Viết phương trình tham số của đường thẳng ∆ nằm trong mặt phẳng P, biết ∆ đi qua A và vuông góc với d... Ckn là số tổ hợp chập k của n phần tử.[r]
(1)Mang Giao duc Edunet - http://www.edu.net.vn BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2005 Môn: TOÁN, khối A Thời gian làm bài: 180 phút, không kể thời gian phát đề C©u I (2 điểm) Gọi (Cm ) là đồ thị hàm số y = m x + x (*) ( m là tham số) 1) Khảo sát biến thiên và vẽ đồ thị hàm số (*) m = 2) Tìm m để hàm số (*) có cực trị và khoảng cách từ điểm cực tiểu (C m ) đến tiệm cận xiên (Cm ) C©u II (2 điểm) 1) Giải bất phương trình 5x − − x −1 > 2x − cos 3x cos 2x − cos x = 2) Giải phương trình C©u III (3 ®iÓm) 1) Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng d1 : x − y = và d : 2x + y − = Tìm tọa độ các đỉnh hình vuông ABCD biết đỉnh A thuộc d1 , đỉnh C thuộc d và các đỉnh B, D thuộc trục hoành x −1 y + z − 2) Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : và mặt = = −1 phẳng (P) : 2x + y − 2z + = a) Tìm tọa độ điểm I thuộc d cho khoảng cách từ I đến mặt phẳng (P) b) Tìm tọa độ giao điểm A đường thẳng d và mặt phẳng (P) Viết phương trình tham số đường thẳng ∆ nằm mặt phẳng (P), biết ∆ qua A và vuông góc với d C©u IV (2 điểm) π sin 2x + sin x dx + 3cos x 2) Tìm số nguyên dương n cho +1 C12n +1 − 2.2C 22n +1 + 3.22 C32n +1 − 4.23 C 42n +1 + L + (2n + 1).2 2n C 2n 2n +1 = 2005 1) Tính tích phân I = ∫ ( Ckn là số tổ hợp chập k n phần tử) C©u V (1 điểm) 1 + + = Chứng minh x y z 1 + + ≤ 2x + y + z x + 2y + z x + y + 2z Cho x, y, z là các số dương thỏa mãn Hết Cán coi thi không giải thích gì thêm Họ và tên thí sinh …… Lop12.net số báo danh (2)