Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 25 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
25
Dung lượng
1,49 MB
Nội dung
SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI THỬ THPT QUỐC GIA NĂM 2021 ĐỀ SỐ 15 ĐỀ THAM KHẢO BÁM SÁT ĐỀ MINH HỌA BGD 2021 Câu Câu Cho cấp số cộng có u4 , u2 Hỏi u1 công sai d bao nhiêu? Câu Câu B u1 d Nghiệm nhỏ phương trình x x �e dx = e +C C D dx =- tan x + C � C cos x Câu D u1 1 d 1 Khối lập phương tích Tính độ dài cạnh hình lập phương A B C D y log x 1 x Tập xác định hàm số là: 1; \ 0 �;2 \ 0 �;2 1;2 A B C D Mệnh đề sau A Câu C u1 d 1 log x x B A 3 Câu Thời gian làm bài: 50 phút, không kể thời gian phát đề Cho tập hợp A gồm có phần tử Số tập gồm có phần tử tập hợp A 4 A A9 B P4 C C9 D �9 A u1 d Câu Bài thi: TOÁN B �xdx = ln x + C D �sin x dx = cos x + C Cho khối lăng trụ có diện tích đáy 3a khoảng cách hai đáy a Tính thể tích V khối lăng trụ cho V a3 3 A B V 3a C V a D V 9a a a Thể tích khối nón có chiều cao bán kính đường trịn đáy A 3 a B 3 a 24 3 a C D 3 a D �;1 S tích 288 Hỏi diện tích khối cầu bao nhiêu? Cho khối cầu A S 48 B S 72 C S 36 D S 144 y f x Câu 10 Cho hàm số có bảng biến thiên hình vẽ: Câu Hàm số cho nghịch biến khoảng đây? �; 1 3;5 �;3 A B C log32 a Câu 11 Với a số thực dương, bằng: log a 4log a B C D Câu 12 Hình nón có thiết diện qua trục tam giác cạnh a có diện tích xung quanh bằng: log 23 a A 2log a a A 2 a a B C 0; 2 Câu 13 Giá trị lớn hàm số y x x đoạn A B C Câu 14 Đường cong hình bên đồ thị hàm số nào? D a D 4 A f ( x ) x x B f ( x) x x 4 C f ( x) x x D f ( x) x x mx x có đường tiệm cận ngang Câu 15 Tìm tất giá trị thực tham số m để đồ thị hàm số m � A m �� B m �2 C m �2 D y Câu 16 Tập nghiệm bất phương trình �; 4 � 1;2 A 4; 1 C Câu 17 Cho hàm số log 0,5 x x log 0,5 2 x 4;2 B y f x �; 4 � 1; � D có đồ thị hình bên f x Số nghiệm phương trình là: A B �f x dx Câu 18 Cho 2 , A I �f t dt 4 2 B I C D Tính I � f y dy z i Câu 19 Số phức liên hợp số phức C I 3 D I 5 1 5 z i z i z i A B C D z 3i z 2i i Câu 20 Cho số phức Tính A 10 B 10 C D Câu 21 Cho số phức z 5i Trên mặt phẳng tọa độ, điểm biểu diễn số phức z điểm nào? M 5; N 4;5 P 4; Q 4;5 A B C D A 2;3; B 8; 5;6 Câu 22 Trong không gian với hệ trục toạ độ Oxyz cho hai điểm , Hình chiếu vng z i Oyz điểm góc trung điểm I đoạn AB mặt phẳng M 0; 1;5 Q 0;0;5 P 3;0;0 N 3; 1;5 A B C D S Câu 23 Trong không gian Oxyz , mặt cầu có tâm I (2, 1,1) , bán kính R có phương trình tổng quát là: 2 2 2 A x y z x y z 10 B x y z x y z 10 C x y z x y z 10 2 D x y z x y z 10 �x 7t � �y 4t t �� �z 7 5t Câu 24 Trong khơng gian Oxyz , tìm vectơ phương đường thẳng d : � r r r r u 7; 4; 5 u 5; 4; 7 u 4;5; 7 u 7; 4; 5 A B C D A 1; 2;3 Câu 25 Trong không gian với hệ trục tọa độ Oxyz , đường thẳng qua điểm có véc tơ r u 2; 1; 2 phương có phương trình x 1 y x x 1 y x 1 2 B 2 2 A x 1 y x x 1 y x 1 D 1 2 C 2 Câu 26 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a có SA vng góc với mặt ABCD SAC phẳng SA 2a Khi góc SB bằng: A 60 B 30 C 90 D 45 f x Câu 27 Cho hàm số f �x liên tục �và có bảng xét dấu sau: Số điểm cực trị hàm số cho A B C A C D Câu 28 Gọi M , m giá trị lớn giá trị nhỏ hàm số y x x đoạn 4;5 Giá trị M 2m B 1 log Câu 29 Cho số thực dương a, b thỏa mãn A ab B a b 16 D a log 4 0 b Mệnh đề đúng? D ab C ab 16 Câu 30 Số giao điểm đồ thị hàm số y x x trục hoành A B C D x 9x ln x 5 �0 Câu 31 Bất phương trình có nghiệm ngun? A B C D Vô số AB 6, AD M , N , P , Q Câu 32 Hình chữ nhật ABCD có Gọi trung điểm bốn cạnh AB, BC , CD, DA Cho hình chữ nhật ABCD quay quanh QN , tứ giác MNPQ tạo thành vật trịn xoay tích A V 6 B V 2 C V 4 e e 2 ln x ln x dx dx � � x x Câu 33 Xét , đặt u ln x bằng: A u 2du � B � u 2du D V 8 C udu � e u du � D Câu 34 Diện tích S hình phẳng giới hạn đồ thị hàm số y e , y , x , x tính công thức đây? x S� e dx S x A ln S C e � x dx B e � ln Câu 35 Cho số phức z thỏa mãn w = z + iz bằng: x ln e � x dx ln x dx ln dx ( + 2i ) z = 5( +i ) e � S � e dx x D e � ln x dx Tổng bình phương phần thực phần ảo số phức D Câu 36 Kí hiệu z1 , z2 hai nghiệm phức phương trình z z Tính giá trị biểu thức T z1 z2 A T B T C T D T A 2;1;3 B 1; 2; Câu 37 Trong không gian Oxyz , cho điểm điểm Mặt phẳng qua điểm A vng góc với đường thẳng AB có phương trình A 3x y z B 3 x y z A B C x y z D 3 x y z C Câu 38 Trong không gian với hệ tọa độ Oxyz , phương trình phương trình đường thẳng A 2;3;0 P : x 3y z 0? qua vng góc với mặt phẳng � x 1 t � x 1 t � x 1 3t � x 1 3t � � � � y 3t y 1 3t �y 1 3t � � �y 1 3t � � � � z 1 t z 1 t z 1 t z 1 t A � B � C � D � 6 Câu 39 Có ghế kê thành hàng ngang Xếp ngẫu nhiên học sinh, gồm học sinh lớp A , học sinh lớp B học sinh lớp C ngồi vào hàng ghế cho ghế có học sinh Xác suất để học sinh lớp C ngồi cạnh học sinh lớp B A B 20 C 15 D Câu 40 Cho hình chóp S ABC có đáy tam giác AB 2a SA vng góc với mặt phẳng đáy SA a (minh học hình vẽ) Gọi M trung điểm AB Khoảng cách hai đường thẳng SM BC S M A B C 21 a a 21 a a A B 21 C D f ( x) = ax + bx + cx + dx + ex + f ( a,b,c,d,e, f ��) Câu 41 Cho hàm số Biết đồ thị hàm số f� ( x) có đồ thị hình vẽ bên Hỏi hàm số g( x) = f ( 1- 2x) - 2x + 1đồng biến khoảng đây? �3 � - ;� � �2 � � 1� � � � � 1� ; � � � 2� � � ( - 1;0) ( 1;3) � � A B � C D Câu 42 Một điện thoại nạp pin, dung lượng pin nạp tính theo cơng thức mũ sau Q(t) = Q0.(1- e- t ), với t khoảng thời gian tính Q0 dung lượng nạp tối đa (pin đầy) Hãy tính thời gian nạp pin điện thoại tính từ lúc cạn hết pin điện thoại đạt 90%dung lượng pin tối đa (kết làm tròn đến hàng phần trăm) A t �1,65giờ B t �1,61giờ C t �1,63giờ D t �1,50giờ ax b y ; a, b, c �� cx Câu 43 Cho hàm số có bảng biến thiên sau: Trong số a, b c có số dương? A B C D Câu 44 Cho hình trụ có đường cao 8a Một mặt phẳng song song với trục cách trục hình trụ 3a , cắt hình trụ theo thiết diện hình vng Diện tích xung quanh thể tích khối trụ 3 A S 80 a , V 200 a B S 60 a , V 200 a C S 80 a , V 180 a D S 60 a , V 180 a � � f � � f x f �x 16 cos x.sin x, x �� Câu 45 Cho hàm số có �4 � Khi 16 64 128 A B 27 C D Câu 46 Cho hàm số f x ax3 bx bx c f x dx � có đồ thị hình vẽ: � 5 � � ; � f cos x 1 cos x Số nghiệm nằm �2 �của phương trình A B C D x y z x y z Câu 47 Xét số thức x, y, z số thực thỏa mãn điều kiện 16 25 Tìm giá trị lớn a b x1 y1 z1 c biểu thức T Tính a b A 15 B 13 f x x 2x2 m C 19 D 17 10;10 Câu 48 Cho hàm số Gọi S tập hợp tất giá trị m nguyên thuộc max f x 3min f x 0;2 cho 0;2 Số phần tử S A B C D B C D có cạnh a Gọi M trung điểm CD , N trung Câu 49 Cho hình lập phương ABCDA���� C D Thể tích tứ diện MNB�� điểm A�� a3 A a3 B a3 C Câu 50 Có số nguyên y để tồn số thực x thỏa mãn A B C 2a D log x y log x y D vô số ? ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI 1C 16A 31C 46C 2C 17A 32D 47C 3D 18D 33A 48B 4B 19D 34D 49B 5B 20B 35D 50B 6A 21B 36A 7C 22A 37A 8B 23A 38B 9D 24D 39D 10A 25A 40A 11B 26B 41C 12A 27A 42C 13A 28D 43D 14D 29C 44A Câu Cho tập hợp A gồm có phần tử Số tập gồm có phần tử tập hợp A 4 A A9 B P4 C C9 D �9 Lời giải Chọn C Số tập gồm có phần tử tập hợp A C9 Câu Cho cấp số cộng có u4 , u2 Hỏi u1 công sai d bao nhiêu? A u1 d B u1 d C u1 d 1 D u1 1 d 1 Lời giải Chọn C u u1 n 1 d Ta có: n Theo giả thiết ta có hệ phương trình u4 u 3d u 5 � � � � �1 � �1 � u1 d u2 �d 1 � � Vậy u1 d 1 Câu Nghiệm nhỏ phương trình A 3 log x 3x 5 C Lời giải B D Chọn D ĐK x ��vì x 3x 0, x �� x3 � log x 3x � x 3x � x x � � x 0 � Vậy nghiệm nhỏ phương trình log x x Câu Khối lập phương tích Tính độ dài cạnh hình lập phương A B C D Lời giải Chọn B V a3 � a y log x 1 x Câu Tập xác định hàm số là: 1; \ 0 �;2 A B Chọn C 2 x � �x � � �x � �x 1 �x �1 �x �0 � Điều kiện: � 1;2 C Lời giải D �;2 \ 0 15A 30A 45D Vậy D 1; \ 0 Câu Mệnh đề sau A x x �e dx = e + C B �xdx = ln x + C �cos C Lời giải x dx =- tan x + C D �sin x dx = cos x +C Chọn A Từ bảng nguyên hàm ta chọn đáp án A Câu Cho khối lăng trụ có diện tích đáy 3a khoảng cách hai đáy a Tính thể tích V khối lăng trụ cho V a3 3 A B V 3a C V a D V 9a Lời giải Chọn C Ta tích V khối lăng trụ cho là: V a.3a 3a a a Câu Thể tích khối nón có chiều cao bán kính đường trịn đáy 3 a 3 a 3 a 3 a A B 24 C D Lời giải Chọn B �a �a 3 a V �� �2 � 24 Thể tích khối nón là: Câu Cho khối cầu A S 48 S tích 288 Hỏi diện tích khối cầu bao nhiêu? B S 72 C S 36 D S 144 Lời giải Chọn D V R 288 �R 6 Thể tích khối cầu Do diện tích khối cầu cho là: S 4 R 144 Câu 10 Cho hàm số y f x có bảng biến thiên hình vẽ: Hàm số cho nghịch biến khoảng đây? �; 1 3;5 �;3 A B C Lời giải D �;1 Chọn A Dựa vào bảng biến thiên ta thấy �; 1 f� x khoảng �; 1 0;1 � hàm số nghịch biến log32 a Câu 11 Với a số thực dương, bằng: A 2log a B log 23 a C 4log a Lời giải log a D Chọn B log 23 a log a log 23 a Do a số thực dương nên ta có: Câu 12 Hình nón có thiết diện qua trục tam giác cạnh a có diện tích xung quanh bằng: a A a B 2 a C Lời giải D a Chọn A a Hình nón có thiết diện qua trục tam giác cạnh a nên có đường sinh a bán kính đáy nên S xq a có diện tích xung quanh 0; 2 Câu 13 Giá trị lớn hàm số y x 3x đoạn A B C 9 Bài giải Chọn A 0; 2 Hàm số xác định liên tục đoạn y ' 3x y ' � 3 x � x 1 � 0; 2 �� x � 0; 2 � y 2, y 1 4, y Vậy: max y 0;2 đạt x Câu 14 Đường cong hình bên đồ thị hàm số nào? 4 A f ( x ) x x B f ( x) x x 4 C f ( x) x x D f ( x) x x Lời giải Chọn D D + Dựa vào hình dạng đồ thị, ta thấy dạng đồ thị hàm bậc bốn + Khi x � ��, y � �suy a Nên loại phương án A phương án + Khi x � y nên chọn phương án D B mx x có đường tiệm cận ngang Câu 15 Tìm tất giá trị thực tham số m để đồ thị hàm số m � A m �� B m �2 C m �2 D Lời giải Chọn A Nếu m 2 y đồ thị hàm số có tiệm cận ngang y y lim mx m 1 x , đồ thị hàm số có tiệm cận ngang y m Nếu m �2 Vậy đồ thị hàm số ln có tiệm cận ngang m �� x �� � Câu 16 Tập nghiệm bất phương trình log 0,5 x x log 0,5 2 x �; 4 � 1;2 A 4; C 4;2 B � ; � 1; � D Lời giải Chọn A log 0,5 x x log 0,5 2 x Ta có: �� x 4 �� �x x 2 x �x 3x � �� x 1 �� �� � 2 x 2 x � � �x � x � �; 4 � 1; Câu 17 Cho hàm số y f x có đồ thị hình bên f x Số nghiệm phương trình là: A B C Lời giải Chọn A D f x � f x 3 y Dựa vào đồ thị, nhận thấy đường thẳng cắt đồ thị hàm Ta có y f x số điểm phân biệt nên phương trình cho có nghiệm �f x dx Câu 18 Cho 2 A I , �f t dt 4 Tính I B 2 I � f y dy C I 3 D I 5 Lời giải Chọn D Ta có 2 I � f y dy � f x dx 2 2 �f t dt �f x dx 4 Do tích phân khơng phụ thuộc vào biến số nên 4 2 2 �f x dx �f x dx 4 5 z i Câu 19 Số phức liên hợp số phức 5 z i z i A B z C Lời giải i z i D Chọn đáp án D 5 z i z i Số phức liên hợp số phức Câu 20 Cho số phức A 10 z 2i i Tính B 10 z 3i C Lời giải D Chọn B z 2i i 5i � z 5i Ta có z i 5i i 6i 10 Từ ta Câu 21 Cho số phức z 5i Trên mặt phẳng tọa độ, điểm biểu diễn số phức z điểm nào? M 5; N 4;5 P 4; Q 4;5 A B C D Lời giải Chọn B N 4; Ta có z 5i Điểm biểu diễn số phức z A 2;3; B 8; 5; Câu 22 Trong không gian với hệ trục toạ độ Oxyz cho hai điểm , Hình chiếu vng Oyz điểm góc trung điểm I đoạn AB mặt phẳng M 0; 1;5 Q 0;0;5 P 3;0;0 N 3; 1;5 A B C D Lời giải Chọn A I 3; 1;5 Toạ độ trung điểm AB Oyz M 0; 1;5 Suy hình chiếu vng góc điểm I lên mặt phẳng S Câu 23 Trong không gian Oxyz , mặt cầu có tâm I (2, 1,1) , bán kính R có phương trình tổng quát là: 2 2 2 A x y z x y z 10 B x y z x y z 10 C x y z x y z 10 2 D x y z x y z 10 Lời giải Chọn A S Ta có phương trình mặt cầu có tâm I (2, 1,1) , bán kính R là: 2 ( x 2) y 1 z 1 42 � x y z x y z 10 �x 7t � �y 4t t �� �z 7 5t Câu 24 Trong khơng gian Oxyz , tìm vectơ phương đường thẳng d : � r r r r u1 7; 4; 5 u2 5; 4; 7 u3 4;5; 7 u4 7; 4; 5 A B C D Lời giải Chọn D r u4 7; 4; 5 d Vectơ phương đường thẳng Chọn đáp án D A 1; 2;3 Câu 25 rTrong không gian với hệ trục tọa độ Oxyz , đường thẳng qua điểm có véc tơ u 2; 1; 2 phương có phương trình x 1 y x x 1 y x 1 2 2 A B 2 x 1 y x x 1 y x 1 1 2 C 2 D Lời giải Chọn A Theo định nghĩa phương trình tham số đường thẳng suy phương trình d x 1 y x 1 2 Câu 26 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a có SA vng góc với mặt phẳng ABCD SA 2a Khi góc SB SAC bằng: A 60 B 30 C 90 Lời giải D 45 Chọn B Gọi I AC �BD Ta có BI AC (tính chất đường chéo hình vng ABCD ) SA ABCD BI � ABCD Mặt khác, BI SA (vì mà ) � BI SAC SAC Suy Khi góc SB góc SB SI hay góc BSI Ta có hình vng ABCD có cạnh 2a nên AC BD 2a Suy BI AI a 2 2 Xét tam giác SAI vng A ta có SI SA AI 4a 2a a Trong tam giác SIB vng I ta có BI a 2; SI a � BI a � BSI � 30� tan BSI SI a SAC Vậy góc SB 30 Câu 27 Cho hàm số f x f �x liên tục �và có bảng xét dấu sau: Số điểm cực trị hàm số cho A B Chọn A Từ bảng xét dấu ta thấy f� x C Lời giải D đổi dấu qua x 1 x nên hàm số cho có điểm cực trị 4;5 Câu 28 Gọi M , m giá trị lớn giá trị nhỏ hàm số y x x đoạn Giá trị M 2m A B C Lời giải D Chọn D 4;5 Hàm số y x x xác định liên tục 1 x 1 y� 1 , x � 4;5 5 x 5 x Có Cho y� � x � x � 4;5 Ngoài ra: �y 4 � �y � �y �M � M 2m � So sánh giá trị ta suy �m log a , b Câu 29 Cho số thực dương thỏa mãn A ab B a b 16 a log 4 0 b Mệnh đề đúng? C ab 16 Lời giải D ab Chọn C 4 log a log � log a log � log a log b b b Từ giả thiết: 4 � a b � ab 16 Câu 30 Số giao điểm đồ thị hàm số y x x trục hoành A B C Lời giải Chọn A x 1 � � y� � 4x 4x � � x0 � x 1 x3 x Cho � Ta có y� Bảng biến thiên D Dựa vào bảng biến thiên suy đồ thị hàm số y x x giao với y (trục hoành) giao điểm x 9x ln x 5 �0có nghiệm nguyên? Câu 31 Bất phương trình A Chọn C Điều kiện x 5 B C Lời giải �0 � �x3 9x � � � � ln x 5 � � �� � �x3 9x � � � � ln x 5 x 9x ln x 5 �0 � � � x ��� x � 4; 3;0;1; 2;3 Vì D Vô số � �x �3hay �x �3 � � �0 � 4 �x �3 �x �1 � � �� � �x �3 �3 �x �0hayx �3 � �0 � � � �x �1 �0 � Câu 32 Hình chữ nhật ABCD có AB 6, AD Gọi M , N , P, Q trung điểm bốn cạnh AB, BC , CD, DA Cho hình chữ nhật ABCD quay quanh QN , tứ giác MNPQ tạo thành vật trịn xoay tích A V 6 B V 2 C V 4 Lời giải D V 8 Chọn D Khi cho hình chữ nhật ABCD quay quanh QN tứ giác MNPQ tạo thành vật trịn xoay gồm hai khối nón có chung đáy (tham khảo hình vẽ) AD AB R1 MH 2, h1 QH 3 V 2 Gọi thể tích khối nón có bán kính đáy 1 � V1 R12 h 4.3 4 3 Vậy thể tích vật thể trịn xoay cần tìm V 2V1 8 e ln x dx � x Câu 33 Xét , đặt u ln x u du � ln x dx � x bằng: A e � u du udu � B C Lời giải e u du � D Chọn A u ln x � du dx x Đặt Với x � u Với x e � u e ln x dx � u du � x Vậy x Câu 34 Diện tích S hình phẳng giới hạn đồ thị hàm số y e , y , x , x tính cơng thức đây? A S� e x dx ln S C e � x ln S B dx e � x ln dx ex 2 dx � e � ln ln S � e x dx D Lời giải x dx e � ln x dx Chọn D Diện tích cần tìm là: S� e x dx Xét e � x ln x x Bảng xét dấu e : x ln ex Ta có ln S� e x dx � e x dx 0 e � ln x dx ( + 2i ) z = 5( + i ) Tổng bình phương phần thực phần ảo số phức Câu 35 Cho số phức z thỏa mãn w = z + iz bằng: A B C D Lời giải Chọn D 5 1 i 10i 10i 2i 2i 2i z i � z 2i 2i Ta có Suy w = z + iz = ( - 2i ) + i ( + 2i ) = + 2i 2 Vậy số phức w có phần thực , phần ảo Suy + = Câu 36 Kí hiệu z1 , z2 hai nghiệm phức phương trình z z Tính giá trị biểu thức T z1 z2 A T B T C T D T Lời giải Chọn A z 2i � �� z 2i z2 4z � T z1 z2 i i nên chọn A A 2;1;3 B 1; 2; Câu 37 Trong không gian Oxyz , cho điểm điểm Mặt phẳng qua điểm A vng góc với đường thẳng AB có phương trình A 3x y z B 3x y z C 3x y z D 3x y z Lời giải Chọn A P mặt phẳng qua điểm A vng góc với đường thẳng AB uuu r P AB 3;1; 1 Vì đường thẳng AB vng góc với mặt phẳng nên véc tơ pháp tuyến Giả sử mặt phẳng P Vậy phương trình mặt phẳng P 3x y z Câu 38 Trong không gian với hệ tọa độ Oxyz , phương trình phương trình đường thẳng A 2;3;0 P : x 3y z 0? qua vuông góc với mặt phẳng � x 1 t � x 1 t � x 1 3t � x 1 3t � � � � y 3t y 1 3t �y 1 3t � � �y 1 3t � � � � z 1 t z 1 t z 1 t z 1 t A � B � C � D � Lời giải Chọn đáp án B r u 1;3; 1 Vectơ phương đường thẳng nên suy phương án A B Thử A 2;3;0 tọa độ điểm vào ta thấy đáp án B thỏa mãn Câu 39 Có ghế kê thành hàng ngang Xếp ngẫu nhiên học sinh, gồm học sinh lớp A , học sinh lớp B học sinh lớp C ngồi vào hàng ghế cho ghế có học sinh Xác suất để học sinh lớp C ngồi cạnh học sinh lớp B A B 20 C 15 D Lời giải Chọn D n 6! 720 Số phần tử không gian mẫu: Gọi A biến cố: “học sinh lớp C ngồi cạnh học sinh lớp B ” Chọn học sinh lớp B học sinh lớp C có cách Ta xem hai học sinh a có cách xếp a vào vị trí Cịn lại học sinh có 4! 24 cách xếp Suy có 2.5.24 240 Vậy P A 240 720 Câu 40 Cho hình chóp S ABC có đáy tam giác AB 2a SA vng góc với mặt phẳng đáy SA a (minh học hình vẽ) Gọi M trung điểm AB Khoảng cách hai đường thẳng SM BC S M A B C A 21 a 21 a B 21 a D a C Lời giải Chọn A S H M A I B N C BC // MN � BC // SMN Từ M kẻ MN�BC , N �AC Ta có d BC , SM d BC , SMN d B, SMN d A, SMN Khi AI MN I �MN , AH SI H �SI d A, SMN AH Kẻ I trung điểm MN Suy AM a � AI a (do AI đường cao AMN ) Ta có AH a 21 21 a � d BC , SM a 7 SA2 AI 2 a a SA AI a f ( x) = ax5 + bx4 + cx3 + dx2 + ex + f ( a,b,c,d,e, f ��) Câu 41 Cho hàm số Biết đồ thị hàm số f� ( x) có đồ thị hình vẽ bên Hỏi hàm số g( x) = f ( 1- 2x) - 2x + 1đồng biến khoảng đây? A �3 � - ;� � �2 � � 1� � � � � 1� � � � ; � � 2� � � B � C ( - 1;0) D ( 1;3) Lời giải Chọn C g( x) = f ( 1- 2x) - 2x2 + � � Hàm số đồng biến � g (x) = - 2f (1- 2x) - 4x > � f� (1- 2x) < (1- 2x) - � < 1- 2x < � - < x < Câu 42 Một điện thoại nạp pin, dung lượng pin nạp tính theo cơng thức mũ sau Q(t) = Q0.(1- e- t ), với t khoảng thời gian tính Q0 dung lượng nạp tối đa (pin đầy) Hãy tính thời gian nạp pin điện thoại tính từ lúc cạn hết pin điện thoại đạt 90%dung lượng pin tối đa (kết làm tròn đến hàng phần trăm) A t �1,65giờ B t �1,61giờ C t �1,63giờ D t �1,50giờ Lời giải Chọn C Ta có: ( Q0 1- e- t e- t ) = 0.9Q = 0,1 � t = - Suy ra: Câu 43 Cho hàm số y � 1- e- t ln0,1 2 = 0,9 ; 1,63 ax b ; a, b, c �� cx có bảng biến thiên sau: Trong số a, b c có số dương? A B C Lời giải D Chọn D Từ bảng biến thiên ta có : 1 x 2 � � c c c +) TCĐ : a y 20� c +) TCN : a, c dấu suy a f ' x a bc cx 1 0 +) Hàm số nghịch biến khoảng tập xác định nên: với x khác – Nếu b a bc vô lý nên trường hợp khơng xảy Suy xảy b Câu 44 Cho hình trụ có đường cao 8a Một mặt phẳng song song với trục cách trục hình trụ 3a , cắt hình trụ theo thiết diện hình vng Diện tích xung quanh thể tích khối trụ A S 80 a , V 200 a C S 80 a , V 180 a B S 60 a , V 200 a D S 60 a , V 180 a Lời giải Chọn A h 8a Thiết diện ABCD hình vng có cạnh 8a ABCD d 3a Khoảng cách từ trục đến mặt phẳng �h � r d � � �2 � Suy bán kính đường trịn đáy S 2 rh 80 a Vtr r h 200 a Vậy xq , � � f x dx f � � � f x f� x 16 cos x.sin x, x �� � � Câu 45 Cho hàm số có Khi 16 64 128 A B 27 C D Lời giải Chọn D f� x x 16 cos x.sin x, x ��nên f x nguyên hàm f � Ta có cos x f� 16 cos x.sin xdx � 16.cos x dx � 8.cos xdx � 8cos x.cos xdx x dx � � Có 8� cos xdx 8� cos x cos x dx 2sin x sin x 4sin x C � � f � � � C f x 2sin x sin x 4sin x C Suy Mà �4 � Do Khi đó: � � �1 � f x dx � 2sin x sin x 4sin x � dx � cos x cos x cos x � � � � �2 �0 0� Câu 46 Cho hàm số f x ax bx bx c có đồ thị hình vẽ: � 5 � � ; � f cos x 1 cos x Số nghiệm nằm �2 �của phương trình A B C D Lời giải Chọn C Từ đồ thị ta có x a � �;0 � � f x x � � x b � 0;1 � x2 � cos x a � �; cos x a t1 � �; 1 (VN ) � � � � f cos x 1 cos x � � cos x b � 0;1 � � cos x b t2 � 1; (1) � � cos x cos x (2) � � Do � 5 � � ; � Dựa vào đường trịn lượng giác, phương trình (1) có nghiệm nằm �2 � � 5 � � ; � Phương trình (2) có nghiệm nằm �2 � � 5 � � ; � Vậy phương trình ban đầu có tất nghiệm nằm �2 � x y z x y z Câu 47 Xét số thức x, y, z số thực thỏa mãn điều kiện 16 25 Tìm giá trị lớn x1 biểu thức T A 15 y1 4 a b c Tính a b B 13 C 19 Lời giải z1 D 17 Chọn C Đặt a 3x; b 4y; c 5z a 0; b 0; c 0 2 � 1� � 1� � 1� a b c a b c � � a � � b � � c � * � 2� � 2� � 2� Theo giả thuyết ta � 1� � 1� � 1� T 3x1 4y1 5z1 3a 4b 5c 3� a � 4� b � 5� c � 2 2� � � � � � Suy 2 Áp dụng BĐT BCS ta được: 2 � 1� � 1� � � 12 T � 4 5 � a � � b � � c � 6 � 2� � 2� � � 2 f x x4 2x2 m 10;10 Câu 48 Cho hàm số Gọi S tập hợp tất giá trị m nguyên thuộc max f x 3min f x 0;2 cho 0;2 Số phần tử S A B C D Lời giải Chọn B f x x4 2x2 m � f � x x3 4x Xét hàm số x0 � f� x � � x �1 , � Khi max f x 3min f x f x 0;2 Do 0;2 nên 0;2 max f x m m f x m 8 m TH1: m � m 8 , 0;2 0;2 25 max f x 3min f x � m m � m 3m 24 � m 0;2 0;2 Vậy m 25 TH2: m � m , max f x m m 0;2 f x m 8 m 0;2 max f x 3min f x � m m 1 � m 3m � m 0;2 0;2 m 11 11 Vậy m � 10;10 , m �� m � 6;7;8;9 Vì nên Do có giá trị m B C D có cạnh a Gọi M trung điểm CD , N trung Câu 49 Cho hình lập phương ABCDA���� C D Thể tích tứ diện MNB�� điểm A�� a3 a3 a3 2a A B C D Lời giải Chọn B a a2 SB�NC � S A���� S S a a � � � � BCD B NA D NC 2 2 1 a a VMNB�� S B�NC �.CC � a C 3 Vậy log3 x y log x y Câu 50 Có số nguyên y để tồn số thực x thỏa mãn ? A B C D vô số Lời giải Chọn B t � �x y 2 log x y log x y t � �2 t �x y (*) Đặt C : x2 y t Hệ có nghiệm � đường thẳng : x y đường tròn t 3t t t �9 � t � �� d O , R �� 2 �2 � chung log t 2 t y �� 2 Do x y nên Vì y �� nên Thử lại: y � 1;0;1 y 2 1, 448967 t t log có điểm �x 3t � t � 2t � 9t 2.3t 2t �2 t x 1 - Với y 1 , hệ (*) trở thành � (**) t t t t Nếu t � 2.3 t t t t t Nếu t �0 � �0 � 2.3 Vậy (**) vô nghiệm t t � �x �9 � t t � � � � � t � x �2 �2 � x 2t � y - Với hệ (*) trở thành t � �x t � 2t *** �2 t x 1 - Với y hệ (*) trở thành � t � x Dễ thấy (***) ln có nghiệm Vậy có giá trị nguyên y thỏa mãn y 0, y ... thực dương nên ta có: Câu 12 Hình nón có thi? ??t diện qua trục tam giác cạnh a có diện tích xung quanh bằng: a A a B 2 a C Lời giải D a Chọn A a Hình nón có thi? ??t diện qua trục tam giác... có bảng biến thi? ?n sau: Trong số a, b c có số dương? A B C D Câu 44 Cho hình trụ có đường cao 8a Một mặt phẳng song song với trục cách trục hình trụ 3a , cắt hình trụ theo thi? ??t diện hình... 1 �x �1 �x �0 � Điều kiện: � 1;2 C Lời giải D �;2 0 15A 30A 45D Vậy D 1; 0 Câu Mệnh đề sau A x x �e dx = e + C B �xdx = ln x + C �cos C Lời giải x dx =- tan