1. Trang chủ
  2. » Trung học cơ sở - phổ thông

toán tuổi thơ toán học 8 lương hiền an thư viện giáo dục tỉnh quảng trị

101 7 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 101
Dung lượng 4,03 MB

Nội dung

Vậy phương trình (4) không có nghiệm nguyên.. Mong các bạn tiếp tục trao đổi về vấn đề này. Đa số các tài liệu về dạng toán này đều sử dụng khái niệm đồng dư, một khái niệm trừu tượng v[r]

(1)

TTT SỐ 1

BÀN LUẬN VỀ BÀI TOÁN "BA VỊ THẦN" Chúng ta biết toán thú vị : “Ba vị thần” sau :

Ngày xưa, ngơi đền cổ có vị thần giống hệt Thần thật (TT) ln ln nói thật, thần dối trá (DT) ln ln nói dối thần khơn ngoan (KN) lúc nói thật lúc nói dối Các vị thần trả lời câu hỏi khách đến lễ đền không xác định xác vị thần Một hơm có nhà hiền triết từ xa đến thăm đền Để xác định vị thần, ông hỏi thần bên trái :

- Ai ngồi cạnh ngài ? - Đó thần TT (1) Ông hỏi thần ngồi : - Ngài ?

- Ta thần KN (2)

Sau ông hỏi thần bên phải : - Ai ngồi cạnh ngài ?

- Đó thần DT (3) Nhà hiền triết lên :

- Tôi xác định vị thần

Hỏi nhà hiền triết suy luận ?

Lời giải : Gọi vị thần theo thứ tự từ trái sang phải : A, B, C Từ câu trả lời (1) => A thần TT

Từ câu trả lời (2) => B thần TT

Vậy C thần TT Theo (3) đ B thần DT đ A thần KN TTT SỐ 2

SỬ DỤNG DIỆN TÍCH

TRONG CHỨNG MINH HÌNH HỌC

Có nhiều tốn hình học tưởng khơng liên quan đến diện tích, ta sử dụng diện tích lại dễ dàng tìm lời giải toán

Bài toán : Tam giác ABC có AC = AB Tia phân giác góc A cắt BC D Chứng minh DC = DB.

(2)

Để so sánh DC DB, so sánh diện tích hai tam giác ADC ADB có chung đường cao kẻ từ A Ta so sánh diện tích hai tam giác chúng có đường cao kẻ từ D nhau, AC = AB theo đề cho

Giải : Kẻ DI vng góc với AB, DK vng góc với AC Xét ΔADC ΔADB : đường cao DI = DK, đáy AC = AB nên SADC = SADB

Vẫn xét hai tam giác có chung đường cao kẻ từ A đến BC, SADC = SADB nên DC = DB

Giải tương tự trên, ta chứng minh toán tổng quát : Nếu AD phân giác ΔABC DB/DC = AB/AC

Bài tốn : Cho hình thang ABCD (AB // CD), đường chéo cắt O Qua O, kẻ đường thẳng song song với hai đáy, cắt cạnh bên AC BC theo thứ tự E và F

Chứng minh OE = OF

Giải :

Cách : (h.2) Kẻ AH, BK, CM, DN vng góc với EF Đặt AH = BK = h1, CM = DN = h2

Ta có :

Từ (1), (2), (3) => : Do OE = OF

(3)

Cùng trừ S5 : S1 + S2 = S3 + S4 (1)

Giả sử OE > OF S1 > S3 S2 > S4 nên S1 + S2 > S3 + S4, trái với (1) Giả sử OE < OF S1 < S3 S2 < S4 nên S1 + S2 < S3 + S4, trái với (1) Vậy OE = OF

Bài tốn : Cho hình bình hành ABCD Các điểm M, N theo thứ tự thuộc cạnh AB, BC cho AN = CM Gọi K giao điểm AN CM Chứng minh KD là tia phân giác góc AKC.

Giải : (h.4) Kẻ DH vng góc với KA, DI vng góc với KC Ta có :

DH AN = SADN (1) DI CM = SCDM (2)

Ta lại có SADN = 1/2.SABCD (tam giác hình bình hành có chung đáy AD, đường cao tương ứng nhau), SCDM = 1/2.SABCD nên SADN = SCDM (3)

Từ (1), (2), (3) => DH AN = DI CM

Do AN = CM nên DH = DI Do KI tia phân giác góc AKC

Như xét quan hệ độ dài đoạn thẳng, ta nên xét quan hệ diện tích các tam giác mà cạnh đoạn thẳng Điều nhiều giúp đến lời giải toán

Bạn sử dụng diện tích để giải toán sau :

1. Cho tam giác ABC cân A Gọi M điểm thuộc cạnh đáy BC Gọi MH, MK theo thứ tự đường vng góc kẻ từ M đến AB, AC Gọi BI đường cao tam giác ABC Chứng minh MH + MK = BI

Hướng dẫn : Hãy ý đến

(4)

2. Chứng minh tổng khoảng cách từ điểm M tam giác ABC đến ba cạnh tam giác không phụ thuộc vị trí M

Hướng dẫn : Hãy ý đến

SMBC + SMAC + SMAB = SABC.

3. Cho tam giác ABC cân A Điểm M thuộc tia đối tia BC Chứng minh hiệu khoảng cách từ điểm M đến đường thẳng AC AB đường cao ứng với cạnh bên tam giác ABC

Hướng dẫn : Hãy ý đến

SMAC - SMAB = SABC

4. Cho hình thang ABCD (AB // CD, AB < CD) Các đường thẳng AD BC cắt tại O Gọi F trung điểm CD, E giao điểm OF AB Chứng minh AE = EB

Hướng dẫn : Dùng phương pháp phản chứng. TTT SỐ 3

MỘT PHƯƠNG PHÁP VẼ ĐƯỜNG PHỤ

Trong q trình học tốn bậc THCS, có lẽ hấp dẫn khó khăn việc vượt qua tốn hình học, mà để giải chúng cần phải vẽ thêm đường phụ Trong báo này, xin nêu phương pháp thường dùng để tìm đường phụ cần thiết giải tốn hình học : Xét vị trí đặc biệt yếu tố hình học có trong tốn cần giải

Bài tốn : Cho góc xOy Trên Ox lấy hai điểm A, B Oy lấy hai điểm C, D sao cho AB = CD Gọi M N trung điểm AC BD Chứng minh đường thẳng MN song song với phân giác góc xOy

Suy luận : Vị trí đặc biệt CD CD đối xứng với AB qua Oz, phân giác góc xOy

Gọi C1 D1 điểm đối xứng A B qua Oz ; E F giao điểm AC1 BD1 với Oz Khi E F trung điểm AC1 BD1, vị trí MN EF Vì ta cần chứng minh MN // EF đủ (xem hình 1)

(5)

Bài tốn có nhiều biến dạng” thú vị, sau vài biến dạng nó, đề nghị bạn giải xem tập nhỏ ; sau đề xuất “biến dạng” tương tự

Bài toán : Cho tam giác ABC Trên AB CD có hai điểm D E chuyển động cho BD = CE Đường thẳng qua trung điểm BC DE cắt AB AC I J Chứng minh ΔAIJ cân

Bài toán : Cho tam giác ABC, AB ≠ AC AD AE phân giác trung tuyến của tam giác ABC Đường tròn ngoại tiếp tam giác ADE cắt AB AC M N Gọi F trung điểm MN Chứng minh AD // EF

Trong việc giải toán chứa điểm di động, việc xét vị trí đặc biệt tỏ ra hữu ích, đặc biệt tốn “tìm tập hợp điểm”

Bài tốn : Cho nửa đường trịn đường kính AB cố định điểm C chuyển động trên nửa đường tròn Dựng hình vng BCDE Tìm tập hợp C, D tâm hình vng

Ta xét trường hợp hình vng BCDE “nằm ngồi” nửa đường trịn cho (trường hợp hình vng BCDE nằm đường tròn cho xét tương tự, đề nghị bạn tự làm lấy xem tập)

Suy luận : Xét trường hợp C trùng với B Khi hình vng BCDE thu lại điểm B điểm I, D, E trùng với B, I tâm hình vng BCDE Vậy B một điểm thuộc tập hợp cần tìm

Xét trường hợp C trùng với A Dựng hình vng BAD1E1 D trùng với D1, E trùng với E1 I trùng với I1 (trung điểm cung AB ) Trước hết, ta tìm tập hợp E Vì B E1 thuộc tập hợp cần tìm nên ta nghĩ đến việc thử chứng minh Đ BEE1 không đổi Điều khơng khó Đ ACB = 90o (góc nội tiếp chắn nửa đường tròn) ΔBEE1 = ΔBCA (c g c) => Đ BEE1 = Đ BCA = 90o => E nằm nửa đường trịn đường kính BE1 (1/2 đường tròn 1/2 đường tròn cho nằm hai nửa mặt phẳng khác với “bờ” đường thằng BE1)

Vì Đ DEB = Đ E1EB = 90o nên D nằm EE1 (xem hình 2)

=> Đ ADE1 = 90o = Đ ABE1 => D nằm đường tròn đường kính AE1, ABE1D1 hình vng nên đường trịn đường kính AE1 đường trịn đường kính BD1 Chú ý B D1 vị trí giới hạn tập hợp cần tìm, ta => tập hợp D là nửa đường tròn đường kính BD1 (nửa đường trịn điểm A hai nửa mặt phẳng khác với bờ đường thẳng BD1)

(6)

Để kết thúc, xin mời bạn giải toán sau :

Bài toán : Cho nửa đường trịn (O) đường kính AB cố định điểm C chuyển động trên nửa đường trịn Kẻ CH vng góc với AB Trên đoạn thẳng OC lấy điểm M sao cho OM = CH Tìm tập hợp M.

TTT SỐ 4

LÀM QUEN VỚI BẤT ĐẲNG THỨC TRÊ-BƯ-SEP

Các bạn làm quen với bất đẳng thức Cô si, Bunhiacôpski khơng bạn cịn chưa biết bất đẳng thức Trê - bư - sép Con đường đến bất đẳng thức thật giản dị, gần gũi với kiến thức bạn bậc THCS

Các bạn thấy : Nếu a1 ≤ a2 b1 ≤ b2 (a2 - a1) (b2 - b1) ≥ Khai triển vế trái bất đẳng thức ta có :

a1b1 + a2b2 - a1b2 - a2b1 ≥ => : a1b1 + a2b2 ≥ a1b2 + a2b1

Nếu cộng thêm a1b1 + a2b2 vào hai vế ta :

2 (a1b1 + a2b2) ≥ a1 (b1 + b2) + a2 (b1 + b2) => : (a1b1 + a2b2) ≥ (a1 + a2) (b1 + b2) (*)

Bất đẳng thức (*) bất đẳng thức Trê - bư - sép với n = Nếu thay đổi giả thiết, cho a1 ≤ a2 b1 ≥ b2 tất bất đẳng thức đổi chiều ta có :

2 (a1b1 + a2b2) ≤ (a1 + a2) (b1 + b2) (**)

Các bất đẳng thức (*) (**) trở thành đẳng thức a1 = a2 b1 = b2

Làm theo đường tới (*) (**), bạn giải nhiều toán thú vị

Bài toán : Biết x + y = Chứng minh x2003 + y2003 ≤ x2004 + y2004

Lời giải : Do vai trị bình đẳng x y nên giả sử x ≤ y Từ => : x2003 ≤ y2003

Do (y2003 - x2003).(y - x) ≥ => : x2004 + y2004 ≥ x.y2003 + y.x2003

Cộng thêm x2004 + y2004 vào hai vế ta có : 2.(x2004 + y2004) ≥ (x+y) (x2003 + y2003) = 2.(x2003 + y2003)

=> : x2004 + y2004 ≥ x2003 + y2003 (đpcm)

Để ý : Bất đẳng thức vừa chứng minh trở thành đẳng thức x = y = 1 ; bạn có lời giải toán sau :

Bài toán : Giải hệ phương trình :

Nếu bạn quan tâm tới yếu tố tam giác vận dụng bất đẳng thức (*) hoặc (**) dẫn đến nhiều toán

Bài toán : Cho tam giác ABC có diện tích AH BK đường cao tam giác

(7)

Lời giải : Ta có AH x BC = BK x CA = Do vai trị bình đẳng BC CA nên có thể giả sử BC ≤ CA => 2/BC ≥ 2/CA => AH ≥ BK

Do (CA - BC).(BK - AH) ≤

=> : CA x BK + BC x AH ≤ BC x BK + CA x AH Cộng thêm CA x BK + BC x AH vào vế ta có : 2.(CA x BK + BC x AH) ≤ (BC + CA) (AH + BK) => : (BC + CA).(AH + BK) ≥

Đẳng thức xảy BC = CA BK = AH tương đương với BC = CA hay tam giác ABC tam giác cân đỉnh C

Bài toán : Cho tam giác ABC với BC = a, CA = b, AB = c đường cao tương ứng cạnh có độ dài ha, hb, hc Chứng minh :

với S diện tích tam giác ABC

Lời giải : Do vai trị bình đẳng cạnh tam giác nên giả sử a ≤ b ≤ c

=> : 2S/a ≥ 2S/b ≥ 2S/c => ≥ hb ≥ hc Làm lời giải tốn ta có :

(a + b).(ha + hb) ≥ 8S

=> : 1/(ha + hb) ≤ (a + b)/(8S) (1) Tương tự ta :

1/(hb + hb) ≤ (b + c)/(8S) (2) 1/(hc + ha) ≤ (c + a)/(8S) (3)

Cộng vế (1), (2), (3) dẫn đến :

Bất đẳng thức (4) trở thành đẳng thức bất đẳng thức (1), (2), (3) đồng thời trở thành đẳng thức tương đương với a = b = c hay tam giác ABC tam giác

Bây bạn thử giải tập sau :

1) Biết x2 + y2 = Tìm giá trị lớn F = (x4 + y4) / (x6 + y6)

2) Cho số dương x, y, z thỏa mãn x + y + z = Chứng minh :

3) Cho tam giác ABC có độ dài cạnh a, b, c độ dài đường phân giác thuộc cạnh la, lb, lc Chứng minh :

4) Hãy dự đoán chứng minh bất đẳng thức Trê - bư - sép với n = Từ sáng tạo toán Nếu bạn thấy thú vị với khám phá tập này, hãy gửi gấp viết cho chuyên mục EUREKA TTT2.

(8)

PHƯƠNG PHÁP HỐN VỊ VỊNG QUANH

Phân tích thành nhân tử kĩ chương trình đại số bậc THCS Kĩ sử dụng giải toán : biến đổi đồng các biểu thức toán học, giải phương trình, chứng minh bất đẳng thức giải toán cực trị Sách giáo khoa lớp giới thiệu nhiều phương pháp phân tích thành nhân tử Sau xin nêu phương pháp thường sử dụng, dựa vào việc kết hợp phương pháp quen thuộc đặt nhân tử chung, nhóm số hạng, đẳng thức Phương pháp dựa vào số nhận xét sau :

1/ Giả sử phải phân tích biểu thức F(a, b, c) thành nhân tử, a, b, c có vai trị biểu thức Nếu F(a, b, c) = a = b F(a, b, c) chứa các nhân tử a - b, b - c c - a

Bài tốn : Phân tích thành nhân tử : F(a, b, c) = a2(b - c) + b2(c - a) + c2(a - b)

Nhận xét : Khi a = b ta có :

F(a, b, c) = a2(a - c) + a2(c - a) = 0, F(a, b, c) có chứa nhân tử a - b

Tương tự F(a, b, c) chứa nhân tử b - c, c - a Vì F(a, b, c) biểu thức bậc ba, đó F(a, b, c) = k.(a - b)(b - c)(c - a)

Cho a = 1, b = 0, c = -1 ta có : 1 + = k.1.1.(-2) => k = -1

Vậy : F(a, b, c) = -(a - b)(b - c)(c - a)

Bài toán : Phân tích thành nhân tử : F(a, b, c) = a3(b - c) + b3(c - a) + c3(a - b)

Nhận xét : Tương tự toán 1, ta thấy F(a, b, c) phải chứa nhân tử a - b, b - c, c - a Nhưng F(a, b, c) biểu thức bậc bốn, (a - b)(b - c)(c - a) bậc ba, F(a, b, c) phải có thừa số bậc a, b, c Do vai trò a, b, c như nhau nên thừa số có dạng k(a + b + c) Do :

F(a, b, c) = k(a - b)(b - c)(c - a)(a + b + c) Cho a = ; b = ; c = => k = -1

Vậy : F(a, b, c) = -(a - b)(b - c)(c - a)(a + b + c)

2/ Trong số toán, F(a, b, c) biểu thức đối xứng a, b, c F(a, b, c) ≠ a = b ta thử xem a = -b, F(a, b, c) có triệt tiêu khơng, thỏa mãn F(a, b, c) chứa nhân tử a + b, từ chứa nhân tử b + c, c + a Bài toán : Chứng minh :

Nếu : 1/x + 1/y + 1/z = 1/(x + y + z) 1/xn + 1/yn + 1/zn = 1/(xn + yn + zn) với số nguyên lẻ n

Nhận xét :

Từ giả thiết 1/x + 1/y + 1/z = 1/(x + y + z) => : (xy + xz + yz)(x + y + z) - xyz = (*)

Do ta thử phân tích biểu thức

F(x, y, z) = (xy + xz + yz)(x + y + z) - xyz thành nhân tử

Chú ý x = - y F(x, y, z) = - y2z + y2z = nên F(x, y, z) chứa nhân tử x + y Lập luận tương tự toán 1, ta có F(x, y, z) = (x + y)(y + z)(x + z)

Do (*) trở thành : (x + y)(y + z)(x + z) =

(9)

Vậy : 1/xn + 1/yn + 1/zn = 1/(xn + yn + zn)

Tương tự cho trường hợp lại, ta có đpcm

Có ta phải linh hoạt tình mà hai nguyên tắc khơng thỏa mãn :

Bài tốn :

Phân tích đa thức sau thành nhân tử : F(x, y, z) = x3 + y3 + z3 - 3xyz

Nhận xét : Ta thấy x = y hay x = -y F(x, y, z) ≠ Nhưng thay x = -(y + z) F(x, y, z) = nên F(x, y, z) có nhân tử x + y + z Chia F(x, y, z) cho x + y + z, ta thương x2 + y2 + z2 - xy - yz - zx dư Do :

F(x, y, z) = (x + y + z)(x2 + y2 + z2 - xy - yz - zx)

Ta thêm bớt vào F(x, y, z) lượng 3x2y + 3xy2 để nhân kết Các bạn dùng phương pháp kết nêu để giải tập sau

Bài toán :

Tính tổng :

trong k = 1, 2, 3,

Bài toán : Chứng minh (a - b)5 + (b - c)5 + (c - a)5 chia hết cho 5(a - b)(b - c)(c - a)

TS Lê Quốc Hán

(ĐH Vinh)

MỘT PHƯƠNG PHÁP TÌM NGHIỆM ĐỘC ĐÁO

Bằng kiến thức hình học lớp ta giải phương trình bậc hai ẩn được khơng ? Câu trả lời trường hợp tổng qt khơng được, nhiều trường hợp ta tìm nghiệm dương

Ví dụ : Tìm nghiệm dương phương trình x2 + 10x = 39

Lời giải :

Ta có : x2 + 10x = 39

tương đương x2 + 2.5.x = 39

(10)

Hình vng to có độ dài cạnh x + có diện tích 64 Do : (x + 5)2 = 64 = 82 tương đương x + = hay x =

Vậy phương trình có nghiệm dương x =

Phương pháp nhà toán học Italia tiếng Jerôm Cacđanô (1501 - 1576) sử dụng tìm nghiệm dương phương trình x2 + 6x = 31

Các bạn tìm nghiệm dương phương trình x2 - 8x = 33 phương pháp hình học thử xem ?

TTT SỐ 6

MỘT DẠNG TOÁN VỀ ƯCLN VÀ BCNN

Trong chương trình số học lớp 6, sau học khái niệm ước chung lớn (ƯCLN) bội chung nhỏ (BCNN), bạn gặp dạng tốn tìm hai số ngun dương biết số yếu tố có kiện ƯCLN BCNN

Phương pháp chung để giải :

1/ Dựa vào định nghĩa ƯCLN để biểu diễn hai số phải tìm, liên hệ với yếu tố cho để tìm hai số

2/ Trong số trường hợp, sử dụng mối quan hệ đặc biệt ƯCLN, BCNN và tích hai số nguyên dương a, b, : ab = (a, b).[a, b], (a, b) ƯCLN [a, b] BCNN a b Việc chứng minh hệ thức khơng khó :

Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)

Từ (*) => ab = mnd2 ; [a, b] = mnd => (a, b).[a, b] = d.(mnd) = mnd2 = ab => ab = (a, b).[a, b] (**)

Chúng ta xét số ví dụ minh họa

Bài tốn : Tìm hai số nguyên dương a, b biết [a, b] = 240 (a, b) = 16 Lời giải : Do vai trò a, b nhau, khơng tính tổng qt, giả sử a ≤ b

Từ (*), (a, b) = 16 nên a = 16m ; b = 16n (m ≤ n a ≤ b) với m, n thuộc Z+ ; (m, n) =

Theo định nghĩa BCNN :

[a, b] = mnd = mn.16 = 240 => mn = 15

(11)

Chú ý : Ta áp dụng cơng thức (**) để giải tốn : ab = (a, b).[a, b] => mn.162 = 240.16 suyy mn = 15

Bài toán : Tìm hai số nguyên dương a, b biết ab = 216 (a, b) =

Lời giải : Lập luận 1, giả sử a ≤ b

Do (a, b) = => a = 6m ; b = 6n với m, n thuộc Z+ ; (m, n) = ; m ≤ n

Vì : ab = 6m.6n = 36mn => ab = 216 tương đương mn = tương đương m = 1, n = m = 2, n = tương đương với a = 6, b = 36 hoặcc a = 12, b = 18

Bài tốn : Tìm hai số nguyên dương a, b biết ab = 180, [a, b] = 60

Lời giải :

Từ (**) => (a, b) = ab/[a, b] = 180/60 =

Tìm (a, b) = 3, toán đưa dạng toán Kết : a = 3, b = 60 a = 12, b = 15

Chú ý : Ta tính (a, b) cách trực tiếp từ định nghĩa ƯCLN, BCNN : Theo (*) ta có ab = mnd2 = 180 ; [a, b] = mnd = 60 => d = (a, b) =

Bài tốn : Tìm hai số nguyên dương a, b biết a/b = 2,6 (a, b) =

Lời giải : Theo (*), (a, b) = => a = 5m ; b = 5n với m, n thuộc Z+ ; (m, n) = Vì : a/b = m/n = 2,6 => m/n = 13/5 tương đương với m = 13 n = hay a = 65 và b = 25

Chú ý : phân số tương ứng với 2,6 phải chọn phân số tối giản (m, n) =

Bài tốn :

Tìm a, b biết a/b = 4/5 [a, b] = 140

Lời giải : Đặt (a, b) = d Vì , a/b = 4/5 , mặt khác (4, 5) = nên a = 4d, b = 5d Lưu ý [a, b] = 4.5.d = 20d = 140 => d = => a = 28 ; b = 35

Bài tốn : Tìm hai số ngun dương a, b biết a + b = 128 (a, b) = 16

Lời giải : Lập luận 1, giả sử a ≤ b

Ta có : a = 16m ; b = 16n với m, n thuộc Z+ ; (m, n) = ; m ≤ n

Vì : a + b = 128 tương đương 16(m + n) = 128 tương đương m + n = 8

Tương đương với m = 1, n = m = 3, n = hay a = 16, b = 112 a = 48, b = 80

Bài tốn : Tìm a, b biết a + b = 42 [a, b] = 72

Lời giải : Gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = Không tính tổng quát, giả sử a ≤ b => m ≤ n

Do : a + b = d(m + n) = 42 (1) [a, b] = mnd = 72 (2)

=> d ước chung 42 72 => d thuộc {1 ; ; ; 6}

Lần lượt thay giá trị d vào (1) (2) để tính m, n ta thấy có trường hợp d = => m + n = mn = 12 => m = n = (thỏa mãn điều kiện m, n) Vậy d = a = 3.6 = 18 , b = 4.6 = 24

Bài tốn : Tìm a, b biết a - b = 7, [a, b] = 140

Lời giải : Gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = Do : a - b = d(m - n) = (1’)

[a, b] = mnd = 140 (2’)

=> d ước chung 140 => d thuộc {1 ; 7}

Thay giá trị d vào (1’) (2’) để tính m, n ta kết : d = => m - n = mn = 20 => m = 5, n =

Vậy d = a = 5.7 = 35 ; b = 4.7 = 28

(12)

1/ Tìm hai số a, b biết 7a = 11b (a, b) = 45

2/ Tìm hai số biết tổng chúng 448, ƯCLN chúng 16 chúng có các chữ số hàng đơn vị giống

3/ Cho hai số tự nhiên a b Tìm tất số tự nhiên c cho ba số, tích của hai số ln chia hết cho số cịn lại.

TTT SỐ 7

VẬN DỤNG BỔ ĐỀ HÌNH THANG VÀO GIẢI TỐN

* Trong Tạp chí Tốn Tuổi thơ số (TTT2(4)), tháng năm 2003, mục kết

Thử tí tốn, để chia đơi đoạn thẳng song song với đường thẳng cho trước bẳng thước thẳng, ta dựa vào bổ đề :

“Đường thẳng nối giao điểm đường chéo hình thang với giao điểm cạnh bên kéo dài chia đáy hình thang thành hai phần nhau”

Bổ đề thường gọi bổ đề “Hình thang” Để chứng minh bổ đề, bạn có thể tham khảo phần chứng minh TTT2(4)

* viết này, xin nêu thêm số dạng ứng dụng khác bổ đề “Hình thang”

Bài toán : Cho DABC M, N, P điểm cạnh BC, CA, AB Nối AM, BN, CP cắt I, J, K (hình 1) Kí hiệu S diện tích, chứng minh : Nếu SΔAIN = SΔBJP = SΔCKM = SΔIJK SAPJI = SBMKJ = SCNIK

Lời giải : Gọi L giao điểm CI NK

Từ SΔANI = SΔIJK => SΔANI + SΔAIJ = = SΔIJK + SΔAIJ => SΔNAJ = SΔKAJ

Ta nhận thấy ΔNAJ ΔKAJ có chung cạnh AJ nên khoảng cách từ N K tới AJ bằng nhau, dẫn đến NK // AJ

Xét hình thang KNAJ, có hai cạnh bên AN x JK = C ; có hai đường chéo AK x JN = I, theo bổ đề “Hình thang”, CI cắt NK trung điểm NK Vậy L trung điểm NK (*)

Từ (*) ta chứng minh SΔCIN = S ΔCIK, mà SΔAIN = S ΔCKM => SΔCIM = SΔCIA => IA = IM (**) ( ΔCIM ΔCIA có chung đường cao hạ từ C tới AM)

(13)

* Xét toán đảo tốn dựng hình thước kẻ TTT2(4) nói

Bài toán : Cho trước đoạn thẳng AB trung điểm M Chỉ thước thẳng, dựng qua điểm C nằm AB, đường thẳng song song với AB

Lời giải :

Phân tích : Giả sử dựng đường thẳng (d) qua C song song với AB (hình 2)

Trên phần kéo dài tia BC, lấy điểm S Gọi giao điểm SA (d) D, AC cắt BD O Theo bổ đề Hình thang, đường thẳng SO qua điểm M, từ ta có cách dựng

Cách dựng : Lấy điểm S Lần lượt nối AC, SM, đường thẳng cắt tại O Nối SA, BO, cắt D Đường thẳng (d) qua C, D đường thẳng cần dựng : (d) qua C, (d) // AB

* Kết toán vận dụng nhiều tốn dựng hình bằng thước thẳng

Bài tốn : Cho hình bình hành ABCD với O tâm Chỉ dùng thước thẳng, qua O, hãy dựng đường thẳng song song với cạnh hình bình hành ABCD

Lời giải : Theo toán, O trung điểm AC, BD (hình 3)

áp dụng toán cho đoạn thẳng AC với O trung điểm AC B điểm nằm ngoài AC, ta hoàn toàn dựng đường thẳng Bx // AC

Tương tự, ta dựng đường thẳng Cy // BD

Gọi E giao điểm Bx, Cy, ta thấy OBEC hình bình hành

Do đó, gọi I giao điểm BC OE I trung điểm BC, mặt khác O trung điểm BD nên OI đường trung bình DBCD, OI // CD

(14)

Bài tốn : Trong mặt phẳng cho trước đường trịn (S) tâm O ; điểm M và đường thẳng (d) Chỉ thước thẳng, dựng đường thẳng qua M song song với (d)

Lời giải : Để áp dụng toán trường hợp này, ta cần xác định trên (d) hai điểm P, Q khác điểm N trung điểm PQ

Ta thực sau :

Trên (d), lấy điểm P tùy ý (hình 4) Qua P, kẻ cát tuyến PAB tới (S) AO, BO cắt (S) C, D CD cắt (d) Q

Theo tính chất đường tròn, ta chứng minh tứ giác ABCD hình bình hành có tâm điểm O Theo toán 3, qua O ta dựng đường thẳng song song với AB và dễ thấy đường thẳng cắt PQ N trung điểm PQ Đến đây, ta => cách dựng đường thẳng qua M song song với (d) dựa vào toán

Bài tập tự giải :

Bài tốn : Cho trước đường trịn (S) tâm O nó, M điểm Chỉ dùng thước thẳng, dựng qua M đường thẳng vng góc với đường thẳng (d) cho trước

Bài toán : Cho tứ giác ABCD, AD cắt BC S, AC cắt BD O Chứng minh nếu SO qua trung điểm M AB SO qua trung điểm N CD tứ giác ABCD hình thang.

TTT SỐ 8

MỘT SỐ DẠNG TỐN SỬ DỤNG PHÉP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ

Sau xem xong tạp chí Tốn Tuổi thơ số (tháng năm 2003), tâm đắc với các tốn phân tích đa thức thành nhân tử Do tơi mạnh dạn trao đổi với bạn đọc về vấn đề vận dụng phép phân tích đa thức thành nhân tử vào giải số dạng toán bậc THCS

(15)

với ab ≠

Lời giải :

Bài toán : Rút gọn :

Lời giải :

2 Chứng minh bất đẳng thức

Bài tốn : Cho ΔABC với góc A ≥ góc B ≥ góc C Chứng minh :

Lời giải : Hạ AH vng góc với BC ; BI vng góc với AC Ta có AH = ha, BI = hb Dễ thấy tam giác vng AHC BIC đồng dạng chung góc C => ha/hb = AH/BI = b/a

áp dụng điều tương tự ta có :

(16)

3 Giải phương trình bất phương trình

Bài tốn : Giải phương trình : 4x3 - 10x2 + 6x - = (1)

Lời giải :

(1) 4x3 - 2x2 - 8x2 + 4x + 2x - = tương đương 2x2(2x - 1) - 4x(2x - 1) + (2x - 1) = 0 hay (2x - 1)(2x2 - 4x + 1) =

Bài tốn : Giải phương trình :

Lời giải : Ta có :

Vậy phương trình (2) có nghiệm x =

Bài tốn : Giải bất phương trình : 7x3 - 12x2 - < (3)

Lời giải : (3) 7x3 - 14x2 + 2x2 - <

tương đương với 7x2(x - 2) + 2(x2 - 4) < hay (x - 2)(7x2 + 2x + 4) < tương đương với (x - 2)[6x2 + + (x + 1)2] < hay x - < => x < Vậy bất phương trình (3) có nghiệm x <

4 Một số toán khác Bài toán : CMR :

với a, b ≠ ; a ≠ b ; a, b ≠ 1/2 a + b + 3/2 = 1/a + 1/b

Lời giải : (*) tương đương : a2b - 2a3b - 2b2 + 4ab2 = b2a - 2ab3 - 2a2 + 4a2b hay : 3ab2 - 3a2b - 2a3b + 2b3a - 2b2 + 2a2 =

(17)

Vì a ≠ b => b - a ≠ nên hệ thức tương đương với : 3ab + 2ab(b + a) - 2(a + b) =

Do a.b ≠ => 3/2 + a + b - (a + b)/ab = => : a + b + 3/2 = 1/a + 1/b (đpcm)

Bài toán : Chứng minh : n2 + 11n + 39 không chia hết cho 49 với "n thuộc N

Lời giải : Xét M = n2 + 11n + 39 = n2 + 2n + 9n + 18 + 21 = (n + 2)(n + 9) + 21 Có (n + 9) - (n + 2) = => n + n + chia hết cho không chia hết cho

- Nếu n + n + chia hết cho (n + 9)(n + 2) chia hết cho 49 mà 21 không chia hết cho 49 nên M không chia hết cho 49

- Nếu n + n + khơng chia hết cho (n + 9)(n + 2) không chia hết cho 7 mà 21 chia hết M không chia hết cho 49

Vậy n22 + 11n + 39 không chia hết cho 49

Sau số tập để bạn thử vận dụng :

1. Tìm nghiệm tự nhiên phương trình : x6 - x4 + 2x3 + 2x2 = y2

2. Cho ab ≥

Chứng minh : 1/(1 + a2) + 1/(1 + b2) ≥ 2/(1 + ab)

3. Chứng minh với số nguyên lẻ n (n86 - n4 + n2) chia hết cho 1152. TTT SỐ 9

CHỨNG MINH MỘT SỐ KHƠNG PHẢI LÀ SỐ CHÍNH PHƯƠNG Trong chương trình Tốn lớp 6, em học toán liên quan tới phép chia hết số tự nhiên cho số tự nhiên khác đặc biệt giới thiệu về số phương, số tự nhiên bình phương số tự nhiên (chẳng hạn : ; ; ; ;16 ; 25 ; 121 ; 144 ; …)

Kết hợp kiến thức trên, em giải tốn : Chứng minh số khơng phải số phương Đây cách củng cố kiến thức mà em học Những toán làm tăng thêm lịng say mê mơn tốn cho em

1 Nhìn chữ số tận cùng

Vì số phương bình phương số tự nhiên nên thấy số chính phương phải có chữ số tận chữ số ; ; ; ; ; 9.

Từ em giải toán kiểu sau :

Bài toán : Chứng minh số : n = 20042 + 20032 + 20022 - 20012 không phải số phương

Lời giải : Dễ dàng thấy chữ số tận số 20042 ; 20032 ; 20022 ; 20012 lần lượt ; ; ; Do số n có chữ số tận nên n số phương

Chú ý : Nhiều số cho có chữ số tận số ; ; ; ; ; nhưng số phương Khi bạn phải lưu ý thêm chút nữa :

Nếu số phương chia hết cho số nguyên tố p phải chia hết cho p2.

(18)

Lời giải : Thấy số 1234567890 chia hết cho (vì chữ số tận 0) khơng chia hết cho 25 (vì hai chữ số tận 90) Do số 1234567890 khơng phải là số phương

Chú ý : Có thể lý luận 1234567890 chia hết cho (vì chữ số tận 0), không chia hết cho (vì hai chữ số tận 90) nên 1234567890 khơng số phương

Bài tốn : Chứng minh số có tổng chữ số 2004 số khơng phải số phương

Lời giải : Ta thấy tổng chữ số số 2004 nên 2004 chia hết cho mà không chia hết nên số có tổng chữ số 2004 chia hết cho mà không chia hết cho 9, số khơng phải số phương

2 Dùng tính chất số dư

Chẳng hạn em gặp toán sau :

Bài toán : Chứng minh số có tổng chữ số 2006 khơng phải số phương

Chắc chắn em dễ bị “choáng” Vậy toán ta phải nghĩ tới điều ? Vì cho giả thiết tổng chữ số nên chắn em phải nghĩ tới phép chia cho 3 hoặc cho Nhưng lại không gặp điều “kì diệu” tốn Thế ta nói điều số ? Chắc chắn số chia cho phải dư Từ ta có lời giải

Lời giải :số phương chia cho có số dư 1 mà thơi (coi như tập để em tự chứng minh !) Do tổng chữ số số 2006 nên số đó chia cho dư Chứng tỏ số cho khơng phải số phương

Tương tự em tự giải toán :

Bài toán : Chứng minh tổng số tự nhiên liên tiếp từ đến 2005 số chính phương

Bài tốn : Chứng minh số :

n = 20044 + 20043 + 20042 + 23 khơng số phương

Bây em theo dõi toán sau để nghĩ tới “tình huống”

Bài tốn : Chứng minh số :

n = 44 + 4444 + 444444 + 44444444 + 15 không số phương

Nhận xét : Nếu xét n chia cho 3, em thấy số dư phép chia 1, không “bắt chước” cách giải toán ; ; ; Nếu xét chữ số tận cùng em thấy chữ số tận n nên không làm “tương tự” các toán ; Số dư phép chia n cho dễ thấy nhất, Một số chính phương chia cho cho số dư ? Các em tự chứng minh kết : số dư là 1 Như em giải xong toán

3 “Kẹp” số hai số phương “liên tiếp”

Các em thấy : Nếu n số tự nhiên số tự nhiên k thỏa mãn n2 < k < (n + 1)2 k khơng số phương Từ em xét toán sau :

Bài tốn : Chứng minh số 4014025 khơng số phương

Nhận xét : Số có hai chữ số tận 25, chia cho dư 1, chia cho dư 1. Thế tất cách làm trước không vận dụng Các em thấy lời giải theo hướng khác

(19)

Bài toán : Chứng minh A = n(n + 1)(n + 2)(n + 3) khơng số phương với mọi số tự nhiên n khác

Nhận xét : Đối với em làm quen với dạng biểu thức nhận A + 1 số phương (đây tốn quen thuộc với lớp 8) Các em lớp 6, lớp có thể chịu khó đọc lời giải

Lời giải : Ta có : A + = n(n + 1)(n + 2)(n + 3) + = (n2 + 3n)(n2 + 3n + 2) + = (n2 + 3n)2 + 2(n2 + 3n) +1 = (n2 + 3n +1)2

Mặt khác :

(n2 + 3n)2 < (n2 + 3n)2 + 2(n2 + 3n) = A

Điều hiển nhiên n ≥ Chứng tỏ : (n2 + 3n)2 < A < A + = (n2 + 3n +1)2 => A không số phương

Các em rèn luyện cách thử giải toán sau :

Bài tốn 10 : Hãy tìm số tự nhiên n cho A = n4 - 2n3 + 3n2 - 2n số phương

Gợi ý : Nghĩ đến (n2 - n + 1)2

Bài toán 11 : Chứng minh số 235 + 2312 + 232003 khơng số phương Gợi ý : Nghĩ đến phép chia cho phép chia cho

Bài tốn 12 : Có 1000 mảnh bìa hình chữ nhật, mảnh bìa ghi số trong số từ đến 1001 cho khơng có hai mảnh ghi số giống Chứng minh : Không thể ghép tất mảnh bìa liền để số phương

Bài tốn 13 : Chứng minh : Tổng bình phương bốn số tự nhiên liên tiếp không thể số phương

Gợi ý : Nghĩ tới phép chia cho

Bài toán 14 : Chứng minh số 333333 + 555555 + 777777 không số phương Gợi ý : Nghĩ đến phép chia cho … chục (?)

Bài tốn 15 : Lúc đầu có hai mảnh bìa, cậu bé tinh nghịch cầm mảnh bìa lên lại xé làm bốn mảnh Cậu ta mong làm đến lúc được số mảnh bìa số phương Cậu ta có thực mong muốn không ?

Để kết thúc viết này, muốn chúc em học thật giỏi môn tốn từ đầu bậc THCS cho tơi nói riêng với q thầy : ngun tắc chung để chứng minh một số tự nhiên không số phương, dựa vào điều kiện cần để số số phương (mà q thầy biết : điều kiện cần đời dùng để … phủ định !) Từ quý thầy sáng tạo thêm nhiều tốn thú vị khác

Mong em quý thầy cô phát thêm nhiều điều kiện cần để có thể tìm hiểu kĩ số phương.

(20)

CHỨNG MINH MỘT SỐ LÀ SỐ CHÍNH PHƯƠNG

Các bạn giới thiệu phương pháp chứng minh số khơng phải số chính phương TTT2 số Bài viết này, muốn giới thiệu với bạn toán chứng minh số số phương

Phương pháp : Dựa vào định nghĩa

Ta biết rằng, số phương bình phương số tự nhiên Dựa vào định nghĩa này, ta định hướng giải toán

Bài toán : Chứng minh : Với số tự nhiên n an = n(n + 1)(n + 2)(n + 3) + số phương

Lời giải : Ta có :

an = n(n + 1) (n + 2) (n + 3) + = (n2 + 3n) (n2 + 3n + 2) + = (n2 + 3n)2 + 2(n2 + 3n) + 1 = (n2 + 3n + 1)2

Với n số tự nhiên n2 + 3n + số tự nhiên, theo định nghĩa, an số phương

Bài tốn : Chứng minh số : là số phương

Lời giải :

Ta có :

Vậy : là số phương

Phương pháp : Dựa vào tính chất đặc biệt.

(21)

Bài toán : Chứng minh : Nếu m, n số tự nhiên thỏa mãn 3m2 + m = 4n2 + n m - n 4m + 4n + số phương.

Lời giải :

Ta có : 3m2 + m = 4n2 + n

tương đương với 4(m2 - n2) + (m - n) = m2 hay (m - n)(4m + 4n + 1) = m2 (*)

Gọi d ước chung lớn m - n 4m + 4n + (4m + 4n + 1) + 4(m - n) chia hết cho d => 8m + chí hết cho d

Mặt khác, từ (*) ta có : m2 chia hết cho d2 => m chia hết cho d

Từ 8m + chia hết cho d m chia hết cho d ta có chia hết cho d => d = Vậy m - n 4m + 4n + số tự nhiên nguyên tố nhau, thỏa mãn (*) nên chúng số phương Cuối xin gửi tới bạn số toán thú vị số phương :

1) Chứng minh số sau số phương :

2) Cho số nguyên dương a, b, c đôi nguyên tố nhau, thỏa mãn : 1/a + 1/b = 1/c Hãy cho biết a + b có số phương hay khơng ?

3) Chứng minh rằng, với số tự nhiên n 3n + khơng số phương 4) Tìm số tự nhiên n để n2 + 2n + 2004 số phương.

5) Chứng minh : Nếu : và n hai số tự nhiên a số phương. TTT SỐ 11

CHỦ ĐỘNG SÁNG TẠO KHI GIẢI TỐN HÌNH HỌC

Một vấn đề đặt nên cấu tạo đề tập tốn (với mục đích vận dụng kiến thức, rèn luyện kĩ năng, kiểm tra lực toán học v.v ) để phù hợp phương pháp dạy học đổi theo định hướng tích cực, độc lập, sáng tạo.

Câu trả lời trở nên rõ ràng ý nhận xét tính đa dạng phong phú hệ thống tập sách giáo khoa Trong khuôn khổ báo, khơng thể phân tích hết ưu nhược điểm thể loại tập toán nhằm giúp học sinh học tập chủ động, sáng tạo, tác giả xin trao đổi với bạn đồng nghiệp vấn đề thơng qua số ví dụ tập hình học.

Thí dụ : Bài tập kích thích mạnh mẽ tư học sinh loại tập tình Ta hãy xét tập sau (lớp 7)

(22)

Tình tập : Học sinh phải vẽ đường thẳng qua hai điểm, trong điểm cho trước, cịn điểm thứ hai chưa xác định được.

Hướng giải toán vẽ giao điểm hai đường thẳng d d’ mà là tìm quan hệ đường thẳng phải vẽ (đường thẳng d’’ qua điểm M) với đường thẳng khác vẽ trang giấy.

Q trình mị mẫm dẫn đến cấu hình ba đường cao đồng quy tam giác, từ => cách vẽ.

Lời giải (tóm tắt) mong đợi sau :

Cách vẽ : Vẽ đường thẳng a qua M vng góc với d’, a cắt d A Vẽ đường thẳng b qua M vng góc với d, b cắt d’ B Vẽ đường thẳng d’’ qua M vng góc với AB, d’’ đường thẳng phải vẽ, qua giao điểm d d’ (giao điểm nằm trang giấy) ba đường cao d, d’, d’’ tam giác MAB đồng quy.

Cũng giải thích sau :

Giả sử giao điểm d d’ C (nằm trang giấy) Trong tam giác ABC, hai đường cao a b cắt M Thế đường thẳng d’’ qua M (trực tâm tam giác ABC) vng góc với AB phải đường cao thứ ba, d’’ qua C

Thí dụ : Ta xét tập sau (lớp 8)

Cho hình vng ABCD, I trung điểm AB, J trung điểm BC K trung điểm IB Gọi H chân đường vuông góc hạ từ B xuống IC Chứng minh hai đường thẳng HJ HK vng góc với nhau.

Tình đặt học sinh tập : Với kiến thức học, nên chọn phương pháp để chứng minh hai đường thẳng HJ HK vng góc với Học sinh nghĩ tới hướng chứng minh sau :

Đ HKJ = 90o (?)

HK HJ hai tia phân giác hai góc kề bù (khơng thể !) Δ KHJ = Δ KBJ (?)

Định lí Py-ta-go thuận đảo (?) v.v

Học sinh loại dần hướng chứng minh sai, thử hướng chứng minh có triển vọng.

(23)

Tính HJ2 : Trong tam giác vuông BHC, HJ trung tuyến ứng với cạnh huyền BC Gọi cạnh hình vng a, ta có :

HJ = BC/2 = a / 2, từ HJ2 = a2 / HK = IB/2 = a / , từ HK2 = a2 / 16 Tính HK 2 : Trong tam giác vng BHI : Tính JK2 : Trong tam giác vuông BJK :

JK2 = BJ2 + BK<SUP.2< sup> , từ JK2 = a2/4 + a2

Từ kết => JK2 = HJ2 + HK2 theo định lí Py-ta-go đảo tam giácJHK vng góc H, tức HJ vng góc với HK.

Cũng chứng minh theo hướng : Δ KHJ = Δ KBJ (vì HK = HB, HJ = BJ, KJ chung) => Đ H = Đ B 90o, tức HJ vuông góc với HK.

Chú ý rằng, theo chương trình mới, học sinh lớp chưa học định lí : Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền nửa cạnh huyền

Thí dụ : Ta xét tập sau (lớp 7)

Trên hình vẽ, người ta cho biết : AE = CE, BE // CD, Đ ABC = 88o, Đ BCE = 31o a) Tính Đ ECD

b) Tính Đ EDC

c) Trong tam giác CDE cạnh lớn ?

Đây tập dễ, vận dụng nhiều kiến thức có nhiều cách giải khác Nếu đề kiểm tra cuối năm phần hình học lớp theo kiểu chắn học sinh sẽ bộc lộ rõ ràng mức độ nắm vững kiến thức bản, kĩ ngay cả học sinh trung bình, yếu hi vọng giải hầu hết câu hỏi toán.

Lời giải (tóm tắt) :

a) Đ BCD = Đ ABE = 88o (hai góc đồng vị). Đ ECD = Đ BCD - Đ BCE = 88o - 31o = 57o

b) Vì tam giác EAC cân nên Đ EAB = Đ ECB = 31o Trong tam giác ABE : Đ AEB = 180o - 88o + 31o = 61o

Đ EDC = Đ AEB - 61o (hai góc đồng vị)

c) Trong tam giác CDE : Đ DEC = 180o - (57o + 61o) = 62 Vậy cạnh CD lớn Cách giải khác :

a) Vì tam giác EAC cân nên Đ EAB = Đ ECB = 31o Trong tam giác AEB : Đ ABE = 61o.

Với tam giác BEC : góc ABE = 88o góc ngồi đỉnh B nên góc BEC = 88o - 31o = 57o

Vì BE // CD nên Đ ECD = Đ BEC = 57o (hai góc so le trong) b) Vì BE // CD nên Đ EDC = Đ AEB = 61o (hai góc đồng vị) c) Trong tam giác CDE : Đ DEC = 180o - (57o + 61o) = 62o Vậy cạnh CD lớn nhất.

(24)

NGUYÊN LÍ ĐI - RÍCH - LÊ

Ngun lí Đi-rích-lê phát biểu sau : “Nếu có m vật đặt vào n ngăn kéo m > n có ngăn kéo chứa hai vật”.

Nguyên lí Đi-rích-lê giúp ta chứng minh tồn “ngăn kéo” chứa hai vật mà khơng “ngăn kéo” Các bạn làm quen việc vận dụng nguyên lí qua tốn sau

Bài toán :

Chứng minh 11 số tự nhiên tồn số có hiệu chia hết cho 10

Lời giải :

Với 11 số tự nhiên chia cho 10 ta 11 số dư, mà số tự nhiên chia cho 10 có 10 khả dư ; ; ; ; ; 9.

Vì có 11 số dư mà có 10 khả dư, theo nguyên lí Đi-rích-lê, tồn số khi chia cho 10 có số dư hiệu chúng chia hết cho 10 (đpcm).

Bài toán :

Chứng minh tồn số có dạng 19941994 199400 chia hết cho 1995.

Lời giải :

Xét 1995 số có dạng : 1994 ; 19941994 ; ;

Nếu số chia hết cho 1995 dễ dàng có đpcm.

Nếu số khơng chia hết cho 1995 chia số cho 1995 có 1994 khả dư ; ; ; ; 1994

Vì có 1995 số dư mà có 1994 khả dư, theo ngun lí Đi-rích-lê tồn 2 số chia cho 1995 có số dư, hiệu chúng chia hết cho 1995 Giả sử hai số đó :

Khi : = 1994 199400 chia hết cho 1995 (đpcm).

Bài toán :

Chứng minh tồn số tự nhiên k cho (1999^k - 1) chia hết cho104.

Lời giải :

Xét 104 + số có dạng :

19991 ; 19992 ; ; 1999104 + 1. Lập luận tương tự toán ta :

(1999m - 1999n) chia hết cho 104 (m > n) hay 1999n (1999m-n - 1) chia hết cho 104

Vì 1999n 104 ngun tố nhau, (1999m-n - 1) chia hết cho 104. Đặt m - n = k => 1999^k - chia hết cho 104 (đpcm).

Bài toán :

Chứng minh tồn số viết hai chữ số chia hết cho 2003.

Lời giải :

Xét 2004 số có dạng ; 11 ; 111 ; ; Lập luận tương tự toán ta : hay 11 100 chia hết cho 2003 (đpcm).

(25)

Bài toán :

Chứng minh số nguyên tố p ta tìm số viết hai chữ số chia hết cho p

Bài toán :

Chứng minh số tự nhiên không chia hết cho tồn bội có dạng : 111 1.

Bài toán :

Chứng minh tồn số có dạng 1997k (k thuộc N) có tận 0001.

Bài tốn :

Chứng minh số nguyên m n nguyên tố tìm số tự nhiên k cho mk - chia hết cho n.

Các bạn đón đọc số sau : Ngun lí Đi-rích-lê với tốn hình học thú vị. TTT SỐ 13

NGUYÊN LÍ ĐI-RÍCH-LÊ

& NHỮNG BÀI TỐN HÌNH HỌC THÚ VỊ

Tạp chí Tốn Tuổi thơ số 12 đề cập đến toán số học vận dụng nguyên lí Đi-rích-lê để giải

Nguyên lí mở rộng sau : Nếu có m vật đặt vào n ngăn kéo m > k.n thì có ngăn kéo chứa k + vật Với mở rộng này, ta cịn giải quyết thêm nhiều tốn khác

Sau xin giới thiệu để bạn đọc làm quen việc vận dụng nguyên lí Đi-rích-lê với số tốn hình học

Bài tốn : Trong tam giác có cạnh (đơn vị độ dài, hiểu đến cuối bài viết) lấy 17 điểm Chứng minh 17 điểm có hai điểm mà khoảng cách chúng không vượt 1.

Lời giải : Chia tam giác có cạnh thành 16 tam giác có cạnh (hình 1) Vì 17 > 16, theo ngun lí Đi-rích-lê, tồn tam giác cạnh bằng có chứa điểm số 17 điểm cho Khoảng cách hai điểm đó ln khơng vượt (đpcm)

Bài toán : Trong hình vng cạnh 7, lấy 51 điểm Chứng minh có điểm 51 điểm cho nằm hình trịn có bán kính

(26)

Vì 51 điểm cho thuộc 25 hình vng nhỏ, mà 51 > 2.25 nên theo ngun lí Đi-rích-lê, có hình vng nhỏ chứa điểm (3 = + 1) số 51 điểm cho Hình vng cạnh có bán kính đường trịn ngoại tiếp :

Vậy toán chứng minh Hình trịn hình trịn bán kính 1, chứa hình vng ta

Bài toán : Trong mặt phẳng cho 2003 điểm cho điểm có điểm cách khoảng không vượt Chứng minh : tồn hình trịn bán kính chứa 1002 điểm

Lời giải : Lấy điểm A 2003 điểm cho, vẽ đường trịn C1 tâm A bán kính

+ Nếu tất điểm nằm hình trịn C1 hiển nhiên có đpcm

+ Nếu tồn điểm B mà khoảng cách A B lớn ta vẽ đường trịn C2 tâm B bán kính

Khi đó, xét điểm C số 2001 điểm cịn lại Xét điểm A, B, C, AB > 1 nên theo giả thiết ta có AC ≤ BC ≤ Nói cách khác, điểm C phải thuộc C1 hoặc C2 => 2001 điểm khác B A phải nằm C1 C2 Theo nguyên lí Đi-rích-lê ta có hình trịn chứa 1001 điểm Tính thêm tâm hình trịn thì hình trịn hình trịn bán kính chứa 1002 điểm 2003 điểm cho

Bài toán : Cho hình bình hành ABCD, kẻ 17 đường thẳng cho đường thẳng chia ABCD thành hai hình thang có tỉ số diện tích 1/3 Chứng minh rằng, 17 đường thẳng có đường thẳng đồng quy.

Lời giải : Gọi M, Q, N, P trung điểm AB, BC, CD, DA (hình 3)

Vì ABCD hình bình hành => MN // AD // BC ; PQ // AB // CD

(27)

S(AEFD) / S(EBCF) = 1/3 S(EBCF) / S(EBFC) = 1/3 => LP / LQ = 1/3 LQ / LP = 1/3

Trên PQ lấy hai điểm L1, L2 thỏa mãn điều kiện L1P / L1Q = L2Q / L2P = 1/3 L trùng với L1 L trùng với L2 Nghĩa d cắt AB CD d phải qua L1 L2

Tương tự, MN lấy hai điểm K1, K2 thỏa mãn điều kiện K1M / K1N = K2N / K2M = 1/3 d cắt AD BC d phải qua K1 K2

Tóm lại, đường thẳng số 17 đường thẳng cho phải qua điểm L1 ; L2 ; K1 ; K2

Vì 17 > 4.4 nên theo ngun lí Đi-rích-lê, 17 đường thẳng có đường thẳng (5 = + 1) qua điểm L1 ; L2 ; K1 ; K2 (5 đường thẳng đồng quy, đpcm)

Sau số tập tương tự

Bài : Trong hình chữ nhật có kích thước x 5, lấy điểm Chứng minh có hai điểm cách khoảng không vượt

Bài : Trong mặt phẳng tọa độ, cho ngũ giác lồi có tất đỉnh điểm nguyên (có hồnh độ tung độ số ngun) Chứng minh cạnh bên trong ngũ giác cịn điểm ngun khác

Bài : Tờ giấy hình vng có cạnh bé để cắt hình trịn có bán kính

Bài : Trên tờ giấy kẻ ô vng, chọn 101 Chứng minh 101 đó có 26 khơng có điểm chung.

TTT SỐ 14

MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN

Trong q trình giảng dạy làm tốn, tơi hệ thống số phương pháp giải phương trình nghiệm nguyên, hi vọng giúp em học sinh biết lựa chọn phương pháp thích hợp giải toán loại

Phương pháp : Đưa dạng tích

Biến đổi phương trình dạng : vế trái tích đa thức chứa ẩn, vế phải tích số nguyên

Thí dụ : Tìm nghiệm ngun phương trình : y3 - x3 = 91 (1)

Lời giải : (1) tương đương với (y - x)(x2 + xy + y2) = 91 (*) Vì x2 + xy + y2 > với x, y nên từ (*) => y - x >

Mặt khác, 91 = x 91 = x 13 y - x ; x2 + xy + y2 nguyên dương nên ta có bốn khả sau :

y - x = 91 x2 + xy + y2 = ; (I) y - x = x2 + xy + y2 = 91 ; (II) y - x = x2 + xy + y2 = ; (III) y - x = x2 + xy + y2 = 13 ; (IV)

(28)

Phương pháp : Sắp thứ tự ẩn

Nếu ẩn x, y, z, có vai trị bình đẳng, ta giả sử x ≤ y ≤ z ≤ để tìm nghiệm thỏa mãn điều kiện Từ đó, dùng phép hốn vị để => nghiệm phương trình cho

Thí dụ : Tìm nghiệm ngun dương phương trình : x + y + z = xyz (2)

Lời giải :

Do vai trị bình đẳng x, y, z phương trình, trước hết ta xét x ≤ y ≤ z Vì x, y, z nguyên dương nên xyz ≠ 0, x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ => xy thuộc {1 ; ; 3}

Nếu xy = => x = y = 1, thay vào (2) ta có : + z = z, vơ lí Nếu xy = 2, x ≤ y nên x = y = 2, thay vào (2), => z = Nếu xy = 3, x ≤ y nên x = y = 3, thay vào (2), => z =

Vậy nghiệm nguyên dương phương trình (2) hốn vị (1 ; ; 3)

Thí dụ : Tìm nghiệm nguyên dương phương trình : 1/x + 1/y + 1/z = (3)

Lời giải : Do vai trị bình đẳng x, y, z, trước hết ta xét x ≤ y ≤ z Ta có : 2 = 1/x + 1/y + 1/z ≤ 3.1/x => x ≤ 3/2 => x =

Thay x = vào (3) ta có :

1/y + 1/z + = => = 1/y + 1/z ≤ 2/y => y ≤ => y = => 1/z = (vơ lí)

hoặc y = => 1/z = => z =

Vậy nghiệm ngun dương phương trình (3) hốn vị (1 ; ; 2)

Phương pháp : Sử dụng tính chất chia hết

Phương pháp sử dụng tính chất chia hết để chứng minh phương trình vơ nghiệm tìm nghiệm phương trình

Thí dụ : Tìm nghiệm ngun phương trình : x2 - 2y2 = (4)

Lời giải : Từ phương trình (4) ta => x phải số lẻ Thay x = 2k + (k thuộc Z) vào (4), ta :

4k2 +4k + - 2y2 =

tương đương 2(k2 + k - 1) = y2 => y2 số chẵn => y số chẵn Đặt y = 2t (t thuộc Z), ta có : 2(k2 + k - 1) = 4t2

tương đương k(k + 1) = 2t2 + (**)

Nhận xét : k(k + 1) số chẵn, 2t2 + số lẻ => phương trình (**) vơ nghiệm Vậy phương trình (4) khơng có nghiệm ngun

Thí dụ : Chứng minh không tồn số nguyên x, y, z thỏa mãn : x3 + y3 + z3 = x + y + z + 2000 (5)

Lời giải : Ta có x3 - x = (x - 1).x.(x + 1) tích số nguyên liên tiếp (với x số nguyên) Do : x3 - x chia hết cho

Tương tự y3 - y z3 - z chia hết cho Từ ta có : x3 + y3 + z3 - x - y - z chia hết cho

Vì 2000 không chia hết x3 + y3 + z3 - x - y - z ≠ 2000 với số nguyên x, y, z tức phương trình (5) khơng có nghiệm ngun

(29)

xy + x - 2y = (6)

Lời giải : Ta có (6) tương đương y(x - 2) = - x + Vì x = khơng thỏa mãn phương trình nên (6) tương đương với:

y = (-x + 3)/(x - 2) tương đương y = -1 + 1/(x - 2)

Ta thấy : y số nguyên tương đương với x - ước hay x - = x - = -1 tương đương với x = x = Từ ta có nghiệm (x ; y) (1 ; -2) (3 ; 0)

Chú ý : Có thể dùng phương pháp để giải tốn này, nhờ đưa phương trình (6) dạng : x(y + 1) - 2(y + 1) = tương đương (x - 2)(y + 1) =

Phương pháp : Sử dụng bất đẳng thức

Dùng bất đẳng thức để đánh giá ẩn từ đánh giá => giá trị nguyên ẩn

Thí dụ : Tìm nghiệm ngun phương trình : x2 - xy + y2 = (7)

Lời giải :

(7) tương đương với (x - y/2)2 = - 3y2/4 Vì (x - y/2)2 ≥ => - 4y2/4 ≥

=> -2 ≤ y ≤

Lần lượt thay y = -2 ; ; -1 ; ; vào phương trình để tính x Ta có nghiệm ngun phương trình :

(x ; y) thuộc {(-1 ; -2) ; (1 ; 2) ; (-2 ; -1) ; (2 ; 1) ; (-1 ; 1) ; (1 ; -1)}.

Chắc chắn nhiều phương pháp để giải phương trình nghiệm ngun cịn nhiều thí dụ hấp dẫn khác Mong bạn tiếp tục trao đổi vấn đề Các bạn thử giải số phương trình nghiệm nguyên sau :

Bài : Giải phương trình nghiệm nguyên : a) x2 - xy = 23 ;

b) 3x - 3y + = ; c) 19x2 + 28y2 =729 ; d) 3x2 + 10xy + 8y2 = 96

Bài : Tìm x, y nguyên dương thỏa mãn : a) 4xy - 3(x + y) = 59 ;

b) 5(xy + yz + zx) = 4xyz ; c) xy/z + yz/x + zx/y = ; d) 1/x + 1/y + 1/z = 1/1995.

TTT SỐ 15

TÌM CHỮ SỐ TẬN CÙNG

Tìm chữ số tận số tự nhiên dạng toán hay Đa số tài liệu dạng toán sử dụng khái niệm đồng dư, khái niệm trừu tượng khơng có chương trình Vì có khơng học sinh, đặc biệt bạn lớp lớp khó hiểu tiếp thu

Qua viết này, tơi xin trình bày với bạn số tính chất phương pháp giải bài tốn “tìm chữ số tận cùng”, sử dụng kiến thức THCS

Chúng ta xuất phát từ tính chất sau :

(30)

a) Các số có chữ số tận 0, 1, 5, nâng lên lũy thừa bậc chữ số tận khơng thay đổi

b) Các số có chữ số tận 4, nâng lên lũy thừa bậc lẻ chữ số tận không thay đổi

c) Các số có chữ số tận 3, 7, nâng lên lũy thừa bậc 4n (n thuộc N) chữ số tận

d) Các số có chữ số tận 2, 4, nâng lên lũy thừa bậc 4n (n thuộc N) chữ số tận

Việc chứng minh tính chất khơng khó, xin dành cho bạn đọc Như vậy, muốn tìm chữ số tận số tự nhiên x = am, trước hết ta xác định chữ số tận a - Nếu chữ số tận a 0, 1, 5, x có chữ số tận 0, 1, 5, - Nếu chữ số tận a 3, 7, 9, am = a4n + r = a4n.ar với r = 0, 1, 2, nên từ tính chất 1c => chữ số tận x chữ số tận ar

- Nếu chữ số tận a 2, 4, 8, trường hợp trên, từ tính chất 1d => chữ số tận x chữ số tận 6.ar

Bài toán : Tìm chữ số tận số : a) 799 b) 141414 c) 4567

Lời giải :

a) Trước hết, ta tìm số dư phép chia 99 cho : 99 - = (9 - 1)(98 + 97 + … + + 1) chia hết cho => 99 = 4k + (k thuộc N) => 799 = 74k + 1 = 74k.7

Do 74k có chữ số tận (theo tính chất 1c) => 799 có chữ số tận 7. b) Dễ thấy 1414 = 4k (k thuộc N) => theo tính chất 1d 141414 = 144k có chữ số tận cùng

c) Ta có 567 - chia hết cho => 567 = 4k + (k thuộc N)

=> 4567 = 44k + 1 = 44k.4, theo tính chất 1d, 44k có chữ số tận nên 4567 có chữ số tận

Tính chất sau => từ tính chất

Tính chất : Một số tự nhiên bất kì, nâng lên lũy thừa bậc 4n + (n thuộc N) chữ số tận khơng thay đổi

Chữ số tận tổng lũy thừa xác định cách tính tổng chữ số tận lũy thừa tổng

Bài tốn : Tìm chữ số tận tổng S = 21 + 35 + 49 + … + 20048009

Lời giải :

Nhận xét : Mọi lũy thừa S có số mũ chia cho dư (các lũy thừa có dạng n4(n - 2) + 1, n thuộc {2, 3, …, 2004})

Theo tính chất 2, lũy thừa S số tương ứng có chữ số tận giống nhau, chữ số tận tổng :

(2 + + … + 9) + 199.(1 + + … + 9) + + + + = 200(1 + + … + 9) + = 9009

Vậy chữ số tận tổng S Từ tính chất tiếp tục => tính chất

Tính chất :

(31)

b) Số có chữ số tận nâng lên lũy thừa bậc 4n + có chữ số tận ; số có chữ số tận nâng lên lũy thừa bậc 4n + có chữ số tận

c) Các số có chữ số tận 0, 1, 4, 5, 6, 9, nâng lên lũy thừa bậc 4n + khơng thay đổi chữ số tận

Bài tốn : Tìm chữ số tận tổng T = 23 + 37 + 411 + … + 20048011

Lời giải :

Nhận xét : Mọi lũy thừa T có số mũ chia cho dư (các lũy thừa đều có dạng n4(n - 2) + 3, n thuộc {2, 3, …, 2004})

Theo tính chất 23 có chữ số tận ; 37 có chữ số tận ; 411 có chữ số tận ; …

Như vậy, tổng T có chữ số tận chữ số tận tổng : (8 + + + + 6 + + + 9) + 199.(1 + + + + + + + + 9) + + + + = 200(1 + 8 + + + + + + + 9) + + + = 9019

Vậy chữ số tận tổng T

* Trong số tốn khác, việc tìm chữ số tận dẫn đến lời giải độc đáo

Bài toán : Tồn hay không số tự nhiên n cho n2 + n + chia hết cho 19952000

Lời giải : 19952000 tận chữ số nên chia hết cho Vì vậy, ta đặt vấn đề liệu n2 + n + có chia hết cho khơng ?

Ta có n2 + n = n(n + 1), tích hai số tự nhiên liên tiếp nên chữ số tận n2 + n ; ; => n2 + n + tận ; ; => n2 + n + không chia hết cho

Vậy không tồn số tự nhiên n cho n2 + n + chia hết cho 19952000

Sử dụng tính chất “một số phương tận chữ số ; ; ; ; ; 9”, ta giải tốn sau :

Bài toán : Chứng minh tổng sau khơng thể số phương : a) M = 19k + 5k + 1995k + 1996k (với k chẵn)

b) N = 20042004k + 2003

Sử dụng tính chất “một số nguyên tố lớn tận chữ số ; ; ; 9”, ta tiếp tục giải toán :

Bài toán : Cho p số nguyên tố lớn Chứng minh : p8n +3.p4n - chia hết cho

* Các bạn giải tập sau :

Bài : Tìm số dư phép chia : a) 21 + 35 + 49 + … + 20038005 cho b) 23 + 37 + 411 + … + 20038007 cho

Bài : Tìm chữ số tận X, Y : X = 22 + 36 + 410 + … + 20048010

Y = 28 + 312 + 416 + … + 20048016

Bài : Chứng minh chữ số tận hai tổng sau giống : U = 21 + 35 + 49 + … + 20058013

V = 23 + 37 + 411 + … + 20058015

Bài : Chứng minh không tồn số tự nhiên x, y, z thỏa mãn : 19x + 5y + 1980z = 1975430 + 2004

(32)

TTT SỐ 16

THÊM CÁC PHƯƠNG PHÁP

GIẢI PHƯƠNG TRÌNH NGIỆM NGUYÊN

Sau “Một số phương pháp giải phương trình nghiệm nguyên” cô giáo Nguyễn Thị Lệ Huyền (TTT2 số 14), nhiều bạn bổ sung thêm phương pháp khác hoặc minh họa nhiều toán thú vị Kì này, tịa soạn tổng hợp giới thiệu tiếp số phương pháp từ gửi nhóm giáo viên Tốn, trường THCS Phan Bội Châu, Hải Dương, nhà giáo Minh Trân, phòng giáo dục Hương Thuỷ, Thừa Thiên, Huế ; Phan Tuấn Dũng, 9A, THCS Phong Bắc, Kì Anh ; Dương Ngọc Tuyền, 9B, THCS Hoàng Xuân Hàn, Đức Thọ, Hà Tĩnh ; Dương Mạnh Linh, 9A2, THCS Lê Quý Đôn, ý Yên, Nam Định để bạn đọc tham khảo

Phương pháp : Đưa dạng tổng

Biến đổi phương trình dạng : vế trái tổng bình phương, vế phải tổng số phương

Thí dụ : Tìm nghiệm nguyên phương trình x2 + y2 - x - y = (8)

Lời giải : (8) <=> 4x2 + 4y2 - 4x - 4y = 32 <=> (4x2 - 4x + 1) + (4y2 - 4y + 1) = 34 <=> |2x - 1|2 + |2y - 1|2 = 32 + 52

Bằng phương pháp thử chọn ta thấy 34 có dạng phân tích thành tổng của hai số phương 32 52

Do phương trình thỏa mãn hai khả :

Giải hệ => phương trình (8) có bốn nghiệm ngun (x ; y) Є {2 ; 3) ; (3 ; 2) ; (-1 ; -2) ; (-2 ; -1)}

Phương pháp : lùi vô hạn

Thí dụ : Tìm nghiệm ngun phương trình x2 - 5y2 = (9)

Lời giải :

Giả sử (x0 ; y0) nghiệm (9) : x02 - 5y02 = => x0 chia hết cho 5, đặt x0 = 5x1 ; (x1 Є Z), ta có : 25x12 - 5y02 = <=> 5x12 - y02 =

=> y0 chia hết cho 5, đặt y0 = 5y1 ; (y1 Є Z) Từ ta có : 5x12 - 25y12 = <=> x12 - 5y12 =

Vậy (x0 ; y0) nghiệm nguyên (9) (x0/5 ; y0/5) nghiệm nguyên (9)

Tiếp tục lập luận tương tự, ta có với k nguyên dương bất kì, nghiệm nguyên của (9) hay x0 y0 chia hết cho 5k với k số nguyên dương tùy ý Điều chỉ xảy x0 = y0 =

Vậy phương trình (9) có nghiệm x = y =

Phương pháp : xét chữ số tận

Thí dụ 10 : Tìm nghiệm nguyên dương phương trình 1! + 2! + + x! = y2 (10)

(33)

Nếu x > dễ thấy k! với k > có chữ số tận ị 1! + 2! + ! + 4! + 5! + + x! = 33 + 5! + + x! có chữ số tận

Mặt khác vế phải số phương nên khơng thể có chữ số tận

Vậy phương trình (10) có hai nghiệm nguyên dương (x ; y) Є {(1 ; 1) ; (3 ; 3)}

Thí dụ 11 : Tìm x, y nguyên dương thỏa mãn phương trình : x2 + x - = 32y + 1 (11)

Lời giải : Cho x giá trị từ đến 9, dễ dàng xác định chữ số tận x2 + x - nhận giá trị ; ; Mặt khác, ta thấy 32y + 1 lũy thừa bậc lẻ nên chữ số tận 7, khác với ; ;

Vậy (11) khơng thể xảy Nói cách khác, phương trình (11) khơng có nghiệm ngun dương

Bài tốn giải phương pháp sử dụng tính chất chia hết

Phương pháp : Sử dụng tính chất nghiệm phương trình bậc hai

Biến đổi phương trình dạng phương trình bậc hai ẩn, coi ẩn khác tham số, sử dụng tính chất nghiệm phương trình bậc để xác định giá trị tham số

Thí dụ 12 :

Giải phương trình nghiệm nguyên : 3x2 + y2 + 4xy + 4x + 2y + = (12)

Lời giải :

(12) y2 + (4x + 2)y + 3x2 + 4x + =

Ta thấy phương trình có nghiệm y ngun => - 4x - nguyên, mà x nguyên nên nguyên

=> ∆'y = x2 - = n2 với n Є Z, dùng phương pháp (đưa dạng tích) => (x + n)(x - n) = 4, ta xác định x = x = -2

Vậy phương trình (12) có hai nghiệm nguyên (x ; y) Є {(2 ;-5); (-2 ; 3)}

Thí dụ 13 : Tìm nghiệm ngun phương trình x2 - (y + 5)x + 5y + = (13)

Lời giải : Giả sử phương trình ẩn x có nghiệm ngun x1, x2 theo định lí Vi-ét ta có :

=> (x1 - 5)(x2 - 5) = = 1.2 = (-1)(-2) => x1 + x2 = 13 x1 + x2 =

=> y = y = 2, thay vào (13), phương trình có nghiệm : (x ; y) Є {(7 ; 8) ; (6 ; 8) ; (4 ; 2) ; (3 ; 2)}

Chú ý : Một số phương pháp mà bạn gọi phương pháp giải phương trình nghiệm nguyên thấy đặc trưng cho phương trình

nghiệm ngun nên khơng giới thiệu Chẳng hạn có bạn nêu phương pháp chứng minh nghiệm với thí dụ giải phương trình nghiệm ngun 2x + 5x = 7x Có bạn viết phương trình dạng phương trình bậc ẩn x đặt điều kiện ∆x ≥ để có miền giá trị y, phương pháp thực trình bày thí dụ 7, khơng viết biệt thức ∆’x Các bạn làm thêm số tập :

(34)

b) 3x = 4y +

Bài : Tìm nghiệm nguyên phương trình : a) 5x + 12x = 13x

b) y4 = x6 + 3x3 +

Bài : Chứng minh phương trình 25t = 2t5 + 1997 khơng có nghiệm ngun <B.BàI b :< 4>Tìm nghiệm nguyên phương trình x3 - 3y3 - 9z3 =

Bài : Tìm nghiệm nguyên phương trình 2x2 + 2y2 - 2xy + x + y - 10 = TTT SỐ 17

TÌM CÁC CHỮ SỐ

Tiếp theo TTT2 số 15, xin tiếp tục trao đổi với bạn đọc tốn tìm hai chữ số tận ; tìm ba chữ số tận số tự nhiên.

* Tìm hai chữ số tận

Nhận xét : Nếu x Є N x = 100k + y, k ; y Є N hai chữ số tận x cũng hai chữ số tận y

Hiển nhiên y ≤ x Như vậy, để đơn giản việc tìm hai chữ số tận số tự nhiên x thay vào ta tìm hai chữ số tận số tự nhiên y (nhỏ hơn)

Rõ ràng số y nhỏ việc tìm chữ số tận y đơn giản Từ nhận xét trên, ta đề xuất phương pháp tìm hai chữ số tận số tự nhiên x = am sau :

Trường hợp : Nếu a chẵn x = am 2m Gọi n số tự nhiên cho an - 1 25 Viết m = pn + q (p ; q Є N), q số nhỏ để aq ta có :

x = am = aq(apn - 1) + aq

Vì an - 1 25 => apn - 25 Mặt khác, (4, 25) = nên aq(apn - 1) 100

Vậy hai chữ số tận am hai chữ số tận aq Tiếp theo, ta tìm hai chữ số tận aq

Trường hợp : Nếu a lẻ , gọi n số tự nhiên cho an - 1 100 Viết m = un + v (u ; v Є N, ≤ v < n) ta có :

x = am = av(aun - 1) + av

Vì an - 100 => aun - 100

Vậy hai chữ số tận am hai chữ số tận av Tiếp theo, ta tìm hai chữ số tận av

Trong hai trường hợp trên, chìa khóa để giải tốn phải tìm được số tự nhiên n Nếu n nhỏ q v nhỏ nên dễ dàng tìm hai chữ số tận aq av

Bài toán :

Tìm hai chữ số tận số : a) a2003 b) 799

Lời giải : a) Do 22003 số chẵn, theo trường hợp 1, ta tìm số tự nhiên n nhỏ cho 2n - 25

Ta có 210 = 1024 => 210 + = 1025 25 => 220 - = (210 + 1)(210 - 1) 25 => 23(220 - 1) 100 Mặt khác :

22003 = 23(22000 - 1) + 23 = 23((220)100 - 1) + 23 = 100k + (k Є N) Vậy hai chữ số tận 22003 08

(35)

Ta có 74 = 2401 => 74 - 100

Mặt khác : 99 - => 99 = 4k + (k Є N)

Vậy 799 = 74k + 1 = 7(74k - 1) + = 100q + (q Є N) tận hai chữ số 07

Bài tốn :

Tìm số dư phép chia 3517 cho 25

Lời giải : Trước hết ta tìm hai chữ số tận 3517 Do số lẻ nên theo trường hợp 2, ta phải tìm số tự nhiên n nhỏ cho 3n - 100

Ta có 310 = 95 = 59049 => 310 + 50 => 320 - = (310 + 1) (310 - 1) 100 Mặt khác : 516 - => 5(516 - 1) 20

=> 517 = 5(516 - 1) + = 20k + =>3517 = 320k + 5 = 35(320k - 1) + 35 = 35(320k - 1) + 243, có hai chữ số tận 43

Vậy số dư phép chia 3517 cho 25 18

Trong trường hợp số cho chia hết cho ta tìm theo cách gián tiếp

Trước tiên, ta tìm số dư phép chia số cho 25, từ suy khả hai chữ số tận Cuối cùng, dựa vào giả thiết chia hết cho để chọn giá trị Các thí dụ cho thấy rằng, a = a = n = 20 ; a = n = Một câu hỏi đặt : Nếu a n nhỏ ? Ta có tính chất sau đây (bạn đọc tự chứng minh)

Tính chất : Nếu a Є N (a, 5) = a20 - 25

Bài toán : Tìm hai chữ số tận tổng : a) S1 = 12002 + 22002 + 32002 + + 20042002

b) S2 = 12003 + 22003 + 32003 + + 20042003

Lời giải :

a) Dễ thấy, a chẵn a2 chia hết cho ; a lẻ a100 - chia hết cho ; a chia hết cho a2 chia hết cho 25

Mặt khác, từ tính chất ta suy với a Є N (a, 5) = ta có a100 - 25 Vậy với a Є N ta có a2(a100 - 1) 100

Do S1 = 12002 + 22(22000 - 1) + + 20042(20042000 - 1) + 22 + 32 + + 20042

Vì hai chữ số tận tổng S1 hai chữ số tận tổng 12 + 22 + 32 + + 20042 áp dụng công thức :

12 + 22 + 32 + + n2 = n(n + 1)(2n + 1)/6

=>12 + 22 + + 20042 = 2005 x 4009 x 334 = 2684707030, tận 30 Vậy hai chữ số tận tổng S1 30

b) Hoàn toàn tương tự câu a, S2 = 12003 + 23(22000 - 1) + + 20043(20042000 - 1) + 23 + 33 + 20043 Vì thế, hai chữ số tận tổng S2 hai chữ số tận cùng 13 + 23 + 33 + + 20043

áp dụng công thức :

=> 13 + 23 + + 20043 = (2005 x 1002)2 = 4036121180100, tận 00 Vậy hai chữ số tận tổng S2 00

Trở lại toán (TTT2 số 15), ta thấy sử dụng việc tìm chữ số tận để nhận biết số số phương Ta nhận biết điều thơng qua việc tìm hai chữ số tận

(36)

Tính chất : Số tự nhiên A khơng phải số phương : + A có chữ số tận 2, 3, 7, ;

+ A có chữ số tận mà chữ số hàng chục chữ số chẵn ; + A có chữ số hàng đơn vị khác mà chữ số hàng chục lẻ ; + A có chữ số hàng đơn vị mà chữ số hàng chục khác ; + A có hai chữ số tận lẻ

Bài toán 10 : Cho n Є N n - không chia hết cho Chứng minh 7n + khơng thể số phương

Lời giải : Do n - không chia hết n = 4k + r (r Є {0, 2, 3}) Ta có 74 - = 2400 100 Ta viết 7n + = 74k + r + = 7r(74k - 1) + 7r +

Vậy hai chữ số tận 7n + hai chữ số tận 7r + (r = 0, 2, 3) nên 03, 51, 45 Theo tính chất rõ ràng 7n + khơng thể số chính phương n khơng chia hết cho 4.

TTT SỐ 18

TIM CÁC CHỮ SỐ

(tiếp theo kì trước)

* Tìm ba chữ số tận cùng

Nhận xét : Tương tự trường hợp tìm hai chữ số tận cùng, việc tìm ba chữ số tận cùng số tự nhiên x việc tìm số dư phép chia x cho 1000

Nếu x = 1000k + y, k ; y Є N ba chữ số tận x ba chữ số tận y (y ≤ x)

Do 1000 = x 125 mà (8, 125) = nên ta đề xuất phương pháp tìm ba chữ số tận cùng số tự nhiên x = am sau :

Trường hợp : Nếu a chẵn x = am chia hết cho 2m Gọi n số tự nhiên cho an - chia hết cho 125

Viết m = pn + q (p ; q Є N), q số nhỏ để aq chia hết cho ta có : x = am = aq(apn - 1) + aq

Vì an - chia hết cho 125 => apn - chia hết cho 125 Mặt khác, (8, 125) = nên aq(apn - 1) chia hết cho 1000

Vậy ba chữ số tận am ba chữ số tận aq Tiếp theo, ta tìm ba chữ số tận aq

Trường hợp : Nếu a lẻ , gọi n số tự nhiên cho an - chia hết cho 1000 Viết m = un + v (u ; v Є N, ≤ v < n) ta có :

x = am = av(aun - 1) + av

Vì an - chia hết cho 1000 => aun - chia hết cho 1000

Vậy ba chữ số tận am ba chữ số tận av Tiếp theo, ta tìm ba chữ số tận av

Tính chất sau suy từ tính chất

Tính chất :

Nếu a Є N (a, 5) = a100 - chia hết cho 125

Chứng minh : Do a20 - chia hết cho 25 nên a20, a40, a60, a80 chia cho 25 có số dư

(37)

Bài tốn 11 :

Tìm ba chữ số tận 123101

Lời giải : Theo tính chất 6, (123, 5) = => 123100 - chia hết cho 125 (1) Mặt khác :

123100 - = (12325 - 1)(12325 + 1)(12350 + 1) => 123100 - chia hết cho (2) Vì (8, 125) = 1, từ (1) (2) suy : 123100 - chi hết cho 1000

=> 123101 = 123(123100 - 1) + 123 = 1000k + 123 (k ∩ N) Vậy 123101 có ba chữ số tận 123

Bài toán 12 :

Tìm ba chữ số tận 3399 98

Lời giải : Theo tính chất 6, (9, 5) = => 9100 - chi hết cho 125 (1) Tương tự 11, ta có 9100 - chia hết cho (2)

Vì (8, 125) = 1, từ (1) (2) suy : 9100 - chia hết cho 1000 => 3399 98 = 9199 9 = 9100p + 99 = 999(9100p - 1) + 999 = 1000q + 999 (p, q Є N)

Vậy ba chữ số tận 3399 98 ba chữ số tận 999

Lại 9100 - chia hết cho 1000 => ba chữ số tận 9100 001 mà 999 = 9100 : 9 => ba chữ số tận 999 889 (dễ kiểm tra chữ số tận 999 9, sau

dựa vào phép nhân để xác định )

Vậy ba chữ số tận 3399 98 889

Nếu số cho chia hết cho ta tìm ba chữ số tận cách gián tiếp theo bước : Tìm dư phép chia số cho 125, từ suy khả của ba chữ số tận cùng, cuối kiểm tra điều kiện chia hết cho để chọn giá trị đúng

Bài tốn 13 :

Tìm ba chữ số tận 2004200

Lời giải : (2004, 5) = (tính chất 6) => 2004100 chia cho 125 dư

=> 2004200 = (2004100)2 chia cho 125 dư

=> 2004200 tận 126, 251, 376, 501, 626, 751, 876 Do 2004200 chia hết tận 376

Từ phương pháp tìm hai ba chữ số tận trình bày, mở rộng để tìm nhiều ba chữ số tận số tự nhiên

Sau số tập vận dụng :

Bài : Chứng minh 1n + 2n + 3n + 4n chia hết cho n không chia hết cho

Bài : Chứng minh 920002003, 720002003 có chữ số tận giống

Bài : Tìm hai chữ số tận : a) 3999 b) 111213

Bài : Tìm hai chữ số tận : S = 23 + 223 + + 240023

Bài : Tìm ba chữ số tận : S = 12004 + 22004 + + 20032004

Bài : Cho (a, 10) = Chứng minh ba chữ số tận a101 ba chữ số tận a

Bài : Cho A số chẵn không chia hết cho 10 Hãy tìm ba chữ số tận A200

(38)

199319941995 2000

Bài : Tìm sáu chữ số tận 521.

TTT SỐ 19

MỘT PHƯƠNG PHÁP THÚ VỊ GIẢI BÀI TỐN TÍNH GĨC

Các tốn tính số đo góc đa dạng, xuất nhiều kì thi Để giải quyết tốt dạng tốn có phải vẽ hình phụ Trong viết này, xin giới thiệu với em phương pháp vẽ thêm hình phụ tam giác tốn tính số đo góc

Bài toán : Cho tam giác ABC cân A,  A = 200 Trên AB lấy điểm D cho AD = BC Tính  BDC

Lời giải :

Cách : Trên nửa mặt phẳng có bờ đường thẳng BC, chứa điểm A, dựng tam giác đều BCE (hình 1)

Vì tam giác ABC cân A,  A = 200 nên  ABC =  ACB = 800 Vậy E thuộc miền trong tam giác ABC, suy  ACE = 200 (1)

Dễ thấy ∆ABE = ∆ACE (c.c.c) nên  BAE =  CAE =  A / = 100 (2)

Từ (1) suy  A =  ACE = 200 suy ∆DAC = ∆ECA (c.g.c), kết hợp với (2) suy ta  ACD =  CAE = 1010

(39)

Cách : Trên nửa mặt phẳng có bờ đường thẳng AB, chứa điểm C, dựng tam giác đều ABI (hình 2)

Vì ∆ABC cân A,  A = 200 nên AI = AB = AC ;  CAI = 400 ;  IBC = 200 suy  ACI = 700(∆ACI cân A) suy  BCI = 1500

Lại có ∆ADC = ∆BCI (c.g.c)

Suy  ADC =  BCI = 1500 suy  BDC = 300

Bài tốn 2 (đề thi vơ định tốn Nam Tư năm 1983) : Cho tam giác ABC cân A,  A = 800 Ở miền tam giác lấy điểm I cho  IBC = 100 ;  ICB = 300 Tính  AIB

Lời giải : Trên nửa mặt phẳng có bờ đường thẳng BC, chứa điểm A, dựng tam giác đều BCE (hình 3)

Vì ∆ABC cân A, nên  A = 800 nên  ABC =  ACB = 500 suy  ABE =  ACE = 100 ; điểm A thuộc miền tam giác BCE

Dễ dàng chứng minh ∆AEB = ∆ICB (g.c.g) suy BA = BI suy ∆ ABI cân B, có  ABI = 500 - 100 = 400 suy  AIB = 700

Bài toán : Cho tam giác ABC cân A,  A = 1000 Trên cạnh AB kéo dài phía B, lấy điểm E cho AE = BC Tính  AEC

Lời giải : Trên nửa mặt phẳng có bờ đường thẳng AE, chứa điểm C, dựng tam giác đều AEF (hình 4)

Vì ∆ABC cân A,  A = 1000 nên  ABC = 400 ; tia AF nằm hai tia AE, AC Suy  CAF = 400 suy ∆ABC = ∆CAF (c.g.c)

Suy AC = FC suy ∆AEC = ∆FEC (c.c.c)

Suy  AEC =  FEC = /  AEF = 600 / = 300

(40)

Các bạn làm thêm toán sau :

Bài toán : Cho tam giác ABC cân A,  A = 800 Trên AC lấy điểm E, BC lấy điểm F cho  ABE =  CAF = 300 Tính  BEF

* Tài liệu tham khảo : “Bài tập nâng cao số chuyên đề Toán 7”, Nhà xuất Giáo dục năm 2004 (sách tham dự thi viết sách Bài tập sách Tham khảo Bộ Giáo dục Đào tạo).

TTT SỐ 20

ĐỊNH LÍ PY - TA - GO MANG ĐẾN NHIỀU BÀI TOÁN THÚ VỊ Khi hỏi bạn học sinh lớp năm học 2003-2004 : “Nếu tam giác vng cân có cạnh góc vng cạnh huyền ?”, bạn lúng túng Điều dễ hiểu chương trình mơn tốn năm học 2003-2004 trở trước, học sinh lớp chưa học bậc hai

Nhưng đặt câu hỏi cho học sinh lớp vào cuối học kì I năm học 2003-2004 bạn trả lời :

- Quá dễ ! 12 + 12 = 2, đáp số chứ !

Định lí Py-ta-go bậc hai sách giáo khoa Tốn giúp ta có thêm nhiều khả tiếp cận toán thú vị

1 Bài tốn tính độ dài đoạn thẳng

Ví dụ : Tính độ dài x, y hình 1

Lời giải : áp dụng định lí Py-ta-go vào tam giác vng AHC, AHB ta có : x2 = 162 + AH2 ; y2 = 92 + AH2 Do : x2 - y2 = (162+ AH2) - (92 + AH2) = 175 (1) Áp dụng định lí Py-ta-go vào tam giác vuông BAC : x2 + y2 = (9 + 16)2 = 625 (2) Từ (1) (2) suy x2 = 400 ; y2 = 225

Do : x = 20 ; y = 15

Ví dụ : Một tam giác có độ dài hai cạnh 8, góc xen 60o Tính độ dài cạnh cịn lại

Lời giải : (hình 2) Xét tam giác ABC có AB = ; AC = Kẻ đường cao AH Tam giác vng AHB có ĐA = 60o nên AH = AB : = : =

(41)

Áp dụng định lí Py-ta-go vào tam giác vng CHB, AHB ta có : BC2 = BH2 + CH2 = (AB2 - AH2 ) + CH2 = 82 - 42 + 12 = 49

Vậy BC =

Ví dụ : Tính chu vi đường gấp khúc ABCDEA hình

Hướng dẫn : Hãy kéo dài AB ED cho cắt I.Ááp dụng định lí Py-ta-go vào tam giác vng AIE, ta tính AE = 5, chu vi đường gấp khúc ABCDEA bằng 12

2 Bài tốn tính diện tích tam giác

Ví dụ : Cho tam giác ABC có cạnh 1dm Số số sau cho giá trị sát với diện tích tam giác ABC : 0,4 dm2 ; 0,5 dm2 ; 0,6 dm2 ?

Lời giải : (hình 4) Kẻ đường cao AH Áp dụng định lí Py-ta-go vào tam giác vng AHC ta có : AH2 = AC2 - HC2 = 12 - 0,52 = 0,75

(42)

Hướng dẫn : Chú ý 10 = 32 + 12 ; 20 = 22 + 42 ; 50 = (3 + 2)2 + (1 + 4)2

Lời giải : Vẽ thêm điểm D, H, E hình 5 Ta tính SADB = 1,5 ; SBHC = 4 ; SBDEH = ; SAEC = 12,5 Do : SABC = 12,5 - 1,5 - - =

Mời bạn tự giải tập sau :

Bài : Một tam giác vng cân có cạnh góc vng Cạnh huyền tam giác có giá trị sát với số số sau : 2,6 ; 2,7 ; 2,8 ;

Bài : Một tam giác có độ dài hai cạnh 5, góc xen 60o Tính độ dài cạnh thứ ba

Bài : Một tam giác có độ dài hai cạnh 6, góc xen 120o Tính độ dài cạnh thứ ba

Bài 4 (bài toán Xem Lôi-đơ) : hội chợ, người ta quảng cáo bán hồ hình tam giác ba miếng đất hình vng dựng ba cạnh đó (hình 6) Diện tích ba miếng đất 74 acrơ ; 116 acrơ ; 370 acrơ (1acrơ = 4047m2)

Bảng quảng cáo khơng nói rõ diện tích hồ làm nhiều người thắc mắc không rõ diện tích lớn hay nhỏ Bạn tìm diện tích hồ

(43)

TTT SỐ 21

GIẢI HỆ PHƯƠNG TRÌNH BẰNG CÁCH ĐÁNH GIÁ CÁC ẨN

Hệ phương trình dạng tốn thường gặp kì thi học sinh lớp Có nhiều hệ phương trình giải trực tiếp phức tạp, chí khơng giải Trong số trường hợp vậy, ta tìm cách đánh giá ẩn ẩn với số, từ xác định nghiệm hệ Phương pháp gọi “phương pháp đánh giá ẩn”

1 Đánh giá ẩn

Ví dụ (đề thi vào khối chuyên Toán Tin, ĐHQG Hà Nội năm 1996) : Giải hệ phương trình

Lời giải : Điều kiện : x ≥ 1/2 ; y ≤ 1/2 Ta chứng minh x = y Thật :

Vậy nghiệm hệ phương trình (thỏa mãn điều kiện) : x = y =

Ví dụ 2 (đề thi vào khối chuyên, ĐHSPHN năm 2004) : Tìm nghiệm dương hệ

(44)

Vì x > 0, y > 0, z > nên :

Từ (1), (2), (4) => 2x2004 = y6 + z6 ≤ x6 + z6 = 2y2004 => 2x2004 ≤ 2y2004 => x ≤ y (5) Từ (1), (3), (4) => 2x2004 = y6 + z6 ≤ y6 + x6 = 2z2004 => 2x2004 ≤ 2z2004 => x ≤ z (6) Từ (4), (5), (6) suy x = y = z

Thay vào (1) ta có 2x2004 = x6 + x6 = 2x6 suy x = (do x > 0) Vậy hệ có nghiệm dương : x = y = z =

Ví dụ : Tìm a, b, c biết

4a - b2 = 4b - c2 = 4c - a2 = (*)

Lời giải : Ta thấy a > 0, b > 0, c > Giả sử a > b, từ (*) ta có :

4a - 4b = b2 - c2 > => b > c (>0) ; 4b - 4c = c2 - a2 > => c > a (>0)

=> b > c > a trái với giả thiết a > b => a ≤ b

Tương tự trên, a < b dẫn đến điều vơ lí Vậy a = b, suy : 4a - 4b = b2 - c2 = => b = c => a = b = c

Thay vào (*) ta có :

4a - b2 = <=> 4a - a2 = <=> a2 - 4a + =

Giải phương trình bậc hai ẩn a ta hai nghiệm ++++++++ Vậy hệ phương trình (*) có hai nghiệm :

2 Đánh giá ẩn với số

Ví dụ 4 (đề thi vào lớp 10 chuyên, ĐHQG Hà Nội 2004) : Biết a > 0, b > a100 + b100 = a101 + b101 = a102 + b102 (1)

Tính giá trị biểu thức P = a2004 + b2004

Lời giải : Ta chứng minh a = 1, b = 1, từ tính P Thật vậy, từ (1) ta có : a100.(1 - a) = b100.(b - 1) (2)

a101.(1 - a) = b101.(b - 1) (3)

Trừ (2) cho (3) theo vế ta có :

(a100 - a101)(1 - a) = (b100 - b101)(b - 1) <=> a100.(1 - a)2 = b100.(1 - b)(b - 1) <=> a100.(1 - a)2 = - b100.(1 - b)2 (4)

Nếu a ≠ 1, a > suy :

a100.(1 - a)2 > ≥ - b100.(1 - b)2 trái với (4) => a = => b = (thay vào (2), b >0) Vậy P = 12004 + 12004 =

Ví dụ : Giải hệ phương trình

(45)

Tương tự, x < dẫn đến điều vơ lí Suy x = 1, thay vào (1) (2) ta có :

Vậy hệ có nghiệm : x = y = z =

(46)

TTT SỐ 22

THAY ĐỔI KẾT LUẬN CỦA BÀI TỐN HÌNH HỌC

Trong chứng minh hình học, việc phát kết tương đương với kết luận bài tốn đưa ta đến chứng minh quen thuộc, đơn giản những phép chứng minh độc đáo Đây công việc thường xuyên người làm toán Các bạn theo dõi số toán sau

Bài toán : Cho tam giác ABC có BC < BA, đường phân giác BE đường trung tuyến BD (E, D thuộc AC) Đường thẳng vng góc với BE qua C cắt BE, BD tại F, G Chứng minh đường thẳng DF chia đôi đoạn thẳng GE

Lời giải : Gọi giao điểm CG với AB K DF với BC M

Dễ thấy ∆ BKC cân B, BF trung trực KC suy F trung điểm KC Theo giả thiết, D trung điểm AC

=> DF đường trung bình DCKA => DF // KA hay DM // AB

=> DM đường trung bình DABC => M trung điểm BC

Xét ∆ DBC, F thuộc trung tuyến DM nên DF chia đôi đoạn thẳng GE <=> GE // BC.

Ta chứng minh GE // BC, :

Cách : Ta có AE = AD + DE = CD + DE = CE + 2DE hay CE = AE - 2DE, suy

Mặt khác, DF // AB, K thuộc AB AK = 2DF nên

Vậy BG/GD = BK/DF hay GE // BC

(47)

Vậy DE/EC = DG/GB hay GE // BC

Cách : áp dụng định lí Xê-va ta có Mặt khác MB = MC nên

Bài toán : Trên cạnh AB, BC, CA tam giác ABC lấy điểm C1, A1, B1 cho đường thẳng AA1, BB1, CC1 đồng quy O Đường thẳng qua O song song với AC cắt A1B1 B1C1 K M Chứng minh OK = OM

Lời giải : Qua B vẽ đường thẳng song song với AC cắt A1B1 B1C1 K1 M1

Xét ∆ B1K1M1, dễ thấy MK // M1K1 nên OM = OK <=> BM1 = BK1. Ta chứng minh BM1 = BK1, :

∆ AB1C1 đồng dạng với ∆ BM1C1 suy

∆ CB1A>sub>1 ∆ đồng dạng với BK1A1 suy

Vậy : (áp dụng định lí Xê-va), suy BM1 = BK1

Bài toán : Xét 5(20) trang 15

(48)

Do OX = OY nên :

XZ = YT <=> OZ = OT

Ta chứng minh OZ = OT Trước hết, ta chứng minh IO1OO2 hình bình hành bằng cách xét trường hợp : IBA < 90o ; IBA > 90o ; IBA = 90 o

Gọi M giao điểm O1I CD

Với IBA < 90o, ∆ IBA nội tiếp (O1), ta chứng minh : AIO1 + IBA = 90 o => CIM + ICM = 90 o =>O1I CD ; Mà OO2 CD => OO2 // O1I Tương tự OO1 // O2I, suy IO1OO2 hình bình hành (bạn đọc tự chứng minh hai trường hợp lại)

Từ đó, ta có (xem phần hình màu) : OO1 = O2I = O2T ; OO2 = O1I = O1Z ;

OO1Z = (180o - 2O1IZ) + OO1I = 360o - OO2I - (180o - 2(OO2</SUB

Đ O1IZ)) = 360o - OO2MI - (180o - 2O,sub>2IT) = OO2T

=> ∆ OO1Z = ∆ TO2O (c.g.c) => OZ = OT.(Chứng minh không cần dùng tới kiến

thức tam giác đồng dạng) l Bài tập áp dụng :

1) Từ điểm C ngồi đường trịn (O) vẽ hai tiếp tuyến CA, CB với đường tròn (A, B tiếp điểm) Đường tròn (O1) qua C tiếp xúc với AB B cắt (O) M Chứng minh AM chia đoạn thẳng BC thành hai phần

2) Cho tam giác ABC nội tiếp đường tròn (O) Tiếp tuyến với (O) B cắt tiếp tuyến với (O) A C M N Qua B vẽ đường thẳng vng góc với AC P Chứng minh BP phân giác MPN

3) Cho hình thang ABCD có đáy lớn CD ; AC cắt BD O, AD cắt BC I OI cắt AB E Đường thẳng qua A song song với BC cắt BD M đường thẳng qua B song song với AD cắt AC N Chứng minh : a) MN // AB ; b) AB2 =

(49)

TTT SỐ 23

MỘT PHƯƠNG PHÁP TÌM GIÁ TRỊ NHỎ NHẤT VÀ GIẤ TRỊ LỚN NHẤT

Trong viết này, đề cập đến dạng tốn tìm giá trị lớn (GTLN) giá trị nhỏ (GTNN) biểu thức nhiều ẩn, ẩn nghiệm phương trình bất phương trình cho trước

Đối với dạng toán này, ta cần xác định giải bất phương trình ẩn mà ẩn là biểu thức cần tìm GTLN, GTNN

Bài tốn : Tìm GTLN GTNN xy biết x y nghiệm phương trình x4 + y4 - = xy(1 - 2xy)

Lời giải : Ta có x4 + y4 - = xy(1 - 2xy) <=> xy + = x4 + y4 + 2x2y2

<=> xy + = (x2 + y2)2 (1)

Do (x2 - y2)2 ≥ với x, y, dễ dàng suy (x2 + y2)2 ≥ 4(xy)2 với x, y (2) Từ (1) (2) ta có :

xy + ≥ 4(xy)2 <=> 4t2 - t - ≤ (với t = xy) <=> (t - 1)(4t + 3) ≤

Vậy : t = xy đạt GTLN

<=> x = y = ; t = xy đạt GTNN

Bài toán : Cho x, y, z số dương thỏa mãn xyz ≥ x + y + z + Tìm GTNN x + y + z

Lời giải : áp dụng bất đẳng thức Cô-si cho ba số dương x, y, z ta có :

Vậy t = x + y + z đạt GTNN x = y = z =

Bài toán : Cho số thực x, y, z thỏa mãn x2 + 2y2 + 2x2z2 + y2z2 + 3x2y2z2 = Tìm GTLN GTNN A = xyz

Lời giải :

x2 + 2y2 + 2x2z2 + y2z2 + 3x2y2z2 =

<=> (x2 + y2z2) + 2(y2 + x2z2) + 3x2y2z2 = (1)

áp dụng bất đẳng thức m2 + n2 ≥ 2|mn| với m, n ta có : x2 + y2z2 ≥ 2|xyz| ; y2 + x2z2 ≥ 2|xyz| (2)

Từ (1) (2) suy :

(50)

<=> 3A2 + 6|A| - ≤ <=> A2 + 2|A| - ≤ <=> (|A| - 1)(|A| + 3) ≤ <=> |A| ≤

<=> -1 ≤ A ≤

Vậy : A đạt GTLN

A đạt GTNN -1

Bài toán : Cho số thực x, y, z thỏa mãn x4 + y4 + x2 - = 2y2(1 - x2) Tìm GTLN GTNN x2 + y2

Lời giải : Ta có x4 + y4 + x2 - = 2y2(1 - x2) <=> (x2 + y2)2 - 2(x2 + y2) - = -3x2 ≤ => t2 - 2t - ≤ (với t = x2 + y2 ≥ 0) => (t + 1)(t - 3) ≤ => t ≤

Vậy t = x2 + y2 đạt GTLN x = ; Ta lại có x4 + y4 + x2 - = 2y2(1 - x2)

<=> (x2 + y2)2 + x2 + y2 - = 3y2 ≥ => t2 + t - ≥ (với t = x2 + y2 ≥ 0)

Vậy t = x2 + y2 đạt GTNN

khi y = ;

Bài tập tương tự

1) Cho x, y, z thỏa mãn : 2xyz + xy + yz + zx ≤ Tìm GTLN xyz

Đáp số : 1/8(x = y = z = 1/2)

2) Cho ba số dương x, y, z thỏa mãn : (x + y + z)3 + x2 + y2 + z2 + = 29xyz Tìm GTNN xyz

Đáp số : (x = y = z = 2)

3) Tìm GTLN GTNN S = x2 + y2 biết x y nghiệm phương trình : 5x2 + 8xy + 5y2 = 36

Đáp số : GTLN 36 GTNN 4

(51)

Tìm GTLN x2 + y2 Đáp số : (x = -1 ; y = 0)

5) Cho số thực x, y, z thỏa mãn : x2 + 4y2 + z2 = 4xy + 5x - 10y +2z - Tìm GTLN GTNN x - 2y Đáp số :

GTLN (x = 2y + ; y Є R ; z = 1) ; GTNN (x = 2y + ; y Є R ; z = 1)

6) Tìm số nguyên không âm x, y, z, t để M = x2 + y2 + 2z2 + t2 đạt GTNN, biết rằng :

Đáp số : x = ; y = ; z = ; t = Khi M đạt giá trị nhỏ 61. TTT SỐ 24

MỘT HẰNG ĐẲNG THỨC THÚ VỊ Với số thực a, b, c, ta có :

(a + b)(a + c) = a2 + (ab + bc + ca) = a(a + b + c) + bc (*)

Với tôi, (*) đẳng thức thú vị Trước hết, từ (*) ta có :

Hệ : Nếu ab + bc + ca = a2 + = (a + b)(a + c)

Hệ : Nếu a + b + c = a + bc = (a + b)(a + c)

Bây giờ, đến với vài ứng dụng (*) hai hệ

Bài toán : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = Hãy tính giá trị biểu thức :

Lời giải : Theo hệ ta có

(52)

Vì A = a(b + c) + b(c + a) + c(a + b) = 2(ab + bc + ca) =

Vấn đề khó ta hướng tới việc đánh giá biểu thức

Bài toán : Cho ba số dương a, b, c thỏa mãn (a +b)(a +c) = Chứng minh :

Lời giải : a) Sử dụng bất đẳng thức Cô-si cho hai số dương a(a + b + c) ; bc : 1 = (a + b)( a + c) = a(a + b + c) + bc ≥

b) Sử dụng bất đẳng thức Cô-si cho ba số dương a2 ; (ab + bc + ca)/2 ; (ab + bc + ca)/2

1 = (a + b)( a + c) = a2 + (ab + bc + ca) =

Bài toán : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = Chứng minh :

Lời giải : Theo hệ ta có

(53)

Tương tự ta có

Từ kết ta suy :

Bài toán sau nguyên đề thi Châu - Thái Bình Dương năm 2002 viết lại cho đơn giản (thay (1/x ; 1/y ; 1/z) (a ; b ; c))

Bài toán : Cho ba số dương a, b, c thỏa mãn a + b + c = Chứng minh :

Lời giải : Theo hệ bất đẳng thức Bu-nhi-a-cốp-ski ta có

Tương tự ta có

Từ kết ta suy :

Để kết thúc, xin bạn làm thêm số tập :

Bài tập : Cho ba số dương a, b, c thỏa mãn a + b + c = Hãy tính giá trị biểu thức :

Bài tập : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = Chứng minh :

(54)

TTT SỐ 25

CÁC BÀI TOÁN SỐ HỌC GIẢI ĐƯỢC NHỜ TÍNH BẤT BIẾN Một số tốn có đặc điểm, tính chất khơng thay đổi thay đổi đại lượng đó, mà ta gọi tính bất biến Đơi tìm lời giải cho tốn nhờ khai thác tính bất biến này, theo dõi số toán số học như

Bài toán : Trên bảng viết 10 dấu cộng 15 dấu trừ Với 24 lần thực hiện, lần xóa dấu lại thêm vào dấu (cộng trừ) để cuối bảng còn lại dấu Biết dấu thêm vào dấu trừ trước xóa đi dấu khác nhau, ngược lại dấu thêm vào dấu cộng Hỏi dấu cịn lại bảng dấu ?

Lời giải : Ta thấy, xóa dấu cộng phải thêm vào dấu cộng, số dấu trừ bảng khơng thay đổi

Nếu xóa dấu trừ phải thêm vào dấu cộng, số dấu trừ giảm

Nếu xóa dấu cộng dấu trừ phải thêm vào dấu trừ, số dấu trừ bảng khơng thay đổi

Như vậy, tính bất biến : sau lần thực việc xóa thêm dấu, số dấu trừ bảng không thay đổi giảm

Mặt khác, số dấu trừ ban đầu số lẻ nên sau lần thực số dấu trừ cịn lại trên bảng số lẻ

Sau 24 lần thực hiện, bảng cịn lại dấu mà dấu trừ khơng thể hết nên dấu lại bảng phải dấu trừ

Bài toán : Một hình trịn chia thành 10 hình quạt, ô người ta đặt viên bi Nếu ta di chuyển viên bi theo quy luật : lần lấy ô viên bi, chuyển sang ô liền kề theo chiều ngược chuyển tất viên bi không ?

Lời giải : Trước tiên, ta tơ màu xen kẽ hình quạt, có tơ màu (ơ màu) ô không tô màu (ô trắng) Ta có nhận xét :

Nếu di chuyển bi ô màu bi ô trắng tổng số bi màu khơng đổi Nếu di chuyển ô màu, ô bi tổng số bi màu giảm Nếu di chuyển ở ô trắng, bi tổng số bi ô màu tăng lên

Vậy tổng số bi ô màu không đổi, giảm tăng lên Nói cách khác, tổng số bi ô màu không thay đổi tính chẵn lẻ so với ban đầu

Ban đầu tổng số bi ô màu viên (là số lẻ) nên sau hữu hạn lần di chuyển bi theo quy luật tổng số bi ô màu khác khác 10, khơng thể chuyển tất viên bi ô

Bài toán :

(55)

đều thay tổng chữ số Tiếp tục làm với số nhận được tất số có chữ số Chứng minh dãy : số số 2 nhiều số số

Lời giải : Ta thấy : “Số tự nhiên A tổng chữ số A số dư phép chia cho 9”

Mặt khác ta có : 21 chia cho dư ; 22 chia cho dư ; 23 chia cho dư ; 24 chia cho dư ; 25 chia cho dư ; 26 chia cho dư ; 27 chia cho dư ;

Do 26k + r nhận số dư phép chia cho 2, 4, 8, 7, 5, tương ứng với giá trị r 1, 2, 3, 4, 5, Dãy cuối nhận gồm 2005 số thuộc tập hợp {2 ; ; ; ; ; 1}

Ta có 2005 = 334 x + nên dãy cuối có 335 số (nhiều số số khác số) Vậy số số nhiều số số số

Bài toán : Một tờ giấy bị cắt nhỏ thành mảnh 11 mảnh Các mảnh nhận được lại chọn để cắt (thành mảnh 11 mảnh nhỏ hơn) Cứ ta nhận 2005 mảnh cắt không ?

Lời giải : Sau lần cắt mảnh giấy thành mảnh 11 mảnh số mảnh giấy tăng lên 10 Như tính bất biến tốn “số mảnh giấy tăng lên bội số 5” Vậy số mảnh giấy sau lần cắt có dạng + 5k, mặt khác 2005 có dạng 5k nên với cách cắt trên, từ tờ giấy ban đầu, ta cắt thành 2005 mảnh

Sau số tập ứng dụng :

Bài : Trên bảng gồm x ô vuông viết dấu cộng dấu trừ Đổi dấu đồng thời ô nằm hàng cột ô dọc theo đường thẳng song song với hai đường chéo Bằng cách ta có thể nhận bảng chứa tồn dấu cộng khơng ?

Bài : Tại đỉnh A1 đa giác 12 cạnh A1A2A3 A12 viết dấu trừ, đỉnh lại viết dấu cộng Chứng minh : cách đổi dấu đồng thời đỉnh liên tiếp bất kì với số lần tùy ý, ta nhận đa giác mà đỉnh A2 viết dấu trừ đỉnh khác viết dấu cộng

Bài : Cho dãy số 1, 2, 3, , 2006 Ta thay đổi vị trí số theo nguyên tắc : lần lấy số đặt chúng vào vị trí cũ theo thứ tự ngược lại Bằng cách này, ta xếp dãy số dãy số 2006, 2005, , 2, không ?

Bài : Mỗi người sống trái đất thực số bắt tay định với những người khác Chứng minh số người thực số lẻ bắt tay số chẵn

Bài : Cho số 1, 2, 3, , n xếp theo thứ tự Tiến hành tráo đổi vị trí hai số đứng kề Chứng minh thực số lẻ lần vậy khơng thể nhận xếp ban đầu

(56)

TTT SỐ 26

Các bạn học sinh lớp thân mến ! Trong TTT2 số số 16 đề cập đến việc sử dụng diện tích chứng minh hình học số tốn diện tích Trong viết xin nêu thêm số ứng dụng khác diện tích tam giác vào việc chứng minh số dạng tập

1 Quan hệ đoạn thẳng

Bài toán 1 : Cho tam giác ABC, trung tuyến AM Một đường thẳng song song với BC cắt cạnh AB, AC trung tuyến AM D, E, F Chứng minh FD = FE

(57)(58)

S(ABM) = S(ACM) (chung đường cao, hai đáy nhau) ; S(DBM) = S(ECM) (đường cao nhau, hai đáy nhau) Suy S(DAM) = S(ABM) - S(DBM) = S(ACM) - S(ECM) = S(EAM)

Hai tam giác DAM EAM lại có chung đáy AM nên đường cao hạ xuống AM bằng hay DK = EH Từ ta có

∆KDF = ∆HEF (g.c.g) suy FD = FE

Lời bình : Bài tốn khơng có khó khăn ta dùng định lí Ta-lét, nhiên kiến thức diện tích kiến thức hình học lớp tốn chứng minh gọn gàng đẹp đẽ

Bài toán 2 : Cho tam giác ABC, N trung điểm trung tuyến AM Tia BN cắt cạnh AC K Chứng minh :

AK = 1/2 CK, NK = 1/3 NB

Lời giải : Dễ thấy S(ABN) = S(BMN) = S(CMN) = S(CAN) suy S(ABN)/S(CBN) =

(59)(60)

Mặt khác cặp tam giác NAK NCK ; BAK BCK có chung đường cao tương ứng với hai đáy AK, CK nên

Suy AK = 1/2 CK Từ

S(ANK) = 1/2S(CNK) = 1/3 S(NAC) = 1/3 S(ABN)

suy S(ANK) / S(ABN) = 1/3 => NK = 1/3 BN hai tam giác có chung đường cao tương ứng với hai đáy NK, BN

Lời bình : Nếu sử dụng kiến thức đường trung bình tam giác toán rất quen thuộc Đáng tiếc lớp chưa học đường trung bình

2 Chứng minh đồng quy, thẳng hàng

Bài toán 3 : Cho tam giác ABC, trung tuyến AM Một đường thẳng song song với BC cắt AB, AC D E Chứng minh BE CD cắt AM

Lời giải : Gọi giao điểm DE AM F, theo tốn ta có FD = FE, suy S(BDFM) = S(BFD) + S(BFM) = S(CFE) + + S(CFM) = S(CEFM) (1)

Gọi giao điểm BE CD O, nối OF, OM ta có S(DOF) = S(EOF) (do FD = FE) ; S(BOM) = S(COM) ; S(BDO) = S(CEO) (do S(BDC) = S(BEC))

Suy S(BDFOM) = S(CEFOM) hay đường gấp khúc FOM chia đơi diện tích hình thang BDEC (2)

Từ (1) (2) suy S(FOM) = ị F, O, M thẳng hàng ị O thuộc FM (đpcm)

Lời bình : 1) Đôi để chứng minh ba điểm thẳng hàng ta phải chứng minh tam giác có ba đỉnh ba điểm có diện tích

2) Kết hợp kết toán tốn ta có tốn sau : “Trong hình thang, giao điểm hai cạnh bên kéo dài, giao điểm hai đường chéo hai trung điểm hai đáy bốn điểm thẳng hàng” (Bổ đề hình thang)

Bài tốn 4 : (tính chất ba đường trung tuyến tam giác) Trong tam giác, ba đường trung tuyến đồng quy điểm đồng quy chia trung tuyến theo tỉ số 2/3 kể từ đỉnh

Lời giải : Vẽ trung tuyến BE CF cắt G Nối AG cắt BC M Ta chứng minh MB = MC

Ta có S(ABE) = S(ACF) = 1/2 S(ABC)

suy S(BGF) = S(CGE) => S(AGF) = S(BGF) = S(CGE) = S(AGE) => S(ABG) = S(ACG) (*)

Hạ đường vuông góc BH, CK tới AM Do (*) nên BH = CK, suy S(GBM) = S(GCM) => BM = CM Mặt khác, S(ABG) = 2S(AGE) suy BG = 2GE hay BG/BE = 2/3

Tương tự ta có :AG/AM = CG/CF = 2/3

Lời bình : Đây tính chất quan trọng hình học hạn chế kiến thức (chưa học đường trung bình tam giác) nên đưa vào chương trình lớp 7 yêu cầu học sinh thừa nhận (Kì sau đăng tiếp)

(61)

BÀN VỚI CÁC BẠN LỚP VỀ PHƯƠNG PHÁP

3 Chứng minh số hệ thức :

Bài toán : Cho tam giác ABC Từ điểm M cạnh BC vẽ đường thẳng song song với AB AC, cắt AC AB Q P Chứng minh : AP/AB + AQ/AC =

Lời giải :

Nối AM, AB // MQ nên ta có S(AMQ) = S(BMQ) suy S(AMQ) + S(CMQ) = S(BMQ) + S(CMQ) ị S(AMC) = S(BQC), mà S(AMC) = S(APC) (do AC // MP) nên S(BQC) = S(APC) Vậy

Bài toán : Lấy tam giác ABC điểm M tùy ý AM, BM, CM cắt cạnh BC, CA, AB A1, B1, C1 Chứng minh :

Lời giải :

(62)

Tương tự ta có :

Suy

b) Ta lại có

Tương tự ta có :

Suy

Bài toán : Cho tam giác ABC Gọi ha, hb, hc độ dài đường cao thuộc các cạch BC, CA, AB ; d khoảng cách từ giao điểm đường phân giác đến ba cạnh

Chứng minh :

Hướng dẫn : Gọi I giao điểm ba đường phân giác tam giác ABC, dựng IE, IF, ID vng góc với AB, AC, BC Ta có ID = IE = IF = d,

Suy

4 Chứng minh đường thẳng song song :

Bài toán : Cho tam giác ABC D E thuộc cạnh AB AC Chứng minh DE // BC <=> AD/AB = AE/AC

(63)

Ta có DE // BC <=> S(BDE) = S(CDE) <=> S(BDE) + S(ADE) = S(CDE) + S(ADE)

<=> S(ABE) = S(ACD) <=>S(ABE)/S(ABC) = S(ACD)/S(ABC) <=> AE/AC = AD/AB (đpcm)

Lời bình : Đây định lí Ta-lét tam giác học lớp 8, ta chứng minh dễ dàng nhờ diện tích tam giác

Bài toán : Cho tam giác ABC, đường thẳng song song với BC cắt cạnh AB, AC D E Qua D, E vẽ đường thẳng song song với AC , AB cắt BE, DC M, N Chứng minh : MN // BC

Lời giải :

Giả sử BE cắt CD O, EN // AB nên :

S(BEN) = S(DEN) suy S(BON) = S(DOE) Tương tự, S(COM) = S(DOE) suy S(BON) = S(DOE) => S(BMN) = S(CMN) => MN // BC

(64)(65)(66)

TTT SỐ 29

(67)(68)(69)(70)(71)(72)(73)(74)(75)(76)(77)(78)(79)(80)(81)(82)(83)(84)(85)(86)(87)(88)(89)(90)(91)(92)(93)(94)(95)(96)(97)(98)(99)(100)(101)

Ngày đăng: 29/03/2021, 14:14

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w