1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu Đề thi thử đại học năm 2010 môn Toán khối A và B ppt

1 375 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 92,5 KB

Nội dung

SỞ GIÁO DỤC ĐÀO TẠO TỈNH HẢI DƯƠNG TRƯỜNG THPT ĐOÀN THƯỢNG ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM 2010 Môn thi: TOÁN, Khối A B Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số = + + + 3 2 6 9 3y x x x 1) Khảo sát sự biến thiên vẽ đồ thị của hàm số. 2) Tìm các giá trị của m để phương trình sau có sáu nghiệm phân biệt 3 2 1 2 log 6 9 3x x x m+ + + = Câu II (2,0 điểm) 1) Tìm các giá trị của m để phương trình sau có nghiệm. 2 (1 )sin cos 1 2cosm x x m x− − = + 2) Giải bất phương trình: 2 1 1 2 1 2 3 5 x x x > − + − . Câu III (1,0 điểm) Cho hình phẳng D giới hạn bởi đồ thị hàm số 2 3 x y x = + , trục Ox đường thẳng 1x = . Tính thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoành. Câu IV (1,0 điểm) Cho hình chóp S.ABCD có cạnh SA = x, tất cả các cạnh còn lại đều bằng 1. Tính thể tích của khối chóp S.ABCD theo x tìm x để thể tích đó lớn nhất. Câu V (1,0 điểm) Cho a, b, c là các số thực dương thỏa mãn abc a c b+ + = . Tìm giá trị lớn nhất của biểu thức P = 2 2 2 2 2 3 1 1 1a b c − + + + + PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (Phần A hoặc B) A. Theo chương trình chuẩn Câu VI.a (2,0 điểm) 1) Trong mặt phẳng Oxy, cho tam giác ABC có diện tích bằng 3 2 các đỉnh A(3 ; -5), B(4 ; -4). Biết rằng trọng tâm G của tam giác ABC thuộc đường thẳng 3 3 0x y− − = . Tìm tọa độ đỉnh C. 2) Trong không gian Oxyz, cho mặt phẳng (P): 3 8 7 4 0x y z− + + = hai điểm A(1;1; 3)− , B(3;1; 1)− . Tìm tọa độ điểm C thuộc mặt phẳng (P) sao cho tam giác ABC đều. Câu VII.a (1,0 điểm) Cho A B là hai điểm trong mặt phẳng phức lần lượt biểu diễn các số phức z 1 z 2 khác không thỏa mãn 2 2 1 2 1 2 z z z z+ = . Chứng minh rằng tam giác OAB đều (O là gốc tọa độ). B. Theo chương trình nâng cao Câu VI.b (2,0 điểm) 1) Trong mặt phẳng Oxy, cho hình bình hành ABCD có diện tích bằng 4, các đỉnh A(2 ; 2), B(-2 ; 1). Tìm tọa độ đỉnh C D biết rằng giao điểm của AC BD thuộc đường thẳng 3 2 0x y− + = 2) Trong không gian Oxyz, cho mp(P): 2 2 9 0x y z+ − + = , đường thẳng d: 1 3 3 1 2 1 x y z− + − = = − . Viết phương trình đường thẳng ∆ vuông góc với mp(P) sao cho ∆ cắt đường thẳng d tại một điểm cách mp(P) một khoảng bằng 2. Câu VII.b (1,0 điểm) Giải hệ phương trình    =− =+ 1loglog 272 33 loglog 33 xy yx xy …………………………Hết………………………… Họ tên thí sinh:…………………………………………Số báo danh:………………………………… . SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH HẢI DƯƠNG TRƯỜNG THPT ĐOÀN THƯỢNG ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM 2010 Môn thi: TOÁN, Khối A và B Thời gian làm b i: 180 phút,. VI .a (2,0 điểm) 1) Trong mặt phẳng Oxy, cho tam giác ABC có diện tích b ng 3 2 và các đỉnh A( 3 ; -5), B( 4 ; -4). Biết rằng trọng tâm G c a tam giác ABC

Ngày đăng: 25/01/2014, 08:20

w