm đoạn thẳng, trọng tâm tam giác, hai điểm trùng và sử dụng các điều đó để giải số bài toán hình học - Biểu thị vectơ theo hai véctơ không cùng phương Tư duy: - Rèn luyên tư lô gíc,trí tưởng tượng không gian - Quy lạ quen, từ đơn giản đến phức tạp Thái độ: - Tích cực thảo luận theo nhóm, tập trung chú ý nhận công việc II CHUẨN BỊ : HS: - Đồ dùng học tập, - Bài cũ GV: - Giáo án, đồ dùng dạy học, - Phiếu học tập, máy chiếu (nếu có) III PHƯƠNG PHÁP: - Gợi mở, vấn đáp, phát giải vấn đề và đan xen các hoạt động nhóm IV TIẾN TRÌNH BÀI HỌC:: 23 Lop10.com (21)

Ngày đăng: 03/04/2021, 11:27

TỪ KHÓA LIÊN QUAN

w