1. Trang chủ
  2. » Cao đẳng - Đại học

Đề 19 thi thử đại học năm 2010 môn toán - Khối A

9 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 220,82 KB

Nội dung

Cạnh SA vuông góc với mặt phẳng đáy , cạnh bên SB tạo với mặt phắng đáy một góc 600 .Trên cạnh SA lấy điểm M sao cho AM =.. PHẦN B THÍ SINH CHỈ ĐƯỢC LÀM MỘT TRONG HAI PHẦN PHẦN 1 HOẶC [r]

(1)SỞ GD & ĐT HƯNG YÊN TRƯỜNG THPT MINH CHÂU ĐỀ THI THỬ ĐẠI HỌC NĂM 2010 Môn toán - KHỐI A Thời gian 180 phút ( không kể giao đề ) PHẦN A : DÀNH CHO TẤT CẢ CÁC THI SINH Câu I (2,0 điểm) 1) Khảo sát biến thiên và vẽ đồ thị (C) hàm số : y = x3 – 3x2 + m 2) Biện luận theo m số nghiệm phương trình : x  x   x 1  5  Câu II (2,0 điểm ) 1) Giải phương trình : 2 cos   x  sin x   12  log x  y  3log8 ( x  y  2) 2) Giải hệ phương trình:   x2  y   x2  y   /4 Câu III(1,0 điểm ) Tính tích phân: I    /4 sin x  x2  x dx Câu IV ( 1,0 điểm ) : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a , AD = 2a Cạnh SA vuông góc với mặt phẳng đáy , cạnh bên SB tạo với mặt phắng đáy góc 600 Trên cạnh SA lấy điểm M cho AM = a , mặt phẳng ( BCM) cắt cạnh SD N Tính thể tích khối chóp S.BCNM Câu V (1,0 điểm ) Cho x , y , z là ba số thực thỏa mãn : 5-x + 5-y +5-z = Chứng minh 25x 25y 25z   25x  5y  z 5y  5z  x 5z  5x  y  5x  5y  5z PHẦN B ( THÍ SINH CHỈ ĐƯỢC LÀM MỘT TRONG HAI PHẦN ( PHẦN HOẶC PHẦN 2) PHẦN ( Dành cho học sinh học theo chương trình chuẩn ) Câu VI.a 1.( 1,0 điểm ) Trong mặt phẳng Oxy cho tam giác ABC với A(1; -2), đường cao CH : x  y   , phân giác BN : x  y   Tìm toạ độ các đỉnh B,C và tính diện tích tam giác ABC x  y z 1   6 8 và hai điểm A(1;-1;2) ,B(3 ;- 4;-2).Tìm điểm I trên đường thẳng d cho IA +IB đạt giá trị nhỏ 2.( 1,0 điểm ) Trong không gian với hệ tọa độ 0xyz cho đường thẳng d Câu VII.a (1 điểm): Giải phương trình sau trên tập số phức C: z  z  z2  z 1  PHẦN ( Dành cho học sinh học chương trình nâng cao ) Câu VI.b (1.0 điểm) Trong mặt phẳng với hệ trục toạ độ Oxy cho hình chữ nhật ABCD có diện tích 12, tâm I là giao điểm đường thẳng d1 : x  y   và d : x  y   Trung điểm cạnh là giao điểm d1 với trục Ox Tìm toạ độ các đỉnh hình chữ nhật (1,0điểm) Trong không gian với hệ tọa độ 0xyz cho hai đường thẳng : x  y 1 z   , D1 : 1  x   2t D2 :  y  z  t  Viết phương trình mặt cầu có đường kính là đoạn vuông góc chung D1 và D2 2004 2008 CâuVII.b ( 1,0 điểm) Tính tổng: S  C2009  C2009  C2009   C2009  C2009 Lop12.net (2) …….Hết .http://laisac.page.tl Cõu I a) ĐÁP ÁN điểm Khảo sát biến thiên và vẽ đồ thị hàm số y  x3  3x   Tập xác định: Hàm số có tập xác định D  R 0,25 x  x   Sự biến thiờn: y'  3x  x Ta có y'     yCD  y    2; yCT  y    2 0,25  Bảng biến thiên: 0,25 x y'   0     y 2   Đồ thị: y f(x)=(x^3)-3*(x)^2+2 x -8 -6 -4 -2 0,25 -5 b) Biện luận số nghiệm phương trình x  x    Ta có x  x   m theo tham số m x 1 m   x  x   x   m,x  Do đó số nghiệm x 1 0,25 phương trình số giao điểm y   x  x   x  , C'  và đường thẳng y  m,x   f  x  x  nờn  C'  bao gồm:  f  x  x   Vỡ y   x  x   x    + Giữ nguyên đồ thị (C) bên phải đường thẳng x  + Lấy đối xứng đồ thị (C) bên trái đường thẳng x  qua Ox Lop12.net 0,25 (3) y f(x)=abs(x-1)(x^2-2*x-2) x -8 -6 -4 -2 0,25 -5  hình  Dựa vào đồ thị ta có: + m  2 : Phương trình vụ nghiệm; + m  2 : Phương trình có nghiệm kộp; + 2  m  : Phương trình có nghiệm phõn biệt; + m  : Phương trình có nghiệm phõn biệt 2) Đồ thị hàm số y = ( x  x  2) x  , với x  có dạng hình vẽ : 1- -2 m Lop12.net 1+ 0,25 (4)   5  5   5   x  sin x   sin  x    sin   12  12   12    II 1) 1) 2cos  0.25 5  5  5   5    sin  x    sin  sin  x     sin   sin  sin 12  12 12  12           cos sin     sin     12   12   5    x   k x     k    5      12 12  sin  x   k     sin      12    12   x  3  k  x  5  13  k 2   12 12 log x  y  3log8 ( x  y  2) Giải hệ phương trình:  x2  y   x2  y   2.) 0.25 0.5 Điều kiện: x+y>0, x-y>0 log x  y  3log8 (2  x  y )  x y  2 x y   2 2 x2  y   x2  y    x  y   x  y   u  v  (u  v)  u  v  uv  u  x  y     u  v2  Đặt:  ta có hệ:  u  v  v  x  y  uv    uv   2   0,25đ 0,25đ  u  v  uv  (1)    (u  v)  2uv  Thế (1) vào (2) ta có:  uv  (2)   uv  uv   uv   uv  uv   (3  uv )  uv   uv   u  4, v  (vỡ u>v) Từ đó ta có: x =2; y =2.(T/m) u  v  Kết hợp (1) ta có:  0,25đ 0,25đ KL: Vậy nghiệm hệ là: (x; y)=(2; 2)  /4 Câu III Tính tích phân : I  sin x   x2  x  /4  /4 I    /4 sin x  x2  x  /4 dx     /4 dx 0.5đ  /4  x sin xdx    x sin xdx  I1  I  /4 Áp dụng hàm lẻ, đặt x=-t thì I1  , tích phân phần I kết Lop12.net (5) Áp dụng hàm lẻ, đặt x=-t thì I1  , tích phân phần I kết Câu IV : 0.5đ S N M D A 0,25đ Tính thể tích hình chóp SBCMN B C ( BCM)// AD nên mặt phẳng này cắt mp( SAD) theo giao tuyến MN // AD  BC  AB  BC  BM Tứ giác BCMN là hình thang vuông có BM là đường  BC  SA Ta có :  cao a a 3 MN SM MN 2    Ta có SA = AB tan600 = a , AD SA 2a a 2a 4a Suy MN = BM = Diện tích hình thang BCMN là : 3 4a   2a   BC  MN  a  10 a S = BM    2   3   Hạ AH  BM Ta có SH  BM và BC  (SAB)  BC  SH Vậy SH  ( BCNM)  SH là đường cao khối chóp SBCNM AB AM  Trong tam giác SBA ta có SB = 2a , = SB MS  Vậy BM là phân giác góc SBA  SBH  30  SH = SB.sin300 = a 10 3a3 SH (dtBCNM ) = 27 -x -y -z Câu V Cho x , y , z là ba số thực thỏa mãn : + +5 = Chứng minh : Gọi V là thể tích chóp SBCNM ta có V = 25x 25y 25z   25x  5y  z 5y  5z  x 5z  5x  y  5x  5y  5z Đặt 5x = a , 5y =b , 5z = c Từ giả thiết ta có : ab + bc + ca = abc Lop12.net 0,25đ 0,25đ 0,25đ (6) 0,25đ a2 b2 c2 abc    Bất đẳng thức cần chứng minh có dạng : ( *) a  bc b  ca c  ab a3 b3 c3 abc    ( *)  a  abc b  abc c  abc 3 a b c3 abc     (a  b)(a  c) (b  c)(b  a) (c  a)(c  b) a3 ab ac    a ( 1) Ta có (a  b)(a  c) 8 0,25đ ( Bất đẳng thức Cô si) b3 bc ba    b ( 2) Tương tự (b  c)(b  a) 8 c ca cb    c ( 3) (c  a)(c  b) 8 Cộng vế với vế các bất đẳng thức ( 1) , ( 2) , (3) suy điều phải chứng minh Phần B (Thí sinh làm phần I phần II) Phần I (Danh cho thí sinh học chương trình chuẩn) Chương trình Chuẩn Cõu Ph Nội dung A ần CâuVI 1(1 + Do AB  CH nờn AB: x  y   H a ,0) 2 x  y   Giải hệ:  ta có (x; y)=(-4; 3) (1,0) x  y 1  0,25đ 0,25đ Điểm N  Do đó: AB  BN  B(4;3) + Lấy A’ đối xứng A qua BN thỡ A '  BC - Phương trình đường thẳng (d) qua A và B Vuụng gúc với BN là (d): x  y   Gọi I  (d )  BN Giải hệ: 0,25đ C 2 x  y   Suy ra: I(-1; 3)  A '(3; 4)  x  2y   0,25đ 7 x  y  25   x  y 1  + Phương trình BC: x  y  25  Giải hệ:  Suy ra: C ( 13 ; ) 4 0,25đ 7.1  1(2)  25 450 , d ( A; BC )  3  12 1 450 45  Suy ra: S ABC  d ( A; BC ).BC  2 4  1) Véc tơ phương hai đường thẳng là: u1 (4; - 6; - 8)  u2 ( - 6; 9; 12)   +) u1 và u2 cùng phương 0,25đ +) M( 2; 0; - 1)  d1; M( 2; 0; - 1)  d2 Vậy d1 // d2  *) Véc tơ pháp tuyến mp (P) là n = ( 5; - 22; 19) (P): 5x  – 22y + 19z + = 2) AB = ( 2; - 3; - 4); AB // d1 Gọi A1 là điểm đối xứng A qua d1 Ta có: IA + IB = IA1 + IB  A1B 0,25đ + BC  (4  13 / 4)  (3  / 4)  Câu VIIA Lop12.net 0,25đ 0,25đ (7) IA + IB đạt giá trị nhỏ A1B Khi A1, I, B thẳng hàng  I là giao điểm A1B và d Do AB // d1 nên I là trung điểm A1B  36 33 15  *) Gọi H là hình chiếu A lên d1 Tìm H  ; ;   29 29 29   43 95 28  ; ;   29 29 29   65 21 43  ; I là trung điểm A’B suy I  ;   29 58 29  A’ đối xứng với A qua H nên A’  0,25đ A d1 B H I A1 Cõu Câu VIIa (1,0) Nội dung Cõu VII.a (1 điểm): Giải phương trình sau trờn tập số phức C: z  z3  z2  z 1  Điểm (1) Nhận xét z=0 không là nghiệm phương trình (1) z  1 )  ( z  )   (2) z z 1 Đặt t=z- Khi đó t  z    z   t  z z z Phương trình (2) có dạng : t2-t+  (3)     9  9i 2  3i  3i PT (3) có nghiệm t= ,t= 2 Chia hai vế PT (1) cho z2 ta : ( z   3i 1  3i  z  (1  3i ) z   (4) ta có z   z Có   (1  3i )  16   6i   6i  i  (3  i ) (1  3i )  (3  i ) (1  3i )  (3  i ) i    i ,z=  PT(4) có nghiệm : z= 4  3i 1  3i  z  (1  3i ) z   (4) Với t= ta có z   z 2 Có   (1  3i )  16   6i   6i  i  (3  i ) (1  3i )  (3  i ) (1  3i )  (3  i )  i    i ,z=  PT(4) có nghiệm : z= 4 i 1  i 1 Vậy PT đã cho có nghiệm : z=1+i; z=1-i ; z= ; z= 2 0.25đ 0.25đ Với t= Phần II Câu VIb 1) Lop12.net 0.25đ 0.25đ (8) Ta có: d  d  I Toạ độ I là nghiệm hệ: x  y   x  / 9 3 Vậy I ;    2 2 x  y   y  / Do vai trò A, B, C, D nên giả sử M là trung điểm cạnh AD  M  d  Ox Suy M( 3; 0) 0,25 9 3  Ta có: AB  IM         2 2  S ABCD 12  2 AB Vì I và M cùng thuộc đường thẳng d1  d  AD Theo giả thiết: S ABCD  AB.AD  12  AD  0,25 Đường thẳng AD qua M ( 3; 0) và vuông góc với d1 nhận n(1;1) làm VTPT nên có PT: 1(x  3)  1(y  0)   x  y   Lại có: MA  MD  x  y   Toạ độ A, D là nghiệm hệ PT:   x  3  y  y   x  y   x  y   x     2 2 x   1 x  3  y  x  3  (3  x)  x  x   Vậy A( 2; 1), D( 4; -1)  y  y  1 0,25 x  x I  x A    9 3 Do I ;  là trung điểm AC suy ra:  C 2 2 y C  y I  y A    Tương tự I là trung điểm BD nên ta có B( 5; 4) Vậy toạ độ các đỉnh hình chữ nhật là: (2; 1), (5; 4), (7; 2), (4; -1) Cõu CâuVIb (1,0) Phần 2.a) 0,25 Nội dung  Các véc tơ phương D1 và D2 là u1 ( 1; - 1; 2)  Điể 0,25 và u2 ( - 2; 0; 1) Có M( 2; 1; 0)  D1; N( 2; 3; 0)  D2    Xét u1 ; u2  MN = - 10  Vậy D1 chéo D2 Gọi A(2 + t; – t; 2t)  D1    AB.u1  t         AB.u2  t '  5 2  A  ; ;   ; B (2; 3; 0) 3 3 0,25 B(2 – 2t’; 3; t’)  D2 0,25 Đường thẳng  qua hai điểm A, B là đường vuông góc chung D1 và D2 x   t  Ta có  :  y   5t  z  2t  0,25 PT mặt cầu nhận đoạn AB là đường kính có dạng: 2 11   13     x   y  z 3        Lop12.net 0,25 (9) CâuVIIb (1,0) 2009 Ta có: (1  i ) 2009  C2009  iC2009   i 2009C2009 2006 2008 C2009  C2009  C2009  C2009   C2009  C2009  2007 2009 (C2009  C2009  C2009  C2009   C2009  C2009 )i 2006 2008 Thấy: S  ( A  B) , với A  C2009  C2009  C2009  C2009   C2009  C2009 2 2006 2008 B  C2009  C2009  C2009  C2009  C2009  C2009 + Ta có: (1  i ) 2009  (1  i )[(1  i ) ]1004  (1  i ).21004  21004  21004 i Đồng thức ta có A chớnh là phần thực (1  i ) 2009 nờn A  21004 2009 + Ta có: (1  x) 2009  C2009  xC2009  x 2C2009   x 2009C2009 2008 2009 Cho x=-1 ta có: C2009  C2009   C2009  C2009  C2009   C2009 2008 2009 Cho x=1 ta có: (C2009  C2009   C2009 )  (C2009  C2009   C2009 )  22009 Suy ra: B  22008 + Từ đó ta có: S  21003  22007 Lop12.net 0,25 0,25 0,25 0,25 (10)

Ngày đăng: 01/04/2021, 07:05

w