1. Trang chủ
  2. » Giáo án - Bài giảng

Giáo án hình 10cả năm

62 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 62
Dung lượng 1,18 MB

Nội dung

2) Về kỹ năng: Vận dụng được các KN vừa học vào việc giải các bài tập có liên quan. 3)Về tư duy: Hiểu và vận dụng linh hoạt, chính xác các KN đã học. 4) Về thái độ: Cẩn thận chính xác tr[r]

(1)

Ngày soạn 18/8/2012 Chương VECTƠ

Tiết PP: Bài CÁC ĐỊNH NGHĨA I Mục tiêu :

1) Về kiến thức: Nắm k/n vectơ , vectơ phương hướng, , vectơ - không

2) Về kỹ năng: Vận dụng KN vừa học vào việc giải tập có liên quan. 3)Về tư duy: Hiểu vận dụng linh hoạt, xác KN học

4) Về thái độ: Cẩn thận xác làm tốn, hiểu phân biệt rõ KN Liên hệ vectow vật lý

II Chuẩn bị thầy trò:

+Thầy : Giáo án , SGK, số đồ dùng cấn thiết khác, bảng vẽ minh họa +Học sinh : SGK, thước kẻ, bút bi

III Nội dung tiến trình lên lớp: 1) ổn định lớp : 1'

- Nắm bắt tình hình xem sách giáo khoa học sinh 2) Bài :

1.K/n vectơ:

Hoạt động học sinh Hoạt động giáo viên Nội dung - Cho biết hướng

chuyển động

- Nắm KN vectơ - HS nắm thêm số kí hiệu khác như:

a,b,x,y,    

- HS tham gia hđ1

- Các mũi tên hình cho biết thơng tin

- Từ giáo viên dẫn dắt đến khái niệm vectơ

- Thuyết trình vectơ, độ dài vectơ

Kí hiệu:



AB đọclà "vectơ AB"

VớiA điểmđầu,Blà điểm cuối

- Điều khiển HS hđ1

1.K/n vectơ: K/n vectơ: (SGK)

- Các vectơ giá : AB, CD,              

PQ,RS

- Các vectơ hướng AB, CD,

 

- Các vectơ ngược hướng PQ,RS

- Hs trả lời

- HS tự phát biểu sơ khái nịêm

- HS tham gia hđ3

- Có nhận xét giá, hướng vectơ có hình vẽ?

( dùng bảng vẻ sẳn hình SGK)

- Thuyết trình phương hướng vectơ

- So sánh độ dài , phương , hướng hai vectơ

CD EF

- Trên sở y/c HS tự rút KN cần đạt

- Chính xác hóa lại KN - Cho hs thực hđ3

Hai vectơ cùng phương , ngược hướng:

- Hai vectơ

cùng phương , cùng hướng:

(2)

                           

AB, AC cùngphương

- Bằng hình ảnh trực quan,HS nhận biết cặp vectơ

 Từ nhận định hai vectơ 

Độdàivectơ ABkíhiệu : AB

- HS tham gia dựng vectơ

- Uốn nắn sai sót từ ngữ cách phát biểu

* Lưu ý hướng độ dài hai vectơ

- Khắc sâu kí hiệu độ dài vectơ Cho

   

avà điểmO,dựngOAsaocho OA a

- Yêu cầu HS dựng

Hai vectơ bằng nhau: Hai vectơ bằng nhau: (SGK)

  

 

 

a b

cùnghứơng cùngđộ dài

- Bằng hình ảnh trực quan,HS nhận biết vectơ OA

- HS trả lời không

-



AA

- Trang bị hình vẽ

- Uốn nắng sai sót có nhằm lẫn HS

- Nếu điểm đầu điểm cuối vectơ trùng độ dài vectơ bao nhiêu?

- Mở rộng kí hiệu cho HS

4.Vectơ- khơng: - Kí hiệu:

AA  0

Hoạt động học sinh Hoạt động giáo viên Nội dung - Học sinh làm kết

là:

1) a) đúng, b)

2) Từ sở lý thuyết học Hs tìm vectơ thỏa yêu cầu đề

3) Từ sở lý thuyết học với hình ảnh trực quan, Hs chứng minh ABCD hbh:

- Cần đạt:

+Nếu ABCD hbh

AB = DC Vậy 

 

AB DC

- Gọi hs lên sữa tập ( 1,2 )

* Lưu ý hs xác định tính phương trước, sau xác định hướng

* Lưu ý cho hs biết điều kiện đề tứ giác hbh - Cần gợi ý cho hs chứng minh toán theo hai chiều

                                                               

             

       

cácvectơ cùngphương a,b; u,v; x,y,w,z

cácvectơ cùnghướng : a,b; x,y,z

cácvectơ ngượchướng u,v; x,w; y,w; z,w

IV Củng cố - dặn dò: 5’

+ Củng cố: nhắc lại k/n dạng bt sửa. + Dặn dò: xem tiếp sau

(3)

Tiết PP: Bài - TỔNG CỦA HAI VECTƠ I Mục tiêu :

1) Về kiến thức : Nắm quy tắc cộng vectơ, trừ vectơ, quy tắc HBH, trung điểm, trọng tâm của tam giác ABC

2) Về kỹ : Vận dụng KN vừa học vào việc giải tập có liên quan. 3) Về tư : Hiểu vận dụng linh hoạt, xác KN học

4) Về thái độ: Cẩn thận xác làm tốn, hiểu phân biệt rõ KN .Liên hệ véc tơ thực tế

II Chuẩn bị thầy trò:

+Thầy : Giáo án điện tử, SGK, số đồ dùng cấn thiết khác, bảng vẽ minh họa +Học sinh : SGK, thước kẻ, bút bi

III Nội dung tiến trình lên lớp: 1) ổn định lớp :

2) Kiểm tra cũ:5’

-Nắm bắt tình hình chuẩn bị hs 3) Bài mới :

Hoạt động học sinh Hoạt động giáo viên Nội dung - Hs quan sát

- HS tham gia dựng vectơ - HS tiếp cận đn

- Hướng dẫn cách xác địnhF từ hình 1.5

- Hướng dẫn hs theo hoạt động dựng tổng

- Đặt vấn đề trường hợp hai vectơ không chung gốc

Cho avà b DựngAB avà BC b       Giới thiệu hình 1.6

- Vào ĐN, lưu ý quy tắc cộng AB+BC=AC

Tổng hai vectơ:

Định nghĩa: (SKG)

HS tiếp cận kn

C A

B

D

Trên sở hình 1.7, ta dẫn HS vào quy tắc hbh

-Thuyết trình qui tắc HBH Với hai vectơ

                           

AB vaø AD cho

trước, ta dựng hbh xác định bởi đường chéo



AC

Quy tắc hbh: (SKG)

- Dùng qui tắc HBH để kiểm tra tính chất giao hốn, tính chất kết hợp

- Dùng định nghĩa để chứng minh tính chất vectơ khơng

- Đặt vấn đề: Hướng dẫn học sinh để đưa vào tính chất - Hướng dẫn sử dụng qui tắc HBH để chứng minh tính chất

3 Tính chất phép cộng vectơ:

(SGK)

Ví dụ: (gv tự cho số để hs khắc sâu khái niệm) - HS tham gia hđ2

- HS phát hiện: đối 

 

a laø a

- ĐK HS h đ

- Dẫn HS vào kn vectơ đối

4 ) Hiệu hai vectơ: a) Vectơ đối:

(SGK)

D A

(4)

- Hiểu tính độ dài ngược hướng

- HS tham gia - HS hiểu :

 

   

   

a b a b

- HS tham gia hđ4

- HS dùng quy tắc điểm chứng minh

- Vd1 HĐ3: khắc sâu KN cho hs

- Yêu cầu nhóm hđ

- Trên sở vectơ đối ta hướng Hs vào KN hiệu hai vectơ:

* Lưu ý quy tắc trừ:

 

                                         

OB OA AB

- Yêu cầu nhóm thực hđ4 - Cho tùy ý bốn điểm A,B,C,D.Yêu cầu HS chứng minh đẳng thức

  

   

   

   

   

   

   

   

   

   

   

   

   

   

   

AB CD AD CB

b) Đn hiệu hai vectơ:

(SGK)

- HS nắm bắt :  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

IA IB

I

A B

-HS nắm bắt :

  

   

GA GB GC

- Đặt vấn đề: I trung điểm đoạn thẳng AB ta có biểu thức vectơ IA vaø IB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

liên hệ với - Đặt vấn đề: G trọng tâm tam giác ABC ta có

biểu   thức vectơ

GA, GB vaø GCliên hệ với

nhau

- Gợi ý chứng minh nhanh cho hs cách dùng quy tắc hbh

   

  

     

   

Do : GB GC GD vaø GA GD neân : GA GB GC

5) Áp dụng: a) Quy tắc trung

điểm: (SGK)

(5)

IV Củng cố dặn dò:5’

+ Củng cố: Yêu cầu HS nhắc lại KN, quy tắc học Ta khắc sâu thêm cho HS lần

+ Dặn dò: Bài tập nhà :1- 10 trang 12 ( SGK)

Hướng dẫn, dặn dò : xem kỷ học vận dụng vào việc giải bt sgk, ứng dụng quy tắc học để chứng minh

V Rút kinh nghiệm:

Ngày soạn: 26/8/2012

Tiết PP:3 LUYỆN TẬP I Mục tiêu :

1) Về kiến thức: Nắm quy tắc cộng vectơ, trừ vectơ, quy tắc HBH, trung điểm, trọng tâm tam giác ABC

2) Về kỹ năng: Vận dụng KN vừa học vào việc giải tập có liên quan

3) Về tư duy: Hiểu vận dụng linh hoạt, xác KN học

4) Về thái độ: Cẩn thận xác làm toán, hiểu phân biệt rõ từng KN .Liên hệ vectơ với thực tế

II Chuẩn bị thầy trò:

+Thầy : Giáo án điện tử, SGK, số đồ dùng cấn thiết khác, bảng vẽ minh họa

+Học sinh:Các bt tập dặn, SGK, thước kẻ, bút bi III NỘI DUNG VÀ TIẾN TRÌNH LÊN LỚP:

1) ổn định lớp :

-Nắm bắt tình hình xem sách giáo khoa làm tập học sinh 2) Kiểm tra cũ : 2’

Đặt câu hỏi có liên quan đến lý thuyết đề thơng qua củng cố lý thuyết cho hs 3) Bài :

Hoạt động 1: “Bt 1,3,6: vận dụng quy tắc trừ quy tắc, cộng, hbh” Gọi hs lên bảng trình bày 2, 3,

Trong gian gọi hs trả kiểm tra tình hình làm tập nhà HS Hoạt động học sinh Hoạt động giáo

viên

Nội dung - Yêu cầu cần đạt:

2) dùng trừ quy tắc cộng:

- Hướng hs sử dụng quy tắc cộng ba điểm

* Lưu ý cho hs cách chứng minh dùng điều kiện tương đương

(6)

                                                                      

MA MC MB MD MA MD MB MC DA CB(đúng)

Vậy ta đượcđpcm

3a)

AB BC CD DA AC CA 0(đúng) Vậy ta đượcđpcm

                                                                               

3b) dùng quy tắc trừ

6a)

CO OB BA CO OB BA CO OA(đúng) Vậy ta đượcđpcm

                                                     

6c,6d: dùng quy tắc trừ

- Củng cố quy tắc cộng ba điểm

- Củng cố quy tắc trừ ba điểm

* Lưu ý cách nhận dạng quy tắc cộng trừ cho học sinh

Lưu lại bảng nội dung sửa chữa hoàn chỉnh

4)

RJ RA AJ RJ RB BJ RJ RC CJ VT                                                               

- Gợi ý chèn điểm A, B, C vào vectơ tương ứng

- Trang bị hình vẽ cho HS * Lưu ý cặp vectơ đối

Lưu lại bảng nội dung sửa chữa hoàn chỉnh

5a)

ABBCACa





5b)

AB BC DC CB DB

3

2DI 2.a a

2                                                                        

     I

A

B

C

D

* Lưu ý cho hs dùng quy tắc hbh

Lưu lại bảng nội dung sửa chữa hoàn chỉnh

IV Củng cố dặn dò:5’

+ Củng cố: Yêu cầu HS nhắc lại KN, quy tắc học Ta khắc sâu thêm cho HS lần

+ Dặn dò: Làm tập cịn lại, xem học hơm sau. V Rút kinh nghiệm:

(7)

Tiết PP:07 Bài TÍCH MỘT SỐ VỚI MỘT VÉCTƠ I Mục tiêu :

1) Về kiến thức : Nắm khái niệm, tính chất tích số với vectơ, điều kiện phương, cách phân tích vectơ theo hai vectơ không phương

2) Về kỹ : Vận dụng KN, tính chất vừa học vào việc giải tập có liên quan

3) Về tư duy: Hiểu vận dụng linh hoạt, xác KN,tính chất học

4) Về thái độ: Cẩn thận xác làm tốn, hiểu phân biệt rõ tính chất II Chuẩn bị thầy trò:

+Thầy : Giáo án, SGK, số đồ dùng cấn thiết khác +Học sinh: SGK, thước kẻ, bút bi

III Nội dung tiến trình lên lớp 1) ổn định lớp :

- Nắm tình hinhN HS chuẩn bị nhà 2) Trả cũ : 5’

Đặt câu hỏi bước vẽ đồ thị hàm số bậc nhất. 3) Bài :

Tg Hoạt động học sinh Hoạt động giáo viên Nội dung 15’ - HS tham gia HĐ1

- HS nắm bắt ĐN

- HS phát chiều mang dấu dương , ngược chiều mang dấu âm

- Điều khiển HĐ1

- Dẫn dắt hs đến khái niệm phép nhân số với véc tơ

- Giới thiệu vd1 SGK

- Cho hs nhận định độ dài hướng

- Đưa định hướng : chiều mang dấu dương , ngược chiều mang dấu âm

1 Định nghĩa phép nhân số với vectơ: (SGK)

15’ a) k( a+b)=ka+kb c) k(ha)=(kh) a

b) (k+h) a=ka+ha d) 1a=a ; (−1) a=−a 0a=0 ; k0=0

- Dẫn dắt hs thơng qua ví dụ cụ thể

- Gọi hs tự rút tính chất hồn chỉnh

* Lưu ý cho hs vectơ có đầy đủ tính chất

(8)

- HS tham gia HĐ2

phép toán số thơng thường

- Điều khiển nhóm HĐ2 10’ - Cần đạt:

a)IA IB 0 hiển nhiên b) Víi mäi ®iĨm M :

2

MA MB  MG

  

  

  

  

  

  

  

  

  

  

  

  

  

  

- HS dễ dàng chứng minh theo quy tắc HBH

* Lưu ý cho hs tính chất vectơ đối

* Lưu ý cho hs quy tắc hbh

3 Tính chất trung điểm của đoạn thẳng trọng tâm tam giác: (SGK)

25’

A,B,Cthẳng hàng k : AB k.AC

     - HS tham gia HĐ2

- Dẫn dắt hs thông qua ví dụ cụ thể

- Gọi hs tự rút tính chất hồn chỉnh

* Lưu ý :

- Điều kiện để ba điểm thẳng hàng

+ k > hai vectơ hướng + k < hai vectơ ngược hướng - Cho vd hình ảnh cụ thể

ĐK để hai vecvéctơ cùng phương: (SGK)

15’ - HS nắm bắt thơng qua hình ảnh Với x kb  

 

a,bkhôngcùngphương

- Hs tiếp cận phép phân tích

- Hướng dẫn, gợi ý nhanh thơng qua hình ảnh 1.14 SGK - Gợi ý, hướng dẫn nhanh cho hs tiếp cận toán SGK * Lưu ý cho hS quy tắc học tính chất vectơ

5 Phân tích một vectơ theo hai vectơ không phương: (SGK)

IV Củng cố dặn dò:5’

+ Củng cố: Y/c HS nhắc lại kiến thức cần nắm Ta khắc sâu thêm cho HS một lần

(9)

Tuần 08

Tiết 08 CÂU HỎI VÀ BÀI TẬP I- Mục tiêu :

1) Về kiến thức: Nắm khái niệm, tính chất tích số với vectơ, điều kiện phương, cách phân tích vectơ theo hai vectơ không phương

2) Về kỹ năng: Vận dụng KN, tính chất vừa học vào việc giải tập có liên quan

3) Về tư duy: Hiểu vận dụng linh hoạt, xác KN,tính chất học

4) Về thái độ: Cẩn thận xác làm tốn, hiểu phân biệt rõ tính chất II Chuẩn bị thầy trò:

+Thầy : Giáo án điện tử, SGK, số đồ dùng cấn thiết khác, bảng vẽ minh họa

+Học sinh:Các bt tập dặn, SGK, thước kẻ, bút bi III Nội dung tiến trình lên lớp:

1) ổn định lớp : 5’

2) Kiểm tra cũ: đặt câu hỏi có liên quan đến lý thuyết đề thơng qua củng cố lý thuyết cho hs

3) Bài mới:

Hoạt động : “Bt 1,4,5: vận dụng quy tắc trừ quy tắc, cộng, hbh,…”

Tg Hoạt động học sinh Hoạt động giáo viên Nội dung 10’

5’

10’

- Yêu cầu cần đạt:

1) dùng trừ quy tắc hbh biến đổi tương đương đưa đẳng thức

 

   

                                         

    Ta coù:

AB AD AC

AB AD AC 2.AC Vậy ta đượcđpcm

4a)

   

  

    

    

    

    

    

    

    

    

    

    

    

    

    

    

  

2DA DB DC 2DA 2DA 2(DA DA)

4b) dùng quy tắc trừ

 

   

   

    

    

    

    

    

    

    

    

    

    

    

    

    

    

   

2OA OB OC 2OA 2OM 2(OA OM) 2OD 4OD

- Gọi hs lên bảng giải tập

- Trong gian gọi hs trả kiểm tra tình hình làm tập nhà HS

- Hướng dẫn học sinh sử dụng quy tắc cộng ba điểm * Lưu ý cho hs cách chứng minh dùng điều kiện tương đương

- Củng cố quy tắc cho hs

-Tính chất vectơ đối

* Lưu ý cách nhận dạng quy tắc cộng trừ cho học sinh

- Dùng quy tắc cộng hay dùng phép biến đổi tương đương

Lưu lại bảng nội dung sửa chữa hoàn chỉnh

Lưu lại bảng nội dung sửa chữa hoàn chỉnh

Lưu lại bảng nội dung sửa chữa hoàn chỉnh

(10)

5).a,b)

   

  

  



 

   

  

  



 

       

          

  

MN MA AC CN MN MB BD DN 2MN AC BD MN MB BC CN MN MA AD DN

2MN BC AD

* Lưu ý cho hs cách chèn theo bốn điểm

* Lưu ý tính chất vectơ đối

- Củng cố quy tắc cho hs

10’ - Hs hình thành tri thức phương pháp sở vận dụng giải tập

6)

 

   

                                         

    3KA 2KB

2

3KA 2KB KA BK

3

7) Gợi ý từ hình vẽ: M trung điểm CC’ 8) Dùng tính chất trọng tâm tam giác kết hợp với tính chất trung điểm

Lưu lại bảng nội dung sửa chữa hoàn chỉnh

IV Củng cố dặn dò:5’

+ Củng cố: Yêu cầu HS nhắc lại KN, quy tắc học, dạng toán làm, ta khắc sâu cho HS lần

(11)

Tuần 09 KIỂM TRA TIẾT Tuần 10, 11

Tiết 10 , 11 Bài HỆ TRỤC TỌA ĐỘ

I Mục tiêu :

1) Về kiến thức: Nắm vững độ dài trục, hệ trục tọa độ, tọa độ vectơ, tọa độ trung điểm trọng tâm tam giác

2) Về kỹ năng: Vận dụng kiến thức học vào việc giải tốn có liên quan

3) Về tư duy: Hiểu vận dụng linh hoạt cách biểu diễn tọa độ điểm vectơ

4) Về thái độ: Cẩn thận xác làm tốn, hiểu phân biệt tọa độ trung điểm trọng tâm tam giác

II Chuẩn bị thầy trò:

+Thầy : Giáo án điện tử, SGK, số đồ dùng cấn thiết khác, bảng vẽ minh họa

+Học sinh:Các bt tập dặn, SGK, thước kẻ, bút bi III Nội dung tiến trình lên lớp:

1) ổn định lớp : 5’

2) Kiểm tra cũ: gv đặt câu hỏi để hình thành mới

3) Bài mới:

Tg Hoạt động học

sinh

Hoạt động giáo viên

Nội dung

10’ - Học sinh tiếp cận - Dùng hình 20

giới thiệu sơ cho hs trục tọa độ, tọa độ điểm độ dài đại số vectơ trục

1 Trục độ dài đại số trên trục:

20’

10’

- Học sinh tham gia hđ1

- Học sinh tiếp cận định nghĩa từ hình 1.22

-Hs tham gia hđ2 -Học sinh tiếp cận khái niệm

*

( ; )

u  x yu x i y j  

*

' '

x x u v

y y     

   

*

( ; )

Mx yOMx i y j

  

- Hs tham gia hđ3,4 - Rút biểu thức liên

- Dùng hình 21 giới thiệu sơ cho hs hệ trục tọa độ - ĐK hs hđ1

- Dẫn HS đến với ĐN hệ trục tọa độ

-Trên sở dẫn hs đến với khái niệm tọa độ vectơ từ hđ2 * Lưu ý khắc sâu cho HS từ hình 1.24

- Chú ý điều kiện để hai vectơ - Chú ý tọa độ điểm hệ trục tọa độ

- ĐK hđ 3,4 Rút biểu thức liên hệ tọa độ điểm

Hệ trục tọa độ: ĐN:

(sgk)

' '

x x u v

y y     

   

( B A; B A)

ABxx yy

(12)

hệ tọa độ điểm vectơ mặt phẳng:

( B A; B A)

ABxx yy

- HS tìm đựơc:

( 3; 5) ( 5; 6)

AB       



của vectơ mặt phẳng

- Lấy ví dụ thực tế cho HS

Cho A(3;5) B(-2;-1)

Tìm tọa độ vectơ AB

20’

- Học sinh tiếp cận phép toán

- Học sinh tiếp cận vd1,

-Từ VD1,2; SGK - Y/c Hs tự phát phép toán:

- Hướng dẫn HS tiếp cận vd1,

- Rút nhận xét cho hs:

3 Tọa độ vectơ u v

u v ku

     

20’ - Học sinh tiếp cận

các biểu thức liện hệ điểm

- Học sinh tiếp cận khắc sâu hai công thức từ vd - Học sinh tiếp cận +Tọa độ trung điểm I AB

I(1;2)

+Tọa độ tâm G tam giác ABC G(

7 1;

3)

- Hướng dẫn HS tư phát công thức cho hai trường hợp

- Khắc sâu hai công thức cho HS - Củng cố cho hS thông qua VD sách giáo khoa

Cho A(2;0), B(0;4) vàC(1;3)

Tìm tọa độ trung điểm AB tâm G

4 Tọa độ trung điểm và trọng

tâm tam giác:

2

A B

I

A B

I

x x

x

y y

y

 

   

    

3

A B C

G

A B C

G

x x x

x

y y y

y

  

  

 

 

  

IV Củng cố dặn dò:5’

+ Củng cố: Yêu câu HS nhắc lại KN, quy tắc học, ta khắc sâu cho HS lần

(13)

Tuần 12

Tiết 12 CÂU HỎI VÀ BÀI TẬP

I Mục tiêu:

1) Về kiến thức: Nắm vững độ dài trục, hệ trục tọa độ, tọa độ vectơ, tọa độ trung điểm trọng tâm tam giác

2) Về kỹ năng: Vận dụng kiến thức học vào việc giải tốn có liên quan

3) Về tư duy: Hiểu vận dụng linh hoạt cách biểu diễn tọa độ điểm vectơ

4) Về thái độ: Cẩn thận xác làm toán, hiểu phân biệt tọa độ trung điểm trọng tâm tam giác

II Chuẩn bị:

+Thầy : Giáo án , SGK, số đồ dùng cấn thiết khác III Nội dung tiến trình lên lớp:

!) ổn định lớp : 5’

2) Kiểm tra cũ: Nêu câu hỏi liên quan đến trước

Tiến hành gọi Hs lên bảng sửa tập

Tg Hoạt động học sinh Hoạt động giáo viên Nội dung 10’ - Học sinh tham gia giải tập

- Yêu cầu cần đạt 1)

a) Vẽ biểu diễn e

b)

 

2 3;

AB    NM    Vậy:

hai vectơ AB vàMN ngược hướng  3)

) (2;0) ) (0; 3) ) (3; 4)

) (0.2; 3)

a a b b c c d d

    

   



- Gọi HS lên bảng giải - Hướng dẫn sơ cho hs trục tọa độ, tọa độ điểm độ dài đại số vectơ trục

* Lưu ý cho HS cách tìm độ dài đại số vectơ trục

* Lưu ý cho HS cách xác định tọa vectơ theo vectơ đơn vị

Các bài: 1,3

- Lưu lại bảng nơi dung chỉnh sửa hồn chỉnh

10’ 5)M có tọa độ (x0;y0) tạo độ

của A,B,C là: a) A(x0;-y0)

b) B(-x0;y0)

c) C(-x0;-y0)

6)Gọi D(x;y) Khi

* Lưu ý khắc sâu cho HS từ hệ trục tọa độ

- Chú ý điều kiện để hai vectơ

- Chú ý mối liên hệ tọa độ điểm hệ trục tọa độ với tọa độ vectơ

Bài tập 6

( B A; B A)

ABxx yy



' '

x x u v

y y     

   

- Lưu lại bảng nôi dung chỉnh sửa

hoàn chỉnh

1

-1 -2

(14)

(4; 4)

(4 ; )

4

1

0

   

  

  

   

   

   

  AB

DC x y

x

AB DC

y x

y Vậy D(0;5)

15’ 7)

-Học sinh tiếp cận phát cách giải

' ' '

' ' '

' ' '

C A A B

BA C B

AC C B

  

 

 

 

Biểu thị qua tọa độ tìm đáp số

8)

-Học sinh tiếp cận phát cách giải

- Vẽ hình gợi ý cho hs tự tìm cách giải:

A' C' B'

A

C

B

- Gọi tọa độ tương ứng cho điểm A,B,C

- Nhận xét cặp vectơ Gợi ý nhanh 8:Gọi

2

:

2

c ka ha

k h h

Khi đó

k h k

 

  

 

 

   

 

  

Bài tập 8

' ? ' '

' ? ' ' ' ? ' '

C A A B

BA C B

AC C B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV.Củng cố dặn dò:5’

+ Củng cố: Yêu cầu HS nhắc lại dạng tập giải, ta khắc sâu cho HS lần

(15)

Tuần 13

Tiết 13 ÔN TẬP CHƯƠNG I I Mục tiêu:

1) Về kiến thức: Nắm vững kiến thức có liên quan đến vectơ, quy tắc, tính chất quan trọng

2) Về kỹ năng: Vận dụng kiến thức học vào việc giải toán có liên quan đến vectơ

3) Về tư duy: Hiểu vận dụng linh hoạt kiến thức học vectơ 4) Về thái độ: Cẩn thận xác làm toán.

II Chuẩn bị:

+Thầy : Giáo án , SGK, số đồ dùng cấn thiết khác +Học sinh: SGK, tập dặn

III Nội dung tiến trình lên lớp: 1) ổn định lớp : 4’

Nắm tình hình chuẩn bị tập nhà hS

Tiến hành gọi Hs lên bảng sửa tập kiểm tra tập trả 2) Kiểm tra cũ: Gọi hs nhắc lại kiến thức học chương 3) Bài mới:

Tg Hoạt động học sinh Hoạt động giáo viên Nội dung

10’ - Học sinh tham gia giải tập -Yêu cầu cẩn đạt

1) OC FO ED, ,   

6)Dùng quy tắc hbh học

)

)

a AB AC a

b AB AC a

 

 

    7)

 

MP NQ RS MS SP NP NQ RQ QS

MS NP RQ SP NQ QS

MS NP RQ

       

     

  

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

- Gọi HS lên bảng giải - Trang bị hình vẽ cho HS * Lưu ý cho HS điều kiện để hai vectơ

* Lưu ý cho HS quy tắc học

Bài tập 1, - Lưu lại

(16)

10’

10’ 9)

' ' ' ' '

' ' ' ' '

AA BB CC AG GG GA

BG GG BA CG GG CA GG

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

       11)

) (40; 13) ) (8; 7)

) (2 ; )

2

4

a u b x

c ka hb k h k h

k h k

c ka hb

k h h

 

 

   

  

 

     

  

 

 

 

  

Hs tự suy nghĩ

* Lưu ý tính chất trọng tâm tam giác

- Cách tìm tọa độ vectơ

- Cách phân tích vectơ theo hai vectơ không phương

Gợi ý nhanh bài: 2)

Các khẳng định a),b), d)

10)Các khẳng định a),c)

13)

Các khẳng định c)

-Lưu lại bảng nôi dung chỉnh sửa hoàn chỉnh

Hướng dẫn câu hỏi trắc nghiệm 10’ Đáp án:

câ u

1

0 1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3 Đ

A

D B A A C C C A D C D A B C A D C C B B C B C C C C B A A D

IV Củng cố dặn dò:1’

+ Củng cố: Yêu cầu HS nhắc lại dạng tập giải, ta khắc sâu cho HS lần

(17)

Tuần 14 CHƯƠNG TÍCH VƠ HƯỚNG CỦA HAI VECTƠ

Tiết PP:

§1 GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GĨC BẤT KÌ TỪ 00

ĐẾN 1800.

I Mục tiêu:

+ Kiến thức bản: Định nghĩa giá trị lượng giác góc  (00≤ ≤ 1800) Quan hệ

giữa giá trị lượng giác hai góc bù Giá trị lượng giác góc đặc biệt + Kỹ năng, kỹ xảo: Rèn luyện kỹ tính GTLG góc cơng thức dùng máy tính bỏ túi để tính

+ Thái độ nhận thức: Nắm vững kiến thức cũ (lớp 9), cẩn thận, tư linh hoạt,… II Chuẩn bị:

+ Giáo viên:Giáo án, sgk, sgv,

+ Học sinh: dụng cụ thước thẳng, compa, ôn tập kiến thức cũ, đọc trước nới III Nội dung tiến trình lên lớp:

1) Kiểm tra cũ: Tam giác ABC vng A có góc nhọn ABC Hãy nhắc lại định nghĩa tỉ số lượng giác góc nhọn  học lớp 9.

2) Giảng mới:

TG Hoạt động giáo viên Hoạt động học sinh

Nội dung GV: Nếu cho trước góc

nhọn  ta xđ điểm M nửa đtròn đơn vị cho xOM  Giả sử M có toạ độ (x0; y0)

Hãy chứng tỏ sin = y0, cos = x0, tan=

0 y

x , cot =

0 x y

O x

y

M

GV: Mở rộng k/n tỉ số lượng giác góc nhọn cho góc  với 00

  1800, ta có định nghĩa

HS: sin = MH

MH y

OM  

cos =

OH

OH x

OM  

tan =

0 y MH OHx cot =

0 x OH MHy

Trong mp toạ độ Oxy, nửa đtròn tâm O nằm phía trục hồnh bán kính R = đgl nửa đường tròn đơn vị

K

(18)

sau GV:

O x

y

M

GV:  góc tù  dấu GTLG nào? GV: sin > 0,   (0 ;180 )0 GV: tan xđ nào? cot xđ nào?

Các hệ thức lượng giác

bản:

2

sin cos  1;tan cot  1; sin

tan

cos

 

 

;

cos cot

sin

 

 

;

2

1 tan

cos

 

;

2

1 cot

sin

 

HS: Tìm giá trị lượng giác góc 1350.

HS: sin > 0, cos < 0, tan < 0, cot < 0.

HS: Khi  900

Khi  00  1800. HS: Tự chứng minh

1 Định nghĩa:

Với góc  (00  

1800), ta xđ điểm M

nửa đtròn đơn vị cho 

xOM  giả sử điểm M có toạ độ M(x0; y0) Khi ta

định nghĩa:

 sin= y0

 cos = x0

 tan =

0 y x (x

00)

 cot =

0 x y (y

00)

Các số sin, cos , tan , cot  đgl GTLG góc  .

GV:

M

O x

y

N

GV: Hãy so sánh GTLG hai góc bù ?

HS: Trả lời theo nhận biết

2 Tính chất:

0 0

sin sin(180 )

cos cos(180 )

tan tan(180 )

cot cot(180 )

 

 

 

 

 

 

 

 

GV: Treo bảng phụ (bảng giá trị lượng giác góc đặc biệt)

HS: Tìm GTLG của góc 1200, 1500.

3 Giá trị lượng giác các góc đặc biệt: (sgk)

GV:

O B

A

HS: Chú ý thực H4

4 Góc giửa hai vectơ:

 Định nghĩa: (sgk)  Chú ý: a b,   b a, 

   

 Ví dụ: (sgk)

1350

a

b

(19)

GV: Hướng dẫn. HS: Thực theo hướng dẫn GV MTBT

5 Sử dụng MTBT để tính GTLG góc.

a) Tính giá trị lượng giác góc  .

b) Xác định độ lớn góc biết GTLG góc IV Củng cố, dặn dị:

 Định nghĩa GTLG

 Tính chất (hai góc bù nhau)

 Bảng giá trị lượng giác góc đặc biệt  Góc hai vectơ

 Sử dụng MTBT để tính GTLG

(20)

Tuần 15 §1 CÂU HỎI VÀ BÀI TẬP. Tiết PP: 15

I Mục tiêu:

+ Kiến thức bản: Tính chất (cung bù), góc hai vectơ

+ Kỹ năng, kỹ xảo: KN xác định xác góc hai vectơ, vận dụng thành thạo kiến thức học để giải tập

+ Thái độ nhận thức: Chuẩn bị trước, nghiêm túc, tích cực,… II Chuẩn bị:

+ Giáo viên:Giáo án, sgk, sgv,

+ Học sinh: dụng cụ thước thẳng, chuẩn bị trước tập nhà III Nội dung tiến trình lên lớp:

1) Kiểm tra cũ: Chứng minh rằng: sin1050 = sin750;

cos1700 = - cos100

2) Giảng mới:

TG Hoạt động giáo viên

Hoạt động học sinh Nội dung

GVHD: Tổng ba góc tam giác nào?

GV: Sử dụng tính chất để c/m

HS: A + B + C = 1800.

HS: Lên bảng giải

a) Ta có: B + C = 1800 – A

 sin(B + C ) = sin(1800 –

A)

= sin A (đpcm)

b) Ta có: B + C = 1800 – A

 cos(B + C ) = cos(1800 –

A)

= -cos A hay cos A = -cos(B + C ) (đpcm)

1 CMR tam giác ABC ta có:

a) sin A = sin(B + C); b) cos A = -cos(B + C)

GV:

K

H A

B O

GV: AOH   AOK?

GV: Dựa vào ΔAOK vuông K, tính AK OK?

HS: AOK 2 HS: AK = a.sin2;

OK = a.cos2

2 Cho DAOB cân O có OA= a có đường cao OH AK Giả sử AOH  Tính AK OK theo a a

a

(21)

GV: Gọi hs lên bảng giải

HS: Lên bảng giải

2

2

2

3sin cos

3(1 cos ) cos

1 25

3 2cos

3

P x x

x x

x

 

  

 

      

 

5 Cho góc x, với

1 cos

3

x Tính giá trị biểu thức:

2

3sin cos

Pxx

GV:

B A

D C

HS: Lên bảng tính +

0

cos( , ) cos135

2

AC BA  

                           

+ sin(AC BD, ) sin 90 1  

+ cos(AB CD, ) cos180 1  

6 Cho hình vng ABCD Tính:

+ cos(AC BA, )  

+ sin(AC BD, )  

+ cos(AB CD, )   IV Củng cố, dặn dị:

 Tính chất:

0 0

sin sin(180 )

cos cos(180 )

tan tan(180 )

cot cot(180 )

 

 

 

 

 

 

 

 

 Cách xác định góc hai vectơ

+ BTVN: Các tập lại trang 40 (nếu chưa sửa)

(22)

Tuần 16, 17 §2 TÍCH VÔ HƯỚNG CỦA HAI VECTƠ. Tiết PP: 16, 17, 18

I Mục tiêu:

+ Kiến thức bản: Định nghĩa tích vơ hướng hai vectơ; tính chất tích vơ hướng; ý nghĩa vật lí tích vơ hướng

+ Kỹ năng, kỹ xảo: Sử dụng biểu thức tọa độ tích vơ hướng để tính độ dài vectơ, tính khoảng cách hai điểm, tính góc hai vectơ chứng minh hai vectơ vng góc với

+ Thái độ nhận thức: Nghiêm túc, tích cực, tư linh hoạt, nắm vững kiến thức cũ (vật lí),…

II Chuẩn bị:

+Giáo Viên Giáo án, sgk, sgv

+ Học Sinh: Chuẩn bị dụng cụ thước thẳng, đọc trước tích vơ hướng hai vectơ. III Nội dung tiến trình lên lớp:

1) Kiểm tra cũ: Cho ΔABC vng A, C 200.Tính AB AC,  , AC CB, 

    2) Giảng mới:

TG Hoạt động giáo viên Hoạt động học sinh Nội dung GV:

O O’

GV: Công A lực F tính nào? GV: Trong tốn học, A đgl tích vơ hướng hai vectơ FOO ', KH:

'

A F OO

 

GV:ab, a b  ntn? (với a b,

 

khác0)

GV:a2= ?

HS: AF OO ' cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HS: ab a b  = 0

HS:

2

a a

1 Định nghĩa: Cho a b,

 

khác0 Tích vơ hướng ab số, KH: a b  , xđ công thức:

 

cos ,

a b a b  a b 

Trường hợp hai vectơ bằng0 ta quy ước

a b 

Chú ý:

 Với a b,

 

khác0 ta có: a b  =  ab.

 Khi a b

 

tích vơ hướng

a a  KH: a2: đgl bình phương vơ hướng a

GVHD: Ví dụ sgk. GV:Gọi hs lên bảng tính.

HS: Chú ý thực theo hướng dẫn GV HS: Lên bảng tính

0 cos 90

AB AC a a 

 

0 cos135

AC CB a a a

 

VD: Cho ABC vuông cân có

AB = AC = a Tính tích vơ hướng AB AC AC CB ,

   

F



(23)

B

A C

GV: Nhận xét

   

   

2 2

2 2

2

2 ;

2 ;

a b a a b b

a b a a b b

a b a b a b

                             

GV: Hướng dẫn cách chứng minh

HS: Lên bảng chứng minh

a b   2  a b    a b  

2

2

2

a a b b a b

a a b b

   

  

         

HS: Thực H1(cá

nhân)

3 Các tính chất tích vô hướng.

, ,

a b c

  , với số k:

      2 ; ( ) ; ;

0, 0

a b b a

a b c a b a c ka b k a b a kb

a a a

                               A B

GV: Hướng dẫn.

HS: Xem thêm sgk. Ứng dụng (vật lí).

GV: a b ?

VD: Trên mp toạ độ Oxy cho ba điểm A(2;4), B(1;2), C(6;2) CMR:

ABAC

                           

HS: Xem c/m sgk. HS: aba b1 1a b2 0

 

HS: Lên bảng giải

( 1; 2), (4; 2)

1.4 ( 2)( 2)

AB AC AB AC AB AC                                            

3 Biểu thức tọa độ tích vơ hướng.

Trên mp toạ độ O i j; ,   

, cho 2

( ; ), ( ; )

a a a bb b Khi đó: a b a b  1a b2

 

Ví dụ:

a) Cho a(3;2),b(5; 1) Tính góc hai vectơ

ab.

HS: Xem c/m sgk. HS: Lên bảng tính.

0

15

cos( , )

13 26

1

2

( , ) 45

a b a b a b a b               

HS: AB(3; 1) 

Þ AB = 10

4 Ứng dụng.

a. Độ dài vectơ: Độ dài vectơ a( ; )a a1

được tính theo cơng thức:

2 2 a  aa b.Góc hai vectơ: Nếu a( ; ),a a b1 ( ; )b b1

 

đều khác 0 thì:

1 2

2 2

1 2

cos( , )

a b a b a b

a b

a b a a b b

          

(24)

b) Cho A(1;3), B(4;2) Tính AB

điểm:

B A2  B A2

ABxxyy

IV Củng cố, dặn dò:

 Định nghĩa tích vơ hướng: a ba b cos , a b

     

a b,

 

khác0 ta có: a b  =  ab.

 Biểu thức tọa độ tích vơ hướng: a b a b  1a b2

 

(với a( ; ),a a b1 ( ; )b b1

 

)

2 2 a  aa

với a( ; )a a1

1 2 2 2 2

cos( , )

a b a b a b

a b

a b a a b b

 

 

   

 

với a( ; ),a a b1 ( ; )b b1

 

đều khác 0.

    

2

B A B A

(25)

Tuần 17 CÂU HỎI VÀ BÀI TẬP. Tiết PP: 19

I Mục tiêu :

+ Kiến thức bản: Định nghĩa tích vơ hướng hai vectơ Các cơng thức tính độ dài vectơ góc hai vectơ

+ Kỹ năng, kỹ xảo: Kỹ vận dụng thành thạo, linh hoạt kiến thức học để giải tập

+ Thái độ nhận thức: Chuẩn bị trước, nghiêm túc, tích cực,… II Chuần bị:

+ Giáo viên: Giáo án, sgk, sgv,

+ Học sinh: Chuẩn bị dụng cụ thước thẳng, compa, chuẩn bị tập sách giáo khoa. III Nội dung tiến trình lên lớp:

1) Kiểm tra cũ: Định nghĩa tích vơ hướng hai vectơ Viết cơng thức tính tích vơ hướng hai vectơ, độ dài vectơ góc hai vectơ theo toạ độ

2) Giảng mới:

T G

Hoạt động giáo viên Hoạt động học sinh Nội dung

a) A B O

b)

A O B

HS: OA OB               = ab HS: OA OB  = -ab

2 Cho ba điểm O, A, B thẳng hàng biết OA = a, OB = b Tính tích vô hướng OA OB  nếu:

a) Điểm O nằm đoạn AB;

b) Điểm O nằm đoạn AB

GV:

R I

O

A B

M N

GV: Hướng dẫn Tính AI AM ?

 

AI AB ?

 

GV: hs tự c/m

BI BNBI BA

   

GV: Gọi hs lên bảng giải.

HS: Lên bảng giải

 

cos ,

AI AM AI AM AI AM

AI AM  

     

     

     

     

     

     

     

     

     

     

     

     

     

     

 

cos ,

cos

AI AB AI AB AI AB

AI AB IAB AI AM

 

     

Từ (1) (2) suy ra:

AI AMAI AB

   

HS: Lên bảng giải

AI AM BI BN

   

=              AI AB +

BI BA

 

=

3 Cho nửa đtr tâm O có đường kính AB = 2R Gọi M N hai điểm thuộc nửa đtr cho hai dây cung AM BN cắt I

a) C/m: AI AMAI AB

   

BI BNBI BA

   

b) Hãy dùng kết câu a) để tính AI AM BI BN

   

theo

(1)

(26)

2 2

( )

AB AI BI AB AB AB  R      

R

GV: D có toạ độ ntn ? GV: Gọi 2p chu vi tam giác OAB Khi 2p = ? GV: Gọi hs lên bảng giải

HS: D(x; 0)

Kq: D(

5 3; 0)

HS: 2p = OA + AB + BO

Kq: 2p = 10(2 2). HS: Lên bảng giải

Vì OA=AB= 10 OB=

20 nên ta có OB2 = OA2 +

AB2

Vậy ΔOAB vuông cân A

5

OAB

OA AB S

  

4 Trên mp toạ độ Oxy, cho hai điểm A(1; 3), B(4; 2)

a) Tìm toạ độ điểm D nằm trục Ox cho DA = DB

b) Tính chu vi tam giác OAB

c) Chứng tỏ OA vng góc với AB từ tính diện tích tam giác OAB

GV: Nhắc lại cos( , ) ?a b   HS: a)

cos( , )

a b a b

a b

   

  =

( , ) 90a b

 

b)

cos( , )

a b a b

a b

   

  =

3

( , ) 150a b

 

5 Trên mp toạ độ Oxy tính góc hai vectơ a) a(2; 3), b(6; 4)

c) a ( 2; 3), b(3; 3)

GV: B, C có toạ độ ntn ? GV: ΔABC vuông C, ta điều ?

HS: B(2; -1), C(x; 2) HS: ΔABC vuông C, ta

CA CB 0

 

 (-2 – x)(2 – x) + =  x = 1

Vậy ta có hai điểm C(1; 2) C’(-1; 2)

7 Trên mp toạ độ Oxy cho A(-2; 1) Gọi B điểm đối xứng với điểm A qua gốc toạ độ O Tìm toạ độ điểm C có tung dộ cho ΔABC vng C

IV Củng cố, dặn dò:

a b a b  1a b2

 

(với a( ; ),a a b1 ( ; )b b1

 

)

2 2 a  aa

với a( ; )a a1

1 2 2 2 2

cos( , )

a b a b a b

a b

a b a a b b

 

 

   

 

với a( ; ),a a b1 ( ; )b b1

 

đều khác 0.

    

2

B A B A

ABxxyy

a ba b cos , a b

     

(27)

+ BTVN: Các tập lại sgk trang 45 – 46 (nếu chưa sửa)

Tuần 18 ÔN TẬP CUỐI HỌC KỲ I

Tiết PP: 20, 21

I/ Mục tiêu:

+ Giúp học sinh hệ thống lại kiến thức học vectơ, hệ trục tọa độ, tích vơ hướng hai vectơ

+ Chứng minh biểu thức vectơ, giải dạng toán trục tọa độ Chứng minh hệ thức giá trị lượng giác, tính tích vơ hướng hai vectơ

+ Học sinh tư linh hoạt việc vận dụng kiến thức vào giải toán, biết quy lạ quen

+ Cẩn thận, xác tính tốn, liên hệ tốn học vào thực tế

II/ Chuẩn bị :

+ Giáo viên: Giáo án, phấn màu, thướt

+ Học sinh: Ôn tập trước

III Nội dung tiến trình lên lớp: 1/ Ổn định lớp : ( phút )

2/ Kiểm tra củ: Câu hoûi:

3/ Bài mới:

T G

Hoạt động giáo viên Hoạt động học sinh Nội dung

HĐ1: Nhắc lại phép toán vectơ

Hỏi: vectơ phương nào? Khi vectơ hướng ngược hướng ?

Hỏi: vectơ gọi ?

Trả lời:2 vectơ

phương giá song song trùng

Khi vectơ phương hướng ngược hướng Trả lời:

, hướng

a a b a b

b     

  

   

 

Trả lời: Vẽ tổng a b

I Vectô :

Hai vectơ phương

giá song song trùng

Hai vectơ phương

chúng hướng ngược hướng

, hướng a

a b a b

b     

  

   

 

Vẽ vectơ ab

 

(28)

Yêu cầu: Nêu cách vẽ vectơ tổng hiệu

và b a .

Yêu cầu: Học sinh neâu

quy tắc hbh ABCD, quy tắc điểm, quy tắc trừ? Hỏi: Thế vectơ đối a ?

Hỏi: Có nhận xét hướng độ dài vectơ k a. với a ?

Yêu cầu: Nêu điều kiện

để vectơ phương ?

Nêu tính chất trung điểm đoạn thẳng ?

Nêu tính chất trọng tâm tam giác ?

Vẽ OA a AB b                ,   OB a b

   

Vẽ hiệu a b   Veõ OA a OB b , 

    BA a b

  

  

Trả lời:

AC AB AD

AC AB BC

AB OB OA

              

Trả lời: Là vectơ a

Trả lời:

hướng a, k >

k a 

ngược hướng a, k <

k a 

có độ dài k a

k a 

Trả lời:a phương b  a k b 

I trung điểm AB

:

M MA MB MI

  

  

G trọng tâm ABC thì: M

 ta có:

3

MA MB MC   MG

   

a O a b

Vẽ vectơ a b

  A

aa  b O b B

Quy taéc hbh ABCD

ACAB AD

  

Quy tắc điểm A, B, C

ACAB BC

  

Quy tắc trừ

AB OB OA 

  

Vectơ đối a

a ( Vectơ đối AB BA )

k a hướng a k >

 

k a. ngược hướng a k < 0

k a có độ dài k a

 

b phương khi: a

ak b

   

I laø trung điểm AB:

2

MA MB  MI

                                         

G trọng tâm ABC :

3

MA MB MC   MG

   

HĐ2:Nhắc lại kiến thức hệ trục tọa độ Oxy

Hỏi:Trong hệ trục

( ; ; )O i j  cho

( ; ) ?

u x yu

' ( '; ') : ' ?

ux y u  u

  

Hỏi: Thế tọa độ điểm M ?

Hoûi: Cho

( ;A A), ( ;B B)

A x y B x yAB?

Trả lời: u x i y j   ' ' ' x x u u y y         

Trả lời: Tọa độ điểm

M tọa độ vectơ OM .

Trả lời:

( B A; B A)

ABxx yy

1 2

( ; )

u v  uv uv

II Hệ trục tọa độ Oxy:

u( ; )x yu x i y j 

     ' '( '; ') ' x x u u x y

y y         

Cho A x y( ;A A), ( ;B x yB B)

( B A; B A)

AB x x y y

    

Cho u u u( ; ), ( ; )1 v v v1

 

u v (u1v u1; 2v2)

 

k u ( ; )k u k u1

u v,

 

(29)

Yêu cầu: Cho

1 2 ( ; ), ( ; )

u u uv v v Vieát u v u v k u    ,  , 

,

u v  phương ?

u cầu: Nêu cơng thức

tọa độ trung điểm AB, tọa độ trọng tâm ABC

1 ( ; )

k u k u k u

Trả lời: u v , phương

khi u1k v u ,1 k v

Trả lời: I TĐ AB

,

2

A B A B

I I

x x y y

x   y  

G trọng tâm ABC

3

A B C G

A B C G

x x x x

y y y y

      1 2

u k v u k v

   

 

 I trung điểm AB

,

2

A B A B

I I

x x y y

x   y  

 G trọng tâm ABC

3

A B C G

A B C G

x x x x

y y y y

  

 

  

HĐ3: Nhắc lại kiến thức tích vơ hướng

Hỏi:

0 0

sin(180 ) ?

cos(180 ) ?

tan(180 ) ?

cot(180 ) ?

           

Yêu cầu:Nhắc lại giá trị

lượng giác số góc đặc biệt

Yêu cầu: Nêu cách xác

định góc vectơ

b

a

 

Hỏi: Khi góc

0

( , ) 0a b   ? ( , ) 90a b   0 ?,

( , ) 180a b   ?

Yêu cầu: Nhắc lại công

thức tính tích vơ hướng

a b  theo độ dài theo tọa độ ?

Hỏi: Khi a b 

bằng không, âm, dương ?

Hỏi: Nêu cơng thức tính

Trả lời:

0 0

sin(180 ) sin

cos(180 ) cos

tan(180 ) tan

cot(180 ) cot

               

Trả lời: Nhắc lại bảng Giá

trị lượng giác Trả lời: B ab A O Vẽ OA a OB b                ,   Góc AOB( , )a b  Trả lời:

0

( , ) 0a b   a  b

( , ) 90a b   ab

( , ) 180a b   a  b Trả lời:

1 2

.cos( , )

a b a b a b

a b a b a b

 

       

Trả lời:

, a b a b a b               (a nhọn, )

a b   b

(a laø tuø, )

a bb

   

Trả lời: aa12a22

Trả lời:

1 2 2 2 2

cos( , )

a b a b a b

a a b b

 

 

 

III Tích vơ hướng:

0 0

sin(180 ) sin

cos(180 ) cos

tan(180 ) tan

cot(180 ) cot

               

Bảng giá trị lượng giác

số góc đặc biệt (SGK trang 37)

Góc ( , )a b AOB

 

Với OA a OB b                ,  

 ( , ) 0a b

 

a  b

( , ) 90a b   0 ab ( , ) 180a b   0 a  b

 Tích vơ hướng

1 2

.cos( , )

a b a b a b

a b a b a b

 

       

a b   0 ab

(Với a b , 0) (a nhọn, )

a bb

   

(a tù, )

a bb

   

2

2

(a b  ) a 2 a b b   2

(a b a b  ).(  )a  b

2 2 a  aa

1 2 2 2 2

cos( , )

a b a b a b

a a b b

 

 

 

2

( B A) ( B A)

ABxxyy

(30)

độ dài vectơ ?

Yêu cầu: Nêu công thức

tính góc vectơ

IV Củng cố, dặn dò:

Sữa câu hỏi trắc nghiệm trang 28, 29 SGK Ôn tập lý thuyết làm tập lại

Xem lại bải tập làm

Tuần 19, Tiết PP: 22 KIỂM TRA HỌC KÌ I

-& -Tuần 19, Tiết PP: 23 TRAÛ BÀI KIỂM TRA HỌC KÌ I

Tuần 20 + 21 + 22

Tiết PP : 24 + 25 + 26 §3 CÁC HỆ THỨC LƯỢNG TRONG TAM GIÁC VÀ GIẢI TAM GIÁC

I Mục tiêu:

+ Kiến thức bản: Định lí cơsin, cơng thức tính độ dài đường trung tuyến

+ Kỹ năng, kỹ xảo: Vận dụng thành thạo định lí cơsin để tính cạnh, góc tam giác tốn cụ thể Vận dụng tốt cơng thức tính độ dài đường trung tuyến

+ Thái độ nhận thức: Nắm vững kiến thức cũ, chuẩn bị trước, nghiêm túc, tích cực hoạt động,…

II.Chuẩn bị:

+ Giáo viên : soạn giáo án , chuẩn bị tập cho học sinh thực hiện + Học sinh: xem trước hệ thức lượng tam giác giải tam giác III.Nội dung tiến trình lên lớp:

TG Hoạt động thầy Hoạt động trò Nội dung ghi bảng

05’ + Ổn định lớp

+ Giới thiệu nội dung

+ Ồn định trật tự

+ Chú ý theo dõi LƯỢNG TRONG TAM§3 CÁC HỆ THỨC GIÁC VÀ GIẢI TAM

GIÁC 10’ GV:

c h b

H

c' b'

a A

B C

GV: Hãy nhắc lại định lí pitago?

HS: Thực H1 (cá

nhân)

Điền vào ô trống:

2

2 2 2 '

2

1 1

a b

b a

c a

h b

ah b

b c

     

 

 

 

sin cos

tan cot

B C

a

B C

c

 

(31)

GV: Nếu A khơng vng, khi cạnh a ntn ?

HS: a2 b2c2 30’ GV:

a

c b

A

B C

GVHD: a BC  AC AB  (1)

GV: AB AC ?

 

GV: Bình phương hai vế (1), ta ntn ?

GV:

BC= AC2AB2 2AC AB .cos A

GV: Hãy phát biểu định lí cơsin lời

GV: Khi ABC tam giác vng, định lí cơsin trở thành định lí quen thuộc ?

GV: Từ định lí trên, tính cosA=? GV: a c b A B C m m m a b c

GV: Hướng dẫn chứng minh định lí

(Có thể sử dụng cơng cụ vectơ để chứng minh)

HS: Chú ý xem thêm sgk

HS: AB ACAB AC .cosA

 

HS:

 2

2

2

2 2

2

2 cos

a a BC AC AB

AC AB AB AC

b c bc A

                                                      

HS: Phát biểu theo nhận biết

HS: Khi ABC tam giác vng, định lí cơsin trở thành định lí Pitago, vì:

Giả sử A vng, tức là  900

A cosA = 0

 a2 = b2 + c2

HS:

2 2

cos

2

b c a

A

bc   

HS: Chú ý xem thêm sgk

HS: Thực H4 theo

nhóm

1. Định lí Cơsin: a) Bài tốn: Trong ΔABC cho biết hai cạnh AB, AC góc A, tính cạnh BC

b) Định lí cơsin:

Trong tam giác ABC với BC = a, CA = b, AB = c ta có:

a2 = b2 + c2 – 2bccosA.

b2 = a2 + c2 – 2accosB.

c2 = a2 + b2 – 2abcosC.

Hệ quả:

2 2

2 2

2 2

cos cos cos

b c a

A

bc

a c b

B

ac

b a c

C ba         

c Áp dụng:

Cho ABC với cạnh

tương ứng a, b, c Gọi ma,

mb, mc độ dài

đường trung tuyến kẻ từ A, B, C

Định lí: Trong tam giác ABC, ta có:

ma2=b

+c2

2

a2 mb2=a

2

+c2

2

(32)

GV: Hướng dẫn sử dụng cơng thức tính cách sử dụng MTBT

HS: Lên bảng giải

Kq: a  11,36 cm

B37 48'0

C 22 12'.0

HS: Tự xem vd2 (sgk – trang 50)

mc2=a

+b2

2

c2

4 d) Ví dụ:

Cho ΔABC có A1200,

cạnh b = 8cm, c = 5cm Tính cạnh a, góc  B C, tam giác

30’ GV:

a R

c b

B C

A

GV: Hướng dẫn chứng minh định lí

GV: Yêu cầu hs thực H6

a R

C A

B

HS: Thực H5 theo

nhóm

0

2

2 sin sin 90

sin

sin

sin

sin

a R

R A

b b

B a R

a B

c c

C a R

a C

 

   

   

Vậy

2

sin sin sin

a b c

R

ABC

HS: Chú ý xem thêm sgk

HS: Thực H6

0

2

sin 2sin

2sin 60

a a

R R

A A

a a

R

  

  

HS: Thực ví dụ

Kq: A400

R = 107 cm b = 212,31 cm c = 179,4 cm

2. Định lí Sin: a) Định lí sin:

Trong tam giác ABC, với R bán kính đường trịn ngoại tiếp, ta có:

a

sinA =

b

sinB=

c

sinC=2R

b) Ví dụ:

Cho ΔABC có a = 137,5 cm, B83 ,0 C 570 Tính A

, b,c,R

30’ GV: Dựa vào cơng thức (1) định lí sin, chứng minh SABC=abc

4R

GV: Chứng minh công thức S = pr

HS: Chứng minh (cá nhân)

SABC=1

2ab sinC

=

1

2

c abc

ab

RR HS:

ABC ABO OBC AOC

SSSS

3. Cơng thức tính diện tích tam giác:

Diện tích ABC tính

theo cơng thức sau: 1) SABC=1

2aha=

1

2bhb

¿1

2chc

2) SABC=1

2ab sinC

(1)

¿1

2bc sinA=

1

(33)

r r

r

b c

a

C B

A

O

GV: Gọi hs lên bảng giải

1 1

2 2

2

rc ra rb

a b c r pr

  

 

 

HS: Lên bảng giải

Kq: S = 84 m2

R = 8,125 m r = m

3) SABC=abc

4R (2) 4) SABC=pr , (3)

(trong p = a+b+2 c nửa chu vi ABC.)

5) Công thức Hê – rông : SABC=√p(p − a)(p − b)(p − c) Ví dụ:

Tam giác ABC có a = 13 m, b = 14 m, c = 15 m Tính S, R, r

25’ GV: Đưa ví dụ

Ví dụ 1: Cho ΔABC có a=17,4 m, B44 30'0 và C 640 Tính A , b, c

Ví dụ 2: Cho ΔABC có a=49,4cm,

b = 26,4 cm C 47 20'0 Tính

c,

A, B .

Ví dụ 3: Cho ΔABC có a = 24cm, b = 13 cm, c = 15 cm Tính A, B , C .

GV:

GVHD:

h = CD=ADsin

HS: Lên bảng giải

Kq: A=71030’

b  12,9 m

c  16,5 m

HS: Lên bảng giải

Kq: c  37 cm

A  1010

B  31040’.

HS: Lên bảng giải

Kq: A  117049’

B  28037’

C  33034’.

HS: Dựa vào hướng dẫn gv để tự trình bày lại giải

4.Giải tam giác ứng dụng vào việc đo đạc: a) Giải tam giác:

Giải tam giác tìm số yếu tố tam giác cho biết yếu tố khác

b) Ứng dụng vào việc đo đạc:

Bài toán 1: (sgk)

Đo chiều cao tháp mà đến đươc chân tháp

D

h

0

48

 63

 

24m B

(34)

sin sin

AD AB

ADB  

hay 

sin sin

AB AD

ADB  

ADB 150

 

  

GV: Tính AC ntn ?

HS: Sử dụng định lí sin tam giác ABC sin sin

AC AB

BC (*) Ta có sinC = sin(1800

-(+))

= sin(+)

(*) AC  41,47 m

Bài tốn 2: (sgk)

Tính khoảng cách từ địa điểm bờ sông đến gốc cù lao sông

IV Củng cố, dặn dò:

+ Củng cố kiến thức: (3’) Các cơng thức tính:

a2 = b2 + c2 – 2bccosA.; b2 = a2 + c2 – 2accosB; c2 = a2 + b2 – 2abcosC.

2

2 2

2 2

cos

2 cos

2 cos

2

b c a

A

bc

a c b

B

ac

b a c

C

ba   

  

  

;

ma

=b

2

+c2

2

a2

; mb

2

=a

2

+c2

2

b2

; mc

2

=a

2

+b2

2

c2

 Định lí sin sinaA = b

sinB=

c

sinC=2R

 Các cơng thức tính diện tích tam giác:

1) SABC=

1

2aha=

1

2bhb ¿

1

2chc

2) SABC=1

2ab sinC ¿

1

2bc sinA=

1

2ac sinB

3) SABC=abc

4R

4) SABC=pr , (trong p = a+b+c

2 nửa chu vi ABC.) 5) Công thức Hê – rông :

SABC=√p(p − a)(p − b)(p − c)

+ Học sinh thực tập sách giáo khoa trang 59

 

40 C

B A

(35)

Tuần 23

Tiết PP: 27 CÂU HỎI VÀ BÀI TẬP I I Mục tiêu:

+ Kiến thức bản: Định lí sin, cơsin, cơng thức tính độ dài đường trung tuyến, cơng thức tính diện tích tam giác

+ Kỹ năng, kỹ xảo: Vận dụng linh hoạt kiến thức học vào việc giải tập Kỹ giải tam giác thực hành đo đạc thực tế

+ Thái độ nhận thức: Chuẩn bị trước, tích cực hoạt động, chăm chỉ, cẩn thận,… II.Chuẩn bị:

+ Giáo viên : soạn giáo án , chuẩn bị tập cho học sinh thực hiện + Học sinh: nắm vững lý thuyết, chuẩn bị tập sách giáo khoa III.Nội dung tiến trình lên lớp:

TG Hoạt động thầy Hoạt động trò Nội dung ghi bảng

05’ + Ổn định lớp

+ Giới thiệu nội dung

+ Ồn định trật tự + Chú ý theo dõi

CÂU HỎI VÀ BÀI TẬP. 7’ GV: Gọi hs lên bảng giải. HS: Lên bảng giải

Kq: C = 320

b  61,06 cm

c  38,15 cm

ha 32,36 cm

1.Cho ΔABC vuông A,  580

B, a=72m Tính C, b, c, ha.

8’ GV: Gọi hs lên bảng giải (Nhắc nhở: tam giác có nhiều góc tù, (tức cos âm) nên sử dụng định lí cơsin để tính góc)

HS: Lên bảng giải

Kq: A360

B106 28'0

C  37032’

2 Cho ΔABC có a = 52,1 cm, b = 85 cm, c = 54 cm Tính   A B C, ,

7’ GV: Giả sử a = 7, b = 9, c = 12 Khi sử dụng cơng thức

HS: Sử dụng cơng thức Hê-rơng

(36)

nào để tính S nhanh ? Kq: S  31,3 (đvdt) lần lượt 7, 12.

8’ GVHD: Tính góc lớn tam giác

(góc lớn ứng với cạnh đối có độ dài lớn nhất)

HS: Lên bảng giải a) Kq: C 91 47 '0

Vậy ΔABC có góc tù (góc C)

b) kq: MA  10,89 cm

6 Tam giác ABC có cạnh a=8 cm, b = 10 cm, c = 13 cm.

a) Tam giác có góc tù khơng ?

b) Tính độ dài trung tuyến MA tam giác ABC đó. 10’ GV:

a

b n

m O

C

A B

D

GVHD: Có thể sử dụng định lí cơsin cơng thức tính độ dài đường trung tuyến cơng cụ vectơ để chứng minh

HS: Lên bảng chứng minh

Sử dụng định lí cơsin ΔADB ΔABC ta có:

m2 = a2 + b2 – 2cosDAB

(1)

n2 = a2 + b2 – 2cosABC

(2)

Mà cosDAB = cos(1800

- ABC)

= -cosABC Nên (1) + (2) theo vế ta được:

m2 + n2 = 2(a2 + b2)

(đpcm

9 Cho hình bình hành ABCD có AB = a, BC = b, BD = m AC = n

Chứng minh rằng: m2 + n2 = 2(a2 + b2)

IV Củng cố, dặn dị:

+ Nhắc lại cơng thức học (dùng bảng phụ) a2 = b2 + c2 – 2bccosA.; m

a

=b

2+c2

2

a2

4 ; mb

2

=a

2+c2

2

b2

4 ; mc

2

=a

2+b2

2

c2

4 b2 = a2 + c2 – 2accosB.

c2 = a2 + b2 – 2abcosC

sinaA = b

sinB=

c

sinC=2R

1) SABC=1

2aha=

1

2bhb ¿

1

2chc

2) SABC=1

2ab sinC ¿

1

2bc sinA=

1

2ac sinB

3) SABC=abc

4R

4) SABC=pr , (trong p = a+b+c

2 nửa chu vi ABC.) 5) Công thức Hê – rông : SABC=√p(p − a)(p − b)(p − c)

(37)

Tuần 24 + 25

Tiết PP: 28 + 29 ÔN TẬP CHƯƠNG II. I I Mục tiêu:

+ Kiến thức bản: Định nghĩa GTLG góc  với 00   1800 GTLG góc đặc biệt, góc hai vectơ Tích vơ hướng hai vectơ Các hệ thức lượng tam giác

+ Kỹ năng, kỹ xảo: Biết tính GTLG góc bất kì, biết xđ góc hai vectơ Biết dùng biểu thức toạ độ để tính tích vơ hướng hai vectơ, tính độ dài vectơ, tính khoảng cách hai điểm Biết sử dụng định lí sin, cơsin để tính cạnh tính góc tam giác, biết tính độ dài đường trung tuyến tam giác theo ba cạnh tam giác Vận dụng tốt cơng thức tính diện tích tam giác,…

+ Thái độ nhận thức: Chuẩn bị trước, nghiêm túc, chủ động, tích cực, tính tốn cẩn thận,…

II.Chuẩn bị:

+ Giáo viên : soạn giáo án , chuẩn bị tập cho học sinh thực hiện + Học sinh: nắm vững lý thuyết, chuẩn bị tập sách giáo khoa III.Nội dung tiến trình lên lớp:

T G

Hoạt động thầy Hoạt động trò Nội dung ghi bảng 05

+ Ổn định lớp

+ Giới thiệu nội dung

+ Ồn định trật tự + Chú ý theo dõi

ÔN TẬP CHƯƠNG II. 05

GV: Gọi hs lên bảng giải HS: Lên bảng giải

a b  = -6 + = 4 4 Trong mp Oxy cho

( 3;1)

a  b(2; 2), tính a b . 10

GVHD: Ta có:

a2 = b2 + c2 – 2bc.cosA

HS: cosA > Khi đó:

(38)

GV: a)A nhọn  cosA ntn ? b) A tù  cosA ntn ?

c) A vuông  cosA ntn ?

a2 < b2 + c2

HS: cosA < Khi đó:

a2 > b2 + c2

HS: cosA = Khi đó:

a2 = b2 + c2

a) A nhọn a2 < b2 + c2

b) A a2 > b2 + c2

c) A vuông a2 = b2 + c2

10

GV: Gọi hs lên bảng giải. HS: Lên bảng giải

Kq: S = 96, = 16,

R = 10, r = 4, ma

 17,09

10.Cho ΔABC có a = 12, b = 16, c = 20 Tính S, ha, R, r, ma.

15

GVHD: Dùng cơng thức tính diện tích có a, b khơng đổi

1 sin

Sab C

GV: S lớn ?

HS: S lớn sinC = hay C 900

11 Trong tập hợp tam giác có hai cạnh a b, tìm tam giác có diện tích lớn nhất.

20

GVHD: Sử dụng công thức Hê-rơng để tính SGFC sử

dụng tỉ lệ tam giác đồng dạng

GVHD: Sử dụng công thức Hê-rông

( )( )( )

1

( )

2

S p p GF p FC p CG

p GF FC CG

   

  

1

, , 15

3

GFBF CGCE FC ↓

2

BF AB AF

BF CE

 

GVHD: Sử dụng tỉ lệ tam giác đồng dạng

Ta có: ΔCGFvà ΔCEA đồng dạng Khi đó:

2

GH CG

EACE

2

GH EA

 

SGFC=

2

1

75

2GH FC 2 3EA 2ACcm

H G

F E

B

A C

HS: Thực việc tính diện tích tam giác

12 Cho tam giác ABC vng cân A có AB=AC=30cm. Hai đường trung tuyến BF và CE cắt G Tính diện tích tam giác GFC

10

GV:

A

HS: Sử dụng định lí

sin để tính 14 Cho góc

 300

xOy Gọi A

B hai điểm di động

300

B

(39)

O sin sin 2sin

OB AB

OB A

A

xOy    

OB có độ dài lớn

trên Ox Oy cho AB = Tính độ dài lớn đoạn OB.

10

GVHD: Tính độ dài ba cạnh AB, BC, AC

HS:

(2;2)

(2; 2)

(0; 4)

AB AB

AC AC

BC BC

  

   

   



 

2.2 2( 2)

AB AC

AB AC

   

 

   

Vậy ΔABC vuông cân A

25 Tam giác ABC có A(-1;1), B(1;3), C(1;-1) Trong cách phát biểu sau đây, chọn cách phát biểu đúng.

(A) ΔABC có ba cạnh nhau;

(B)ΔABC có ba góc nhọn; (C) ΔABC cân B;

(D) ΔABC vuông cân A. 10

GV:

R r

D E

A

O

B C

O'

HS: Lên bảng tính ODAE hình vng có O’A=r R = OA =

AO’+O’O = r 2 + r = r ( 2 + 1)

R

r  

27 ΔABC vuông cân A và nội tiếp đường tròn tâm O bán kính R Gọi r bán kính đtr nội tiếp ΔABC Khi đó tỉ số ?

R r

IV Củng cố, dặn dò:

+ Củng cố kiến thức: (2’) Các công thức hệ thức lượng tam giác. Tính vơ hướng hai vectơ

+ BTVN: Các câu trắc nghiệm lại sgk trang 63 – 64 – 65 – 66 – 67 (nếu chưa sửa)

Ngày soạn: 5/1/2013

300

(40)

Tiết PP: 27 CHƯƠNG PHƯƠNG PHÁP TOẠ ĐỘ TRONG MẶT PHẲNG

§1 PHƯƠNG TRÌNH TỔNG QT ĐƯỜNG THẲNG. I.Mục tiêu:

+ Kiến thức: vectơ pháp tuyến đường thẳng, phương trình tổng quát đường thẳng, vị trí tương đơi hai đường thẳng

+ Kỹ năng: Lập ptr đường thẳng biết yếu tố đủ để xđ đường thẳng + Thái độ nhận thức: Nghiêm túc, nắm vững cách vẽ đường thẳng, ý giảng,…

II Chuẩn bị:

+ Giáo viên : soạn giáo án , chuẩn bị giáo án hoạt động cho học sinh thực hiện. + Học sinh: nắm vững lý thuyết, chuẩn bị trước lý thuyết sách giáo khoa

III Phương pháp:Gợi mở - vấn đáp. IV Tiến trình lên lớp

1.Ổn định nề nếp: 2 Bài cũ:

3 Bài mới

Hoạt động thầy Hoạt động trò Nội dung ghi bảng + Ổn định lớp

+ Giới thiệu nội dung

+ Ồn định trật tự

+ Chú ý theo dõi §1 PHƯƠNG TRÌNH TỔNGQUÁT ĐƯỜNG THẲNG GV: Yêu cầu hs thực

hiện H1

GV: Một đt có bao nhiêu vectơ pháp tuyến ?

GV: Một đt hoàn toàn xđ ?

HS: Thực H1

Đường ox có vectơ pháp tuyến j0;1

Đường oy có vectơ pháp tuyến i1;0

HS: Một đt có vơ số vectơ pháp tuyến

HS: Một đt hoàn toàn xđ biết điểm vectơ pháp tuyến

1.Vectơ pháp tuyến đường thẳng:

Định nghĩa:

Vectơ n đgl vectơ phương đt Δ n0 giá n vng góc với Δ

Chú ý:

+ Một đt có vơ số vectơ pháp tuyến + Một đt hoàn toàn xđ biết 1 điểm vectơ pháp tuyến đt

+ n A B ;  

u B A ;  

hai vectơ vng góc

GV: Trong mp toạ độ Oxy cho đt Δ qua điểm M0(x0;y0) có

vtpt n( ; )A B  M(x;y) ta có M M0 ?



GVHD: M  Δ  M M n0 ,

 

vng góc

M M n0 0

 

GV: Lập ptr tổng quát

HS: M M0 (x x y y 0;  0)

HS: Đường thẳng d có ptr

2.Phương trình tổng qt của đường thẳng :

a Định nghĩa :

Phương trình ax + by + c = với a, b không đồng thời 0, đgl ptr tổng quát đường thẳng

Nhận xét:

Δ: ax + by + c = có vtpt

( ; )

(41)

của đt d qua điểm M(2;1) có vectơ pháp tuyến n(3; 4)

3(x-2) +4(y – 1) =

HS: Chú ý xem thêm sgk

HS: Thực H3 (cá

nhân)

HS: Đt d có vtcp là

( 6; 4)

AB 



HS: Đt d qua A(2; 1) và có vtcp AB ( 6; 4)

có ptr tham số là:

2

x t

y t

   

  

Hệ số góc d k =

4

6

b Liên hệ vectơ phương và hệ số góc đường thẳng: Nếu đường thẳng Δ có vectơ pháp tuyến

Ví dụ:

Viết phương trình tham số đt d qua hai điểm A(2; 1), B(-4; 5) Tính hệ số d

GV: Yêu cầu hs thực H4 (cá nhân)

GV: un Khi n đgl vectơ pháp tuyến đường thẳng Δ GV: Khi vectơ đt ntn?

GV: Một đt hoàn toàn xđ biết điều ?

HS: Δ có vtcp u(2;3) Khi u n  2.3 3.( 2) 0  

u n

 

HS: Trả lời theo nhận biết.

HS: Một đt hoàn toàn xđ biết điểm vtpt

1. Vectơ pháp tuyến đường thẳng :

Định nghĩa:

Vectơ n đgl vectơ pháp tuyến đường thẳng Δ n0 n vuông góc với vtcp Δ

Nhận xét:

+ Một đường thẳng có vơ số vectơ pháp tuyến

+ Một đt hoàn toàn xđ biết điểm vtpt

GVHD: M0(x0;y0)Δ,

Δ có vtpt n( ; )a b

M(x;y)

GV: MΔ Khi

0 ,

M M n                            

? GV: M M0 ?

GV: (*)

HS: M M0 n

 

0

n M M

    (*)

HS: M M0 (x x y y 0;  0)

HS: pttq đt Δ là: 3(x-2) + 5(y+3) =

3x + 5y +9 =

HS: Thực H5

(42)

 a(x-x0) + b(y-y0) =

 ax + by + (-ax0 -

by0) =

 ax + by + c = : đgl

ptr tổng quát đt Δ (với c=-ax0 - by0)

GV: Viết pttq đt Δ qua điểm M(2;-3) có vtpt n(3;5)

GV: Đường thẳng Δ qua hai điểm ta ?

GV: Khi đường thẳng Δ có ptr tổng quát ? GVHD: Các trường hợp a=0, b=0, c=0 * Trường hợp a,b,c 

(1)  ax + by = -c

0

1

1

ax by

c c

x y

c c

a b

x y

a b

  

 

  

 

  

với ,

c c

a b

a b

 

y

N

O M x

HS: Đường thẳng Δ có vtcp u(1;9) Khi Δ có vtpt n ( 9;1)

HS: Phương trình tổng quát đường thẳng Δ là: -9(x – 2) + 1(y + 4) =

 -9x + y + 22 =

HS: Xem sgk. HS: Chú ý.

HS: Thực H7 theo

nhóm

a Định nghĩa :

Phương trình ax + by + c = với a, b không đồng thời 0, đgl ptr tổng quát đường thẳng

Nhận xét:

Δ: ax + by + c = có vtpt

( ; )

na b

vtcp u ( ; )b a .

b Ví dụ :

Lập ptr tổng quát đt Δ qua hai điểm A(2;-4) B(3;5)

c Các trường hợp đặc biệt : Δ: ax + by + c = (1)

+ a = + b = + c =

+ a,b,c  0: (1) đưa dạng:

0

1

x y

ab  (2) với ,

c c

a b

a b

 

Ptr (2) đgl ptr đường thẳng theo đoạn chắn, đt cắt Ox, Oy lần lượt M(a0;0) N(0;b0)

GV: Trong mp, có mấy trường hợp xảy cho hai đt ? Kể

HS: Có trường hợp: cắt nhau, song song trùng

3.Vị trí tương đối hai đường thẳng :

Δ1: a1x + b1y + c1 =

(43)

GV: Hướng dẫn ví dụ (sgk) và: + 1 2 a b

ab  Δ

1 cắt Δ2

+

1 1

1 2 2

a b c

abc    +

1 1

1 2 2

a b c

abc   

HS: Thực H8 (theo

nhóm) +  d1 + Δ cắt d2

+  d3

Toạ độ giao điểm Δ1 Δ2

nghiệm hệ ptr: 1

2 2

0

a x b y c a x b y c

  

 

  

 (I)

+ (I) có nghiệm (x0; y0) Δ1 cắt

Δ2 điểm M0(x0; y0)

+ (I) có vsn  1 + (I) vơ nghiệm 12 GV: u cầu hs thực

hiện H9 I

D

B C

A

GV: AC BD cắt tạo thành góc

 600

DIC đgl góc hai đường AC BD

GV: Đặt   1; 2 Khi  n n1; 2

                           

như ?

GV:    1 n n1,                             ?

GV: Δ1: y = k1x + m1

Δ2: y = k2x + m2

1 k k1     

HS: BD = AC = 2

 ID=IC=IA=IB=  ΔIDC

DIC 600

 AID1200.

HS:  n n1; 2  

bù với

HS:

1 2

1 2

n n

a a b b     

  

 

HS: Chứng minh k k1     

4. Góc hai đường thẳng : Cho hai đường thẳng:

Δ1: a1x + b1y + c1 = 0, n1( ; )a b1 

Δ2: a2x + b2y + c2 = 0, n2 ( ; )a b2



Hai đường thẳng Δ1 Δ2 cắt

tạo thành góc

+ Δ1 khơng vng góc với Δ2 góc

nhọn số góc đgl góc hai đt Δ1 Δ2 Kí hiệu:

 1; 2

hay (Δ1;Δ2)

+  

0 1; 90       

+ 12,  1

 

1;

  

 2

1

cos cos ;

n n n n n n                                   

1 2 2 2 1 2

cos

a a b b

a b a b

  

 

5.Cơng thức tính khoảng cách từ

một điểm đến đường thẳng: Δ: ax + by + c =

M0(x0;y0)

  n 2

(44)

H M

GV: Độ dài M0H

đgl khoảng cách từ M0

đến đường thẳng Δ GV: Hướng dẫn chứng minh

HS: Chú ý xem thêm sgk

HS: Thực H10 (cá

nhân) lên bảng giải

Khoảng cách từ M0 đến đường thẳng

Δ, kí hiệu: d(M0,Δ)

0

0 2 2

( , ) ax by c

d M

a b

 

 

V Củng cố, dặn dò: + Củng cố kiến thức:

Vectơ phương đường thẳng

Cách viết phương trình tham số đường thẳng

Vectơ pháp tuyến vectơ phương đường thẳng Cách viết ptr tổng quát đường thẳng

Nhắc lại cách xét vị trí tương đối hai đường thẳng Cơng thức tính góc hai đường thẳng

Cơng thức tính khoảng cách từ điểm đến đường thẳng

+ BTVN: tất tập sach giáo khoa từ đến trang 80 – 81

(45)

Tuần 30 + 31

Tiết PP: 34 + 35 CÂU HỎI VÀ BÀI TẬP. I Mục tiêu:

+ Kiến thức bản: Viết ptr tham số ptr tổng quát đường thẳng Xét vị trí tương đối hai đường thẳng

Tính góc hai đường thẳng

Tính khoảng cách từ điểm đến đường thẳng + Kỹ năng, kỹ xảo: Vận dụng thành thạo kiến thức học để giải tập

+ Thái độ nhận thức: Chuẩn bị trước, tích cực, cẩn thận, xác, tư linh hoạt,… II.Chuẩn bị:

+ Giáo viên : soạn giáo án , chuẩn bị tập cho học sinh thực hiện + Học sinh: nắm vững lý thuyết, chuẩn bị tập sách giáo khoa III.Nội dung tiến trình lên lớp:

T G

Hoạt động thầy Hoạt động trò Nội dung ghi bảng 05

+ Ổn định lớp

+ Giới thiệu nội dung

+ Ồn định trật tự + Chú ý theo dõi

CÂU HỎI VÀ BÀI TẬP. 10

+ Gọi hai học snh lên bảng trình bày

HS1: đt d có vtcp là

(1; 5)

u  Khi ptr tham số đt d là:

2

x t

y t

  

   

HS2: ptr tổng quát đt Δ :

y + = -3(x + 5)  3x + y +23 =

Bài 1: Lập ptr tham số đt d đi qua điểm M(-2;3) có vtpt n(5;1)

Bài 2: Lập ptr tổng quát đt Δ qua M(-5;-8) có hệ số góc k = -3.

15

GV: Hướng dẫn. HS: Lên bảng giải a) Đt BC có vtcp

(3;3)

BC



 BC có vtpt

(3; 3)

n  Khi đt BC có ptr tổng quát

3 Cho ΔABC, có A(1;4), B(3;-1), C(6;2).

a) Lập ptr tổng quát đt BC.

(46)

M H

B C

A 3(x – 3) – 3(y + 1) =

0

 x – y – =

b) + Đường cao AH có vtpt BC(3;3)

Khi đường cao AH có ptr tổng quát là:

3(x – 1) + 3(y – 4) =

 x + y – =

+ M trung điểm AC nên M(

7 2;3).

Đường trung tuyến AM có vtcp

5 ;

AM   

 

AM có vtpt

5 1;

2

n    

Khi đường trung tuyến AM có ptr tổng quát là:

x – +

5

2(y – 4) =

0

 2x + 5y – 22 =

10

GVHD: Có hai cách làm

+ Viết pttq đt qua hai điểm (tương tự 3)

+ Viết ptr đt theo đoạn chắn

HS: Lên bảng giải Đt qua điểm M(4;0) N(0;-1) có ptr tổng quát là:

1

x y

 

1

4

x y

x y

   

   

4 Viết ptrình tổng quát đt đi qua điểm M(4;0) N(0;-1).

10

GV: Hướng dẫn cách làm câu b câu c Gọi hs lên bảng giải

HS: Lên bảng giải a) d1 d2 cắt

b) d1  d2

c) d1 d2

5 Xét vị trí tương đối cặp đt d1 d2 sau đây:

a) d1: 4x – 10y + =

d2: x + y + = 0.

b) d1: 12x – 6y + 10 = và

d2:

5

x t

y t

   

  

c) d1: 8x + 10y – 12 = 0

d2:

6

x t

y t

  

(47)

10

GV: Hướng dẫn

d

A(0;1)

M(2+2t;3+t)

HS: Lên bảng giải AMAM 5

2

2

2

(2 ) (2 )

(2 ) (2 ) 25

5 12 17

1 17

5

t t

t t

t t

t t

    

    

   

   

  

Vậy có hai điểm M1(4;4)

và M2

24

;

5

 

 

 

 

6 Cho đt d:

2

x t

y t

   

  

Tìm điểm M thuộc d cách điểm A(0;1) khoảng 5

10

GV: Gọi hs lên bảng tính

HS: Lên bảng giải d1 có vtpt n1(4; 2)

d2 có vtpt n2 (1; 3)



1 2

0

2 cos( , ) cos( , )

2 ( , ) 45

d d n n

d d

 

 

 

7 Tìm số đo góc hai đường thẳng d1 d2

có phương trình d1: 4x – 2y + = 0

d2: x – 3y + = 0.

15

+ Gọi học sinh lên bảng trình bày

HS: Lên bảng giải a)

28 ( ; )

5

d A   b) d B d( ; ) 3 c) d C m( ; ) 0 .

8 Tìm khoảng cách từ điểm đến đường thẳng các trường hợp sau:

a) A(3;5), Δ: 4x + 3y + = 0 b) B(1;-2), d: 3x – 4y – 26 = 0 c) C(1;2), m: 3x + 4y – 11 =

IV Củng cố, dặn dò:

+ Củng cố kiến thức: Cách viết loại phương trình đường thẳng

Cách xét vị trí tương đối hai đường thẳng (lập tỷ lệ)

(48)

Tuần 32, Tiết PP: 36 KIỂM TRA TIẾT Tuần 33

Tiết PP: 37 §2.PHƯƠNG TRÌNH ĐƯỜNG TRỊN I Mục tiêu:

+ Về kiến thức: Cần nắm:

-Phương trình đường trịn biết tâm bán kính.

-Nhận dạng phương trình đường trịn tìm tâm bán kính -Lập phương trình đường trịn biết tâm tiếp điểm.

+ Về kỹ năng: Vận dụng kiến thức vừa học vào việc giải tốn có liên quan. + Về tư duy: Hiểu vận xác kiến thức học.

+ Về thái độ: Cẩn thận xác làm toán II.Chuẩn bị:

+ Giáo viên : soạn giáo án , chuẩn bị hoạt động sách giáo khoa. + Học sinh: chuẩn bi trước phương trình đường trịn

III.Nội dung tiến trình lên lớp: T

G

Hoạt động thầy Hoạt động trò Nội dung ghi bảng 05

+ Ổn định lớp

+ Giới thiệu nội dung

+ Ồn định trật tự

+ Chú ý theo dõi §2.PHƯƠNG TRÌNHĐƯỜNG TRỊN 15

- Giới thiệu nhanh cho hs phương trình đường trịn có tâm I a b v( ; ) BK R

x a 2y b 2 R2 Chú ý cho HS phương trình đường trịn có tâm nằm góc tọa độ O có dạng:

2 2 xyR

- Hs tiếp cận phương trình đường trịn có tâm

( ; ) BK R

I a b v kiến thức biết năm lớp 9:

x a2  y b2 R2

   

1 PT trình đường trịn có tâm bán kính cho trước: phương trình đường trịn có tâm I a b v( ; ) BK R

x a2 y b2 R2

(49)

-Điều khiển hoạt động - Chốt lại cách lập phương trình đường trịn cho HS

-HS hoạt động 1:

-Rút kinh nghiệm viết phương trình đường trịn

Cần xác định tọa độ tâm bán kính

10

Giới thiệu nhanh cho hs dạng triễn khai phương trình đường trịn có tâm I a b v( ; ) BK R Với c a b2 R2 - Chú ý cho

-Điều khiển hoạt động - Chốt lại cách giải cho HS

- Hs tiếp cận dạng triễn khai phương trình đường tròn:

2 2 2 0

xyaxby c  (1) Với c a 2b2 R2

2

R a b c

   

-HS hoạt động 2:

-Rút kinh nghiệm giải loại toán

2 Nhận xét:

dạng triễn khai phương trình đường trịn có tâm

( ; ) BK R

I a b v

2 2 2 0

xyaxby c  (1) Với c a 2b2 R2

- Chú ý :

với phương trình đường trịn dạng tồng quát cho trước ta triễn khai thành dạng (1)

2 2 xyR 15

- Giới thiệu nhanh cho HS Pt tiếp tuyến đường trịn có tâm I(a;b) tiếp điểm M(x0;y0):

- Điều khiển hoạt động - Chốt lại cách giải cho HS

- Cho VD: SGK

- Chốt lại cách viết Pt tiếp tuyến đường tròn

- Hs tiếp cận Pt tiếp tuyến đường trịn có tâm I(a;b) tiếp điểm M(x0;y0):

x a x x    0  y b y y    0 0 -Rút kinh nghiệm cách viết Pt tiếp tuyến thơng qua ví dụ SGK

3 Pt tiếp tuyến đường tròn:

Pt tiếp tuyến đường trịn có tâm I(a;b) tiếp điểm M(x0;y0):

x a x x    0  y b y y    0 0

Ví dụ: SGKtrang 83 IV Củng cố, dặn dị:

+ Củng cố: Y/c HS nhắc lại số kiến thức học

(50)

Tuần 34

Tiết PP: 38 CÂU HỎI VÀ BÀI TẬP. I Mục tiêu:

+ Về kiến thức: Cần nắm: -Định nghĩa đường tròn -Lập pt đường tròn

+ Về kỹ năng: Vận dụng kiến thức đường trịn vào việc giải tốn có liên quan

+ Về tư duy: Hiểu vận xác kiến thức học. + Về thái độ: Cẩn thận xác làm tốn

II.Chuẩn bị:

+ Giáo viên : soạn giáo án , chuẩn bị tập cho học sinh thực hiện + Học sinh: nắm vững lý thuyết, chuẩn bị tập sách giáo khoa III.Nội dung tiến trình lên lớp:

T G

Hoạt động thầy Hoạt động trò Nội dung ghi bảng 05

+ Ổn định lớp

+ Giới thiệu nội dung

+ Ồn định trật tự + Chú ý theo dõi

CÂU HỎI VÀ BÀI TẬP.

(51)

bảng trình bày

+ Gọi học sinh nhân xét củng cố

b)(x+1)2 + (y-2)2 =4/5

c) (x-4)2 + (y-3)2 =13

tròn ( C) tron trường hợp sau:

a) ( C) có tâm I(-2;3) và qua M(2;-3)

b) ( C) có tâm I(-2;3) và tiếp xúc với đường thẳng x – 2y + = 0

c) (C) có đường kính

AB với A(1;1) B(7;5) 10

+ Gọi hai học sinh lên bảng trình bày

+ Gọi hocạ sinh nhận xét củng cố

HS: Lên bảng giải 3.Thay tọa độ điểm vào phương trình đường trịn ta được:

2

10 29 1/

2 10

a b c a

a b c b

a b c

    

 

 

     

 

     

 

vậy (C): x2 + y2 - 4x -2y

-20=0

3 lập phương trình đường tron qua điểm:

a) A(1;2) B(5;2) C(1;-3)

b) M(-2;4) N(5;5) P(6;-2)

10

+ Gọi học sinh lên bảng trình bày

+ Gọi học sinh nhận xet cuỉng cố

5 Xét đường tròn dạng tổng quát:

Từ giả thiết ta có:

abR

+ Trường hợp 1: *a= b:

(C): (x-a)2 + (y-a)2 =a2

Tâm I(a;a) thuộc d: Nên suy a=4

Vậy: (x-4)2 + (y-4)2 =16

Tương tự cho trường hợp a=-b

(C): (x-4/3)2 + (y+4/3)2

=16/9

5 lập phương trình đường trịn tiếp xúc với hai trục toạ độ và có tâm đường thẳng 4x – 2y -8 = 0

10

GV: Hướng dẫn cách làm câu b câu c Gọi hs lên bảng giải

HS: Lên bảng giải a)Tâm I(2;-4) bán kính: R=5

b) Ta có: I(-1;0) thuộc (C)

PT trình tiếp tuyến A (-1-2) (x+1) +(0+4) (y-0)=0

 3x-4y+3=0

c) Tiếp tuyến T vuông góc với d nên có dạng: 4x+3y+c=0

6 Cho đường trịn (C) có phương trình

X2 + y2 - 4x + 8y -5 = 0

a Tìm toạ độ tâm bán kính (C)

b Viết phương trình tiếp tuyến với (C) qua điểm A( -1; 0)

(52)

Ta có T tiếp xúc với (C)  d(I, T)=R

4 25

29 21

c c c

  

    

vậy có hai tiếp tuyến cần tìm:

T1: 4x+3y+29=0 T2: 4x+3y-21=0 IV Củng cố, dặn dò:

+ Củng cố: Y/c HS nhắc lại số kiến thức học

+Dặn dị: Xem kỹ lại học, ví dụ, làm tập SGK trang 83, 84 + Chuẩn bị hôm sau sửa tập

Tuần 34

Tiết PP: 39 §3.PHƯƠNG TRÌNH ĐƯỜNG ELIP

I Mục tiêu:

- Về kiến thức: Hs nắm định nghĩa đường elip ,p.t tắc elip,hình dạng elip

- Về kỷ năng: + Lập p.t tắc elip biết yếu tố xác định elip + Xác định thành phần elip biết p.t tắc elip

+ Thơng qua p.t tắc elip để tìm hiểu tính chất hình học giải số tốn elip

II.Chuẩn bị:

+ Giáo viên : soạn giáo án , chuẩn bị hoạt động cho học sinh thực hiện + Học sinh: nắm vững kiến thức cũ, đọc trước phương trình elip III.Nội dung tiến trình lên lớp:

(53)

G 05

+ Ổn định lớp

+ Giới thiệu nội dung

+ Ồn định trật tự

+ Chú ý theo dõi ĐƯỜNG ELIP §3 PHƯƠNG TRÌNH 10

HĐ1:Giới thiệu đướng elip

Gv vẽ đường elip lên bảng giới thiệu đại lượng đường elip

Hs theo dõi ghi 1 Định nghĩa đường elip:

Cho hai điểm cố định F1 F2

một độ dài không đổi 2a lớn F1F2.Elip tập hợp điểm M

trong mặt phẳng cho :F1M+F2M=2a

Các điểm F1,F2 gọi tiêu điểm

của elip.Độ dài F1F2=2c gọi

tiêu cự elip M

*F1 *F2

15

HĐ2:Giới thiệu pt tắc elip

Gv giới thiệu pt tắc elip

Vẽ hình lên bảng giới thiệu trục lớn trục nhỏ ,tiêu cự ,đỉnh elip

Hs theo dõi ghi 2 Ph ương trình tắc elip : Cho elip (E) có tiêu điểm F1

(-c;0) F2(c;0); M(x;y)(E)

cho F1M+F2M=2a

Phương trình tắc (E) có dạng:

2 2

x y

ab  Với b2=a2-c2

B2

M1 M(x;y)

F1 F2

A1 A2

M3 B1 M2

A1;A2;B1;B2 gọi đỉnh (E)

A1A2 gọi trục lớn

B1B2 gọi trục nhỏ

15

HĐ3:Giới thiệu ví dụ Cho hs thảo luận nhóm tìm u cầu toán Gv sữa sai

Hỏi: elip trở thành đường tròn? Gv nhấn mạnh lại

Hs thảo luận nhóm trả lời

Tl: trục

Ví dụ: tìm tọa độ tiêu điểm,tọa độ đỉnh, độ dài trục (E)

2

1

25

x y

 

Giải Ta có :a=5;b=3;c=4

F1(-4;0),F2(4;0),A1(5;0),A2(5;0),

B1(0;-3),B2(0;3)

Trục lớn 10;trục nhỏ

(54)

IV Củng cố, dặn dò:

+ Củng cố: Y/c HS nhắc lại số kiến thức học

+Dặn dò: Xem kỹ lại học, ví dụ, làm tập SGK trang 88, 89 + Chuẩn bị hôm sau sửa tập

Tuần 35

Tiết PP: 40 CÂU HỎI VÀ BÀI TẬP I Mục tiêu:

- Về kiến thức: Hs nắm định nghĩa đường elip ,p.t tắc elip,hình dạng elip

(55)

+ Xác định thành phần elip biết p.t tắc elip

+ Thơng qua p.t tắc elip để tìm hiểu tính chất hình học giải số tốn elip

II.Chuẩn bị:

+ Giáo viên : soạn giáo án , chuẩn bị tập cho học sinh thực hiện

+ Học sinh: nắm vững kiến thức cũ, chuẩn bị tập phương trình đường elip III.Nội dung tiến trình lên lớp:

T G

Hoạt động thầy Hoạt động trò Nội dung ghi bảng 05

+ Ổn định lớp

+ Giới thiệu nội dung tập

+ Ồn định trật tự

+ Chú ý theo dõi CÂU HỎI VÀ BÀI TẬP

20

_ Cho biết a=? b=?

_ Tìm tọa độ tiêu điểm ta cần tìm ?

_ Tọa độ đỉnh ?

a=

2 ; b =

_ Độ dài trục lớn: A1A2= 2a =1

_ Độ dài trục nhỏ: B1B2 = 2b =

2 _ Tìm c =? c2= a2-b2 =

1 4 -

1 9 =

5 36  c =

5

_ Các tiêu ñieåm: F1

(-5

6 ; 0),F2( ;0) _ Các đỉnh:A1

(-1 2 ;0) A2(

1

2 ;0),B1(0;- 3) B2(0;

1 3)

Bài 1:[88] a) làm ví dụ a) 4x2+9y2 =1

2

1

4

x y

 

b) 4x2 + 9y2 = 36 

2

9

x y

 

làm tương tự

10

_ Để lập p.t tắc elip ta cần tìm ? Câu b) cho độ dài trục lớn ,tiêu cự ,cần tìm

P.t tắc elip:

2 2

x y

ab

_ Tìm a , b = ? _ cho a,c cần tìm b

Bài 2[88]:Lập p.t tắc cuûa elip:

a) Độ dài trục lớn:2a=8  a=4

(56)

gì ?

2 16

x y

 

10

Nhận xét : (E): 2

2

x y

ab

M,N  (E) tọa độ

của M,N thỏa mản p.t elip, giải p.t tìm a,b

Bài 3:[88]Lập p.t tắccủa elip:

a) (E) qua điểm M(0;3)và N(3;-

12 )

Kết quả:

2 25

x y

 

b) Kết quả:

2 1

x y

 

IV. Củng cố, dặn dò:

(57)

Tuần 35

Tiết PP: 41 CÂU HỎI VÀ BÀI TẬP CUỐI CHƯƠNG I Mục tiêu:

+ Về kiến thức: cố, khắc sâu kiến thức về: - Viết ptts, pttq đường thẳng

- Xét vị trí tương đối gĩa đường thẳng, tính góc đường thẳng - Viết ptrình đường HSn, tìm tâm bán kính đường HSn

- Viế ptrình elip, tìm độ dài trục, tọa độ tiêu điểm, đỉnh elip + Về kỹ năng:

- Rèn luyệ kỹ áp dụng ptrìng đường thẳng, dường HSn elip để giải số tốn hình học tìm giao điểm, tính khoảng cách, vị trí tương đối đường thẳng…

+ Về tư duy: Bước đầu hiểu việc Đại số hóa hình học

Hiểu ccách chuyển đổi từ hình học tổng hợp sang tọa độ + Về tái độ: cẩn thận , xác

II.Chuẩn bị:

+ Giáo viên : soạn giáo án , chuẩn bị tập cho học sinh thực hiện

+ Học sinh: nắm vững kiến thức cũ, chuẩn bị tập phương trình đường elip III.Nội dung tiến trình lên lớp:

T G

Hoạt động thầy Hoạt động trò Nội dung ghi bảng 05

+ Ổn định lớp

+ Giới thiệu nội dung tập

+ Ồn định trật tự

+ Chú ý theo dõi CÂU HỎI VÀ BÀI TAÄPCUỐI CHƯƠNG

20

Giáo viên gọi hs nêu lại cơng thức tìm trọng tâm G

Tọa độ

HS nêu lại cơng thức tìm trực tâm H

Giáo viên hướng dẫn cho HS tìm tâm I(x,y) từ Hệ phương trình : IA2=IB2

IA2=IC2

Hướng dẫn cho HS chứng minh vectơ phương.             IH IG  ,

Đường HSn ( ) đã có tâm bán kính ta áp dụng phương trình dạng nào?

2

3

1 10

3 3

A B C

G

A B C

G

x x x

x

y y y

y

   

  

   

  

Tọa độ trực tâm H (x,y) nghiệm phương trình

AH BH

BH AC

     

0

AH BC

BH AC

 

 

   

5( 2) 15( 1)

7 11( 5)

x y

x y

    

   

5 10 15 15

7 11 55

    

 

   

x y

x y

11

x y

 

Học sinh tự giải hệ phương trình Kết quả:

7

x y

 

Bài tập 1:

Cho điểm A(2,1), B(0,5), C(-5,-10)

a) Tìm tọa độ trọng tâm G, trực tâm H tâm I đường HSn ngoại tiếp tam giác ABC b) Chứng minh I, G, H thẳng

haøng

(58)

(18, 1) (6, 1)

IH IG

 

  

Nhận xét: IH 3IG Dạng (x-a)2 + (y-b)2 =R2  IA 81 4  85

Vaäy (c) (x+7)2 + (y+1)2

= 85

10

Đường HSn chưa có tâm bán kính Vậy ta viết dạng nào? Hãy tìm a, b, c

Nhắc lại tâm I(a,b) bán kính R=?

( ) có dạng:

x2+y2-2ax-2by+c =0

vì A, B, C  ( ) nên

9 25 10

4

36 12

a b c

a b c

a b c

    

    

    

6 10 34

4 13

12 40

a b c

a b c

a b c

    

        

25 19 68

, ,

6

abc

2

Rabc

2

25 19 68

6

         

   

625 361 816

36 36

 

170 85

36 18

 

Bài tập Cho điểm A(3,5), B(2,3), C(6,2)

a) Viết phương trình đường HSn ( ) ngoại tiếp ABC. b) Xác định toạ độ tâm

bán kính ( ) .

10

Hãy đưa Pt (E) dạng tắc Tính c?

toạ độ đỉnh?

Có điểm, VTPT ta viết phương trình đường thẳng dạng dễ

Hướng dẫn HS tìm toạ độ gaio điểm 

x2 +y2 = 16

2

1

16

x y

 

c2 = a2-b2 = 16 – = 12  c 12 3

4

a b

 

Viết phương trình tổng quát đường thẳng  qua M có VTPT n là:

 

1

2

2

x y

x y

 

    

 

   

HS giải hệ phương pháp đưa phương trình:

Bài taäp Cho (E): x2 +4y2 =

16

a) Xác định tọa độ tiêu điểm đỉnh Elip (E)

b) viết phương trình đường thẳng  qua

1 1,

2

M    có VTPT n(1, 2)

c) Tìm toạ độ giao điểm A B đường thẳng

(59)

(E) từ hệ phương trình:

2 4 16

2

x y

x y

 

  

Nhận xét xem M có trung điểm đoạn AB?

2y2 – 2y –3 =0

1 7

2

A B

y   y  

1

1

A B

x x

   

1

1

2

A B

m

A B

m

x x

x

y y

y

  

  vaäy MA = MB IV.Củng cố, dặn dò:

Qua học em cần nắm vững cách viết phương trình đường thẳng, đường HSn, elip, từ yếu tố đề cho

(60)

Tuần 36

Tiết PP: 42 + 43 ÔN TẬP CUỐI NĂM I Mục tiêu:

_ Ôn tập hệ thức lượng tam giác

_ Ôn tập phương pháp tọa độ mặt phẳng,cho học sinh luyện tập loại tốn: + Lập phương trình tổng qt, phương trình tham số đường thẳng

+ Lập phương trình đường HSn + Lập phương trình đường elip II.Chuẩn bị:

+ Giáo viên : soạn giáo án , chuẩn bị tập cho học sinh thực hiện

+ Học sinh: nắm vững kiến thức cũ, chuẩn bị tập phương trình đường elip III.Nội dung tiến trình lên lớp:

T G

Hoạt động thầy Hoạt động trò Nội dung ghi bảng 05

+ Ổn định lớp

+ Giới thiệu nội dung

+ Ồn định trật tự

+ Chú ý theo dõi ÔN TẬP CUỐI NĂM 20

HĐ 1bài tập: Giáo viên cho

Giáo viên gọi học sinh vẽ hình

Nhắc lại :Định lý Cosin

 CosA = ? _ Tính BM ta dựa vào tam giác ? ?

a)Tính A =?

Cos A =

1

2  A = 600 b) Tính BM = ? c)Tính RABM ?

Kq:RABM=

5 3

d)Góc ABC tù hay

nhoïn ?

Kq: ABC nhoïn.

e)Tính SABC ?

Kq: SABC 10

f)Tính độ dài đường cao từ đỉnh B ABC g)Tính CN =?

Bài 1: Cho  ABC có AB = AC=8; BC = 7.Lấy điểm M nằm AC cho MC =3 a)Tính số đo góc A

b)Tính độ dài cạnh BM c)Tính bán kính đường HSn ngoại tiếp  ABM

d)Xét xem góc ABC tù hay

nhọn ?

e)Tính SABC ?

f)Tính độ dài đường cao hạ từ đỉnh B  ABC

(61)

_ Tính RABM dùng

cơng thức ? _ Để xét góc ABC tù

hay nhọn ,ta cần tính CosABC .

* CosABC >0 

ABC nhoïn

* CosABC <0 

ABC tuø

20

HĐ 2sinh làm.: Cho tập học

_ Câu a) sử dụng kiến thức tích vơ hướng vectơ

_ Câu b) sử dụng kiến thức phương vectơ

MAMBMA MB

                                                       

Cho a( ; ) , b ( ; )a a1  b b1

 

a phương

1 2

a b

b

a b

 



Baøi 2: Trong mp Oxy cho A(2:-2) :B(-1;2)

a)Tìm điểm M nằm trục hồnh cho  MAB vng M

b)Tìm điểm N nằm đường thẳng (d): 2x+y-3=0

20

Gọi học sinh vẽ hình minh họa Nhắc lại:

(D):Ax+By+C=0 () (D)  P.t () là:

Bx-Ay+C=0

_ Có nhận xét đường cao BH ?

_ Có nhận xét đường cao AH ?

_ Có nhận xét cạnh BC ?

_ Có nhận xét đường trung tuyến CM ?

a)Viết p.t đường cao BH:

b)Viết p.t đường cao AH :

c)Viết p.t cạnh BC: d)Viết p.t đường trung tuyến CM:

Bài 3:Cho  ABC có phương trình cạnh AB,AC là:x+y-3=0 ; x-2y+3=0.Gọi H(-1;2) trực tâm  ABC

a) Viết p.t đường cao BH  ABC

b) Viết p.t đường cao AH  ABC

c) Viết p.t cạnh BC cuûa  ABC

(62)

20

HĐ 4trình đ.HSn::Lập phương

_Cho hs đọc đề phân tích đề

Nhắc lại:(E):

2 2

x y

ab  Với b2=a2-c2

_ Các đỉnh là: A1

(-a;0),A2(a;0)

B1

(0;-b),B2(0;b)

_ Các tiêu điểm:F1(-c ;

0),

F2(c ;

0)

_ Câu b) đường thẳng qua tiêu điểm có p.t ? Tìm y

1

I(a;b) ( ) d(I;d ) = d(I;d )

  

 

lập hệ p.t , giải tìm a,b =?

P.t đường thẳng qua tiêu điểm là: x=  c  y =

Bài 8[100]:Lập p.t đ.HSn: ():4x+3y-2=0

(d1):x+y+4 =

(d2):7x-y+4 =

Giaûi

Kq: (C1):(x-2)2+(y+2)2 =8

(C2): (x+4)2 +(y-6)2 = 18

Baøi 9[100]: (E):

2

1 100 36

x y

 

IV Củng cố, dặn dò:

+ Củng cố: Y/c HS nhắc lại số kiến thức học + BTVN:3,4,5,6,7 trang 100

+ Ôn lại dạng toán làm (cho thêm dạng lập ptđt với đ.HSn)

Tuần: 37, Tiết PP: 44 KIỀM TRA HỌC KÌ II

Ngày đăng: 29/03/2021, 14:16

w