1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Các mô hình độ trễ phân phối

62 555 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 62
Dung lượng 609,78 KB

Nội dung

Chương trình Giảng dạy Kinh tế Fulbright Niên khóa 2003-2004 Phương pháp phân tích Bài đọc Nhập môn kinh tế lượng với các ứng dụng Chương 10: Các hình độ trễ phân phối Ramu Ramanathan 1 Thục Đoan/Hào Thi CHƯƠNG 10 Các Hình Độ Trễ Phân Phối Như đã đề cập trong phần 6.6, tác động do những thay đổi về chính sách hầu như không bao giờ xảy ra tức thì mà sau một khoảng thời gian nào đó mới nhận biết sự ảnh hưởng đó. Như ví dụ sau đây, giả sử ban giám đốc cục dự trữ liên bang điều chỉnh tỷ suất chiết khấu, là tỷ lệ lãi suất mà các ngân hàng thành viên phải trả nếu họ vay tiền dự trữ từ các ngân hàng chi nhánh quận thuộc cục dự trữ liên bang. Việc nâng tỷ lệ lãi suất lên báo hiệu cho thấy chính sách tiền tệ đang được thắt chặt hơn. Mặc dù sự kiện này sẽ ảnh hưởng đến nền kinh tế (đặc biệt trong lãnh vực đầu tư, lạm phát, GDP, và .v.v.) tuy nhiên, nó cũng cần một khoảng thời gian mới thấy được các tác động thực sự. Vì thế, tình trạng của GDP, thất nghiệp, và lạm phát không chỉ phụ thuộc vào tỷ lệ lãi suất hiện tại mà còn phụ thuộc vào các tỷ lệ trong quá khứ. Nói cách khác, chúng ta cần loại hình động để có thể ghi nhận được những tác động trễ này. Trong phần 6.6, chúng ta đã xem xét đến những hình động như thế. Các hình động cũng có thể có một số biến phụ thuộc trễ như loại biến giải thích. Ví dụ, mức độ tiêu thụ ở thời điểm t có thể phụ thuộc một phần nào đó vào mức độ tiêu thụ tại thời điểm t –1 vì do có sự hình thành các thói quen cũng như sự phản ứng lại trước những thay đổi cơ bản trong cuộc sống của người tiêu dùng nói chung (xin xem ví dụ 6.4). Để ghi nhận hiệu ứng trễ trong hành vi này, đặc trưng của những hình chuỗi thời gian thường bao gồm các giá trò trễ của biến độc lập và phụ thuộc. Chương này sẽ xem xét các vấn đề trên và đưa ra các giải pháp cho chúng. Các trường hợp của biến độc lập trễ và phụ thuộc trễ sẽ được xem xét một cách riêng rẽ. } 10.1 Biến Độc Lập Trễ Giả sử chúng ta đang xem xét hình sau Y t = α + β 0 X t + β 1 X t –1 + … + β p X t –p + u t (10.1) hình này còn được gọi là hình độ trễ phân phối (vì các tác động được phân phối theo thời gian), trong đó chỉ có các giá trò trễ và hiện tại của biến X, còn gọi là biến độc lập trễ, được sử dụng để tiên đoán biến Y t . Như trong ví dụ, gọi Y t là mức tiêu thụ điện tại giờ thứ t trong ngày và X t là nhiệt độ tại thời điểm t đó. Vào mùa hè, nếu nhiệt độ trở nên cao trong các giờ liên tiếp nhau thì các vật nội thất của căn nhà sẽ bò nóng lên (được gọi là “hiệu ứng tăng nhiệt”); và vì thế, mức độ tiêu thụ điện có khả năng không chỉ phụ thuộc vào nhiệt độ hiện tại mà còn phụ thuộc vào nhiệt độ trong khoảng thời gian quá khứ Chương trình Giảng dạy Kinh tế Fulbright Niên khóa 2003-2004 Phương pháp phân tích Bài đọc Nhập môn kinh tế lượng với các ứng dụng Chương 10: Các hình độ trễ phân phối Ramu Ramanathan 2 Thục Đoan/Hào Thi gần đây. Hệ số tương quan β 0 là trọng số gán cho biến X t ; và giá trò ∆Y t /∆X t chính là khoảng gia tăng trung bình của biến Y t khi X t gia tăng một đơn vò. Giá trò β 0 được gọi là nhân tử tác động, nghóa là các tác động cận biên của biến X lên Y trong cùng một thời đoạn. Giá trò β i bằng ∆Y t / ∆X t – i là khoảng tăng trung bình của Y t khi giá trò X t – i tăng thêm một đơn vò, nghóa là khi biến X tăng thêm một đơn vò tại thời điểm trước t một khoảng i thời đoạn. Đó cũng chính là khoảng gia tăng trung bình của Y tại thời điểm cách sau hiện tại một khoảng i thời đoạn khi biến X gia tăng một đơn vò vào thời điểm hiện tại. β i được gọi là nhân tử tạm thời bậc i. Những điểm này sẽ được trình bày trong ví dụ 10.1 Giả sử rằng nền kinh tế đang trong tình trạng ổn đònh (còn gọi là tình trạng cân bằng dài hạn), trong đó tất cả các biến đều là hằng số theo thời gian. Nếu biểu diễn các giá trò dài hạn bằng dấu hình sao (*), mối quan hệ khi nền kinh tế ổn đònh được viết lại như sau (u t = 0 khi nền kinh tế ổn đònh) Y * = α + β 0 X * + β 1 X * + … + β p X * = α + X * (β 0 + β 1 + … + β p ) (10.2) Phương trình trên biểu diễn các ảnh hưởng tích lũy theo thời gian thông qua đại lượng ∆Y * /∆X * = β 0 + β 1 + … + β p , và được gọi là nhân tử dài hạn. } VÍ DỤ 10.1 Về mặt lý thuyết kinh tế vó cơ bản, chúng ta biết rằng bất cứ sự thay đổi nào ở nguồn cung tiền (M) sẽ dẫn đến sự thay đổi mức lãi suất (r). Tương tự, nếu khoản thâm hụt ngân sách (D) được huy động vốn bằng cách phát hành các chứng nhận kho bạc, chúng cũng sẽ ảnh hưởng đến lãi suất. Tuy nhiên, chúng ta phải dự tính được những thay đổi có thể xảy ra theo thời gian. Sau đây là một hình động về lãi suất, và nó giả thiết hành vi của hìnhđộ trễ bậc bốn: r t = f(M t , M t - 1 , M t - 2 , M t - 3 , M t - 4 , D t , D t - 1 , D t - 2 , D t - 3 , D t - 4 ) + u t (10.3) Dữ liệu của nước Mỹ cho trong bảng DATA10-1 (xin xem phần phụ lục D) trình bày số liệu theo từng quý cho ba biến từ quý 1 năm 1964 đến quý 2 năm 1991. Biến lãi suất (r) là lãi suất của trái phiếu kho bạc loại ba tháng, biến cung tiền được tính bằng đơn vò tỷ đô la, với giá trò đô la cố đònh tính tại thời điểm năm 1987, và khoản thâm hụt ngân sách cũng được tính bằng đơn vò tỷ đô la nhưng giá trò được điều chỉnh theo từng chu kỳ (nhưng sẽ không được trình bày chi tiết cách thực hiện như thế nào). Bài tập thực hành máy tính trong phần 10.1 trình bày chi tiết về cách tính toán kết quả của phần này. Khi hình được ước lượng bằng phương pháp OLS, trò thống kê DW là 0,269 cho thấy tính Chương trình Giảng dạy Kinh tế Fulbright Niên khóa 2003-2004 Phương pháp phân tích Bài đọc Nhập môn kinh tế lượng với các ứng dụng Chương 10: Các hình độ trễ phân phối Ramu Ramanathan 3 Thục Đoan/Hào Thi chất tự tương quan. Tuy nhiên, vì dữ liệu được trình bày theo từng quý nên chúng ta kỳ vọng một cấu trúc sai số tự hồi quy bậc bốn. Vì thế, một kiểm đònh LM sẽ được thực hiện cho AR(4). Trò thống kê nR 2 là 82,424 với giá trò p nhỏ hơn 0,0001 cho thấy mối tương quan chuỗi bậc bốn rất mạnh. Chúng ta sẽ tiếp tục ước lượng hình bằng thủ tục Cochrane – Orcutt tổng quát đã được trình bày trong chương 9. Đúng như kỳ vọng, rất nhiều hệ số hồi quy là không có nghóa vì tính chất đa cộng tuyến rất mạnh giữa các biến giải thích. hình sau đó được làm giảm bằng cách loại ra các biến không có ý nghóa. Các giá trò ước lượng của hình “bồn rửa chén” (mô hình A) và của hình cuối cùng (mô hình B) được trình bày trong bảng 10.1 cùng với giá trò p trong ngoặc đơn. Độ thích hợp được tính toán bằng cách bình phương hệ số tương quan giữa giá trò lãi suất quan sát được với giá trò dự báo có được từ hình ước lượng sau khi đưa vào tính toán cấu trúc sai số AR(4) (xin xem phương trình 9.13). Một điểm lưu ý cần xem xét trong hình B là tất cả các biến thâm hụt ngân sách sẽ được loại ra và chỉ còn lại các biến cung tiền hiện tại và cung tiền trễ sau một thời đoạn. Vì thế, khi cho trước các biến này, các biến khác sẽ không gây ra các tác động phụ có ý nghóa. Nhân tử dài hạn đối với biến cung tiền là –0,0002 (= – 0,0141 + 0,0139). Hình 10.1 biểu diễn các điểm giá trò lãi suất quan sát và dự đoán cho hình B. Lưu ý rằng hình đã ghi nhận khá đầy đủ một cách tổng quát các số liệu thực tế ngoại trừ giá trò từ 1980 đến 1982, khi đó các giá trò lãi suất luôn lớn hơn 12 phần trăm. } Bảng 10.1 Hình Ước Lượng Lãi Suất Biến hình A hình B Hằng số M(t) M(t – 1) M(t – 2) M(t – 3) M(t – 4) D(t) D(t – 1) D(t – 2) D(t – 3) D(t – 4) u ˆ (t – 1) u ˆ (t – 2) u ˆ (t – 3) 5,001 (0,525) - 0,013 (0,005) 0,014 (0,008) - 0,004 (0,934) 0,003 (0,596) - 0,001 (0,727) - 0,004 (0,509) 0,001 (0,940) - 0,001 (0,869) - 0,003 (0,693) - 0,005 (0,411) 1,157 (< 0,0001) - 0,499 (0,0007) 0,530 (0,0003) 8,2029 (0,167) - 0,0141(0,0005) 0,0139 (0,0006) 1,135 (< 0,0001) - 0,471 (0,0012) 0,519 (0,0004) Chương trình Giảng dạy Kinh tế Fulbright Niên khóa 2003-2004 Phương pháp phân tích Bài đọc Nhập môn kinh tế lượng với các ứng dụng Chương 10: Các hình độ trễ phân phối Ramu Ramanathan 4 Thục Đoan/Hào Thi u ˆ (t – 4) R 2 hiệu chỉnh - 0,264 (0,0078) 0,886 - 0,259 (0,0089) 0,893 } Hình 10.1 Giá Trò Lãi Suất Quan Sát (dấu +) và Dự Đoán (đường liền nét) (%) Trong phương trình (10.1), nếu tất cả các biến X t , X t – 1 , …, X t – p đều không tương quan với u t , là biến có giá trò trung bình bằng zero khi cho trước các biến X, thì thủ tục bình phương tối thiểu sẽ đưa ra được các giá trò ước lượng có tính chất BLUE và nhất quán. Tuy nhiên, chúng ta lại thường gặp rất nhiều khó khăn ở đây. Giá trò của p, là độ trễ lớn nhất, thường chưa biết. Trong trường hợp này, chúng ta có khuynh hướng gán một giá trò lớn nào đó cho p và thông qua tiêu chuẩn AIC hoặc các tiêu chuẩn khác mà chọn ra trong số các giá trò thay thế đối với độ trễ. Nhưng điều này có thể gây ra nhiều vấn đề về tính chất đa cộng tuyến do có mối quan hệ rất gần giữa các biến X t , X t – 1 , …, X t – p . Trong ví dụ 10.1, chúng ta đã gặp rất nhiều vấn đề về tính đa cộng tuyến ngay cả khi chỉ sử dụng bốn biến trễ. Thứ hai, một giá trò lớn được gán cho p có nghóa là một sự giảm bậc tự do đáng kể vì chúng ta chỉ có thể sử dụng các giá trò quan sát trong khoảng p +1 đến n. Như chúng ta đã biết, số bậc tự do càng thấp ngầm đònh mức độ chính xác của các giá trò ước lượng (nghóa là hiệu quả của chúng) cũng thấp theo và giảm khả năng của việc kiểm đònh giả thuyết. Vì vậy người ta đang tìm kiếm một giải pháp nào đó có thể làm hạn chế các khó khăn trên. Cách tiếp cận điển hình là áp đặt một vài cấu trúc cho các giá trò β và giảm số lượng từ p + 1 xuống còn một vài tham số cần được ước lượng. Ở đây, chúng ta sẽ được trình bày hai phương pháp. Các chi tiết về các phương pháp khác được trình bày trong các cuốn sách của tác giả Kmenta (1986) và Judge, Griffiths, Hill, và Lee (1985), và Greene (2000). Lãi suất Năm Chương trình Giảng dạy Kinh tế Fulbright Niên khóa 2003-2004 Phương pháp phân tích Bài đọc Nhập môn kinh tế lượng với các ứng dụng Chương 10: Các hình độ trễ phân phối Ramu Ramanathan 5 Thục Đoan/Hào Thi Độ Trễ Koyck (hay Độ Trễ Hình Học) Tác giả Koyck (1954) đã đưa ra một giản đồ biểu diễn hình học sự giảm của giá trò β, giản đồ này được gọi là độ trễ Koyck (hay độ trễ hình học). Cụ thể hơn, ông ta đã giả thiết rằng β i = λβ i – 1 , với 0 < λ < 1. Vì vậy, trọng số cho thời đoạn i có dạng phân số của trọng số của thời đoạn trước. Bằng cách thay thế liên tục, chúng ta có được giá trò β i = β 0 λ i , tạo ra một dãy trọng số có tính chất giảm hình học liên tục. Nếu gán cho độ trễ lớn nhất p một giá trò lớn vô cực, chúng ta có được Y t = α + β 0 X t + β 0 λX t –1 + β 0 λ 2 X t –2 + … + u t } Hình 10.2 Độ Trễ Phân Phối Koyck (hay Độ Trễ Hình Học) Lưu ý rằng các hệ số sẽ giảm dần theo hình học (xin xem hình 10.2) và chỉ có ba tham số chưa biết là α, β 0 , và λ. Giả thiết ở đây là tác động lớn nhất của X sẽ có tác dụng ngay tức thì và những ảnh hưởng tiếp theo sẽ giảm dần đến giá trò zero. Tuy nhiên, vì là chuỗi dài vô hạn nên chúng ta không thể dùng chúng để ước lượng trực tiếp giá trò β 0 và λ. Để đơn giản hoá việc này, trước tiên chúng ta hãy thiết lập chuỗi Y t –1 : Y t –1 = α + β 0 X t –1 + β 0 λX t –2 + β 0 λ 2 X t –3 + … + u t -1 Kế đó lấy chuỗi ban đầu trừ đi chuỗi trên sau khi đã nhân từng đại lượng trong chuỗi với λ, lược bỏ những số hạng chung, chúng ta có Y t – λY t –1 = α(1 – λ ) + β 0 X t + u t – λu t -1 hay β i (trọng số) i (độ trễ) Chương trình Giảng dạy Kinh tế Fulbright Niên khóa 2003-2004 Phương pháp phân tích Bài đọc Nhập môn kinh tế lượng với các ứng dụng Chương 10: Các hình độ trễ phân phối Ramu Ramanathan 6 Thục Đoan/Hào Thi Y t = α * + λY t –1 + β 0 X t + v t (10.4) Trong đó α * = α(1 – λ). Vì vậy, nếu cho trước cách tính gần đúng theo phương pháp hình học giảm dần là hợp lý thì phương pháp độ trễ Koyck là một phương pháp có nhiều thuận lợi để làm giảm số lượng các tham số trong hình độ trễ phân phối . Trong ví dụ về mức độ tiêu thụ điện, phương pháp này tỏ ra rất nhạy nên chúng ta có thể kỳ vọng một tác động lớn nhất sẽ xảy ra do ảnh hưởng của nhiệt độ vào thời điểm t, và các tác động sau đó sẽ nhỏ dần do nhiệt độ theo các thời điểm t –1, t –2, và .v.v. Lưu ý rằng phương trình (10.4) hiện đang bao gồm biến Y t –1 là biến phụ thuộc trễ. Hơn nữa, mặc dù số hạng sai số không có tính tự tương quan nhưng chúng có cấu trúc khác nhau, được gọi là trung bình dòch chuyển, tính chất này sẽ được đề cập chi tiết trong chương tiếp theo. Giá trò ước lượng của hình này gây ra một số vấn đề mà sẽ được trình bày trong phần 10.2. } BÀI TẬP THỰC HÀNH 10.1 Hãy chứng minh nhân tử dài hạn bằng β 0 /(1 − λ) } VÍ DỤ 10.2 hình độ trễ Koyck được minh họa bằng cách sử dụng dữ liệu về nhu cầu tiêu thụ điện kết hợp dữ liệu tác động của nhiệt độ tại các giờ khác nhau trong ngày, đây là dữ liệu của một công ty điện lực thuộc vùng tây bắc Hoa Kỳ (xin xem dữ liệu DATA10-2). Dữ liệu thu thập từ 744 giờ sử dụng điện trong tháng giêng năm 1992. Bài tập thực hành máy tính phần 10.2 trình bày chi tiết dẫn đến kết quả. Trước tiên, một hình tónh được ước lượng để tạo mối tương quan giữa lượng điện năng tiêu thụ trong một giờ cho trước (tính bằng đơn vò megawatt) với nhiệt độ trung bình trong khoảng thời gian một giờ đó. hình ước lượng được trình bày dưới đây với giá trò p trong ngoặc đơn. load t = 3.132,369 – 11,133 temp t (<0,0001) (0,00053) Giá trò R 2 hiệu chỉnh đối với hình này chỉ bằng 0,015. Tuy nhiên, khi hình biến đổi trong phương trình (10.4) được ước lượng thì giá trò này đã tăng lên 0,848. Hệ số ước lượng được cho sau đây, với giá trò p trong ngoặc đơn. load t = 405,174 + 0,916 load t –1 – 4,140 temp t (<0,0001) (<0,0001) (0,00107) Chương trình Giảng dạy Kinh tế Fulbright Niên khóa 2003-2004 Phương pháp phân tích Bài đọc Nhập môn kinh tế lượng với các ứng dụng Chương 10: Các hình độ trễ phân phối Ramu Ramanathan 7 Thục Đoan/Hào Thi Nhân tử dài hạn đối với temp (biến nhiệt độ) được cho bằng cách tính – 4,140/ (1 – 0,916) = – 49,3. Vì hình thuộc dạng chuỗi theo thời gian nên chúng ta cần kiểm đònh tính tương quan theo thời gian. Như đã trình bày trong phần 10.2, do có sự hiện diện của biến phụ thuộc trễ nên không thể áp dụng kiểm đònh Durbin – Watson đối với tính chất AR(4). Tuy nhiên, có thể sử dụng kiểm đònh Breusch – Godfrey, đặc biệt đối với tính chất tự tương quan với bậc cao hơn. Vấn đề này sẽ được đề cập đến lần nữa khi chúng ta quay lại ví dụ này trong phần tiếp theo. } BÀI TOÁN THỰC HÀNH 10.2 Sử dụng tập tin dữ liệu cho sẵn và phát ra các biến trễ temp t – i khi i = 1, 2, …, 6; nghóa là phát ra 6 biến độc lập trễ. Sau đó, hãy ước lượng hình tương tự như trong phương trình (10.1). Hãy so sánh các tiêu chuẩn lựa chọn của hình và nhân tử dài hạn với các yếu tố của hình biến đổi Koyck trước đó. Độ Trễ Almon (hay Độ Trễ Đa Thức) Một giải pháp thay thế khác là độ trễ Almon (hay độ trễ đa thức). Được trình bày bởi tác giả Almon (1965), phương pháp giả thiết rằng có thể tính gần đúng hệ số β i bằng một đa thức theo i, vì thế β i = f(i) = α 0 + α 1 i + α 2 i 2 + …+ α r i r Vì các hàm liên tục có thể tính gần đúng một cách tổng quát bằng một đa thức nên phương pháp này tỏ ra khá linh hoạt trong việc ứng dụng. Hình 10.3 minh hoạ hai đồ thò có hình dạng được giả thiết là thích ứng với nhiều trường hợp. Một trong những đồ thò này, người ta đã áp đặt các ràng buộc điểm cuối như β -1 = β p +1 = 0; những điểm còn lại thì không bò ràng buộc. Khi có một sự thay đổi nơi chính sách của chính phủ (ví dụ như ban hành một điều luật thuế mới) thì chúng ta có thể kỳ vọng những tác động ngay sau đó là không đáng kể. Chúng ta sẽ cảm nhận được các tác động chính sau sự kiện này từ hai đến ba quý, và sau đó các tác động này có thể giảm dần nữa. Một đa thức bậc hai hoặc bậc ba thường được sử dụng để xác đònh hình dạng đồ thò biểu diễn hành vi này. Tuy nhiên, thủ tục Almon yêu cầu phải chọn trước bậc đa thức (r) và thời đoạn mà độ trễ lớn nhất (p) sử dụng trong hình. Khác với thủ tục độ trễ Koyck, giá trò p trong thủ tục Almon phải có giới hạn. Giả sử chúng ta chọn r = 3 và p = 4, nghóa là một đa thức bậc ba và một độ trễ cho bốn thời đoạn. Từ đây, chúng ta có β 0 = f(0) = α 0 Chương trình Giảng dạy Kinh tế Fulbright Niên khóa 2003-2004 Phương pháp phân tích Bài đọc Nhập môn kinh tế lượng với các ứng dụng Chương 10: Các hình độ trễ phân phối Ramu Ramanathan 8 Thục Đoan/Hào Thi β 1 = f(1) = α 0 + α 1 + α 2 + α 3 β 2 = f(2) = α 0 + 2α 1 + 4α 2 + 8α 3 β 3 = f(3) = α 0 + 3α 1 + 9α 2 + 27α 3 β 4 = f(4) = α 0 + 4α 1 + 16α 2 + 64α 3 Thế giá trò các giá trò β vào hình và nhóm các thừa số chung lại với nhau, chúng ta có Y t = α + α 0 X t + (α 0 + α 1 + α 2 + α 3 )X t – 1 + (α 0 + 2α 1 + 4α 2 + 8α 3 )X t – 2 + (α 0 + 3α 1 + 9α 2 + 27α 3 )X t – 3 + (α 0 + 4α 1 + 16α 2 + 64α 3 )X t – 4 + u t = α + α 0 (X t + X t – 1 + X t – 2 + X t – 3 + X t – 4 ) + α 1 (X t – 1 + 2X t – 2 + 3X t – 3 + 4X t – 4 ) + α 2 (X t – 1 + 4X t – 2 + 9X t – 3 + 16X t – 4 ) + α 3 (X t – 1 + 8X t – 2 + 27X t – 3 + 64X t – 4 ) + u t } Hình 10.3 Độ Trễ Đa Thức (hay Độ Trễ Almon) Các giá trò α chưa biết, dẫn đến các giá trò β cũng chưa biết, sẽ được ước lượng vì các biến trong ngoặc đơn có thể tính toán được thông qua các phép biến đổi thích hợp. Nếu giá trò α 3 không có ý nghóa, chúng ta có thể áp dụng một đa thức bậc hai để tính toán. Nếu muốn đưa thêm vào một số số hạng, chúng ta cũng có thể thực hiện một cách dễ dàng. Chúng ta có thể thay đổi các giá trò r và p để chọn ra một tổ hợp sao cho giá trò 2 R đạt cực đại hoặc nếu thích chúng ta có thể sử dụng các trò thống kê chọn lựa của hình như AIC và SCHWARZ. β i (trọng số) Không ràng buộc i (độ trễ) Với ràng buộc điểm cuối Chương trình Giảng dạy Kinh tế Fulbright Niên khóa 2003-2004 Phương pháp phân tích Bài đọc Nhập môn kinh tế lượng với các ứng dụng Chương 10: Các hình độ trễ phân phối Ramu Ramanathan 9 Thục Đoan/Hào Thi } VÍ DỤ 10.3 Tác giả Almon đã dùng phương pháp độ trễ đa thức để ước lượng mối tương quan giữa chi phí sử dụng vốn trong các ngành công nghiệp chế tạo và các khoảng trích giữ lại trong quá khứ trong các ngành công nghiệp này. Các số liệu quan sát theo từng quý trong giai đoạn từ năm 1953 đến 1961 được sử dụng. hình được cho như sau E t = α 1 S t 1 + α 2 S t 2 + α 3 S t 3 + α 4 S t 4 + β 0 A t + β 1 A t – 1 + … + β p A t - p + u t Trong đó, E t là chi phí sử dụng vốn tại thời điểm t (tính bằng đơn vò triệu đô la); A t , A t – 1 , và .v.v. là các khoản trích giữ lại tại các thời đoạn t, t –1, và .v.v. (cũng tính bằng đơn vò triệu đô la); và S t 1 , S t 2 , S t 3 , và S t 4 là các biến giả theo mùa. Tác giả Almon đã quyết đònh đưa vào tất cả các biến giả theo mùa này mà không có số hạng hằng số. hình ước lượng cho tất cả các ngành công nghiệp là (sai số chuẩn được cho trong ngoặc đơn) E ^ t = – 283 S t 1 + 13 S t 2 – 50 S t 3 + 320 S t 4 + 0,048 A t + 0,099 A t – 1 + 0,141 A t - 2 (0,023) (0,016) (0,013) + 0,165 A t – 3 + 0,167 A t – 4 + 0,146 A t – 5 + 0,105 A t – 6 + 0,053 A t – 7 (0,023) (0,023) (0,013) (0,016) (0,024) 2 R = 0,922 DW d = 0,890 hình được ước lượng với các ràng buộc điểm cuối β - 1 = β 8 = 0. Hình 10.4 biểu diễn các trọng số ước lượng. Mặc dù giá trò độ thích hợp của hình rất có ý nghóa nhưng nó có thể dẫn đến kết quả không chính xác vì trò thống kê Durbin – Watson đã hàm chứa sự hiện diện của mối tương quan chuỗi. Tác giả Almon đã thực hiện thử một số thay đổi nơi hình, phần chi tiết của những thay đổi sẽ được trình bày trong tài liệu này. Các sai số chuẩn trong ngoặc đơn cho thấy rằng các trọng số đối với các khoảng trích vốn giữ lại có độ trễ có ý nghóa. } BÀI TẬP THỰC HÀNH 10.3 Giả sử cho giá trò r = 2 và p = 4 (nghóa là có độ trễ phân phối bậc hai) và dựa trên hình kinh tế lượng có thể ước lượng được, hãy tả bạn sẽ ước lượng các tham số thích hợp như thế nào? Chương trình Giảng dạy Kinh tế Fulbright Niên khóa 2003-2004 Phương pháp phân tích Bài đọc Nhập môn kinh tế lượng với các ứng dụng Chương 10: Các hình độ trễ phân phối Ramu Ramanathan 10 Thục Đoan/Hào Thi } Hình 10.4 Trọng Số Ước Lượng Đối Với Độ Trễ Almon Các Loại Cấu trúc Độ Trễ khác Một số kỹ thuật khác nhằm làm giảm số lượng các thông số trong một hình độ trễ phân phối cũng đã được đề nghò. Chúng tôi chỉ liệt kê ở đây mà không thảo luận. Các kỹ thuật đó bao gồm độ trễ Pascal, độ trễ hợp lý, độ trễ gamma, độ trễ LaGuerre, và độ trễ Shiller. Kmenta (1986) cung cấp một cách vận dụng hiệu quả các phương pháp này. } 10.2 Các Biến Phụ thuộc Trễ Như đã đề cập trước đây, sự hiện diện của các biến phụ thuộc (hoặc nội sinh) trễ như là một biến hồi qui khá phổ biến trong kinh tế học. Trong phép biến đổi trễ Koyck được sử dụng trước đây, Y t-1 xuất hiện như là một biến hồi qui. Ba đặc trưng phổ biến khác liên quan đến các biến phụ thuộc trễ sẽ được giới thiệu trong những phần sau. hình Hiệu chỉnh riêng phần Giả sử Y t * là mức độ tồn kho mong muốn của một công ty, Y t là mức độ thực tế, và X t là doanh số bán. Giả sử rằng mức độ tồn kho mong muốn phụ thuộc vào doanh số bán theo dạng Y t * = α + βX t (10.5) Do “sự ma sát” trên thò trường, khoảng cách giữa các mức độ mong muốn và thực tế không thể được thu hẹp ngay lập tức mà chỉ có một số độ trễ và đột biến ngẫu nhiên. Giả sử chỉ một phần tỷ lệ của khoảng cách này được thu hẹp trong mỗi thời đoạn. Trong trường hợp này, lượng tồn kho vào thời điểm t sẽ

Ngày đăng: 19/11/2013, 13:24

TỪ KHÓA LIÊN QUAN

w