1. Trang chủ
  2. » Giáo án - Bài giảng

Nâng cao hiệu quả dạy-học dạng toán Tìm hai số khi biết hiệu và tỉ số của hai số đó

24 24 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 556,07 KB

Nội dung

Mục đích của sáng kiến này là giúp giáo viên cần nắm vững các dạng toán điển hình trong chương trình sách giáo khoa, để nâng cao hiệu quả dạy giải bài toán Tìm hai số khi biết hiệu và tỉ số của hai số đó cho học sinh lớp 5; Biện pháp nâng cao hiệu quả dạy giải bài toán Tìm hai số khi biết hiệu và tỉ số của hai số đó cho học sinh lớp 5.

Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 MỤC LỤC Tên tiêu đề Trang  Phần I: Đặt vấn đề I. Lí do chọn đề tài II. Phạm vi thực hiện III. Khảo sát đầu năm Phần II: Giải quyết vấn đề I. Cơ sở lý luận II. Thực trạng  III. Các biện pháp  thực hiện 1. Giáo viên cần nắm vững các dạng tốn điển hình trong chương  trình sách giáo khoa, để nâng cao hiệu quả dạy giải bài tốn “Tìm hai  số khi biết hiệu và tỉ số của hai số đó” cho học sinh lớp 5 2. Biện pháp nâng cao hiệu quả dạy giải bài tốn “Tìm hai số khi biét   hiệu và tỉ số của hai số đó” cho học sinh lớp 4,5  3. Kết quả đạt được Phần III: Kết luận  18 19 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 PHẦN I: ĐẶT VẤN ĐỀ I Lí do chọn đề tài: Trong các mơn học  ở Tiểu học, mơn Tốn chiếm thời lượng khá lớn và  có một vị trí vơ cùng quan trọng bởi qua học tốn sẽ rèn cho học sinh phương   pháp suy nghĩ, phương pháp suy luận,  phương pháp giải quyết vấn đề. Tốn  học sẽ bồi dưỡng cho các em tính chính xác, đức tính trung thực, cẩn thận và  hăng say lao động. Tốn góp phần phát triển trí thơng minh, cách suy nghĩ độc   lập, linh hoạt, sáng tạo và rèn kĩ năng sống cho học sinh. Nói đến tốn ta  khơng thể khơng nhắc tới mạch kiến thức giải tốn được sắp xếp xen kẽ với   các mạch kiến thức cơ bản khác của mơn tốn ở bậc Tiểu học Như ta đã biết, giải tốn trong dạy học tốn có vai trị hết sức quan trọng.  Đó là: ­ Giúp học sinh biết vận dụng những kiến thức về  tốn vào các tình  huống thực tiễn đa dạng, phong phú; những vấn đề  thường gặp trong cuộc  sống ­ Nhờ  giải tốn học sinh có điều kiện rèn luyện, phát triển năng lực tư  duy, rèn luyện phương pháp suy luận và những phẩm chất của người lao  động mới. Bởi giải tốn là một hoạt động bao gồm những thao tác: xác lập  mối quan hệ  giữa các dữ  liệu, giữa cái đã cho và cái cần tìm, trên cơ  sở  đó   chọn được phép tính thích hợp và trả lời đúng câu hỏi của bài tốn ­ Dạy học giải tốn cịn giúp học sinh tự phát hiện, tự giải quyết vấn đề,   tự nhận xét, so sánh, phân tích tổng hợp rút ra quy tắc khái qt nhất định tức   là phát triển năng lực và thao tác tư duy tốn học Lớp 5 mở  đầu cho giai đoạn học tập sâu. Học sinh được làm quen với  các dạng bài tốn mới ­ các dạng tốn điển hình. Mỗi dạng tốn điển hình  thường được giải theo một quy trình như  một thuật tốn. Tuy nhiên,   mức   độ phát triển thì đối với mỗi dạng tốn điển hình lại có nhiều cách giải phong   phú, đa dạng và rất hấp dẫn. Bài tốn “Tìm hai số khi biết hiệu và tỉ  số  của   hai số đó ” là một trong những dạng tốn điển hình. Trong q trình dạy học,  để giúp cho mọi học sinh thành thạo khi giải bài tốn này, cả học sinh và giáo  viên đều gặp nhiều khó khăn Vậy làm thế  nào để  khắc phục những tồn tại trên, giúp học sinh thành  thạo trong giải các bài tốn điển hình, có khả năng lập luận chặt chẽ và trình  1/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 bày bài giải hợp lí? Xuất phát từ những vấn đề nêu trên, tơi đã tìm tịi nghiên  cứu để: “Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu   và tỉ số của hai số đó”cho học sinh lớp 5”.  II. Phạm vi thực hiện 1. Đối tượng nghiên cứu: Nghiên cứu về  nội dung, mức độ  và phương pháp trong dạy học về  “Tìm hai số khi biết hiệu và tỉ số của hai số đó” trong mơn tốn 5 2. Thời gian  nghiên cứu: Năm học 2016 – 2­17 3. Phạm vi nghiên cứu và ứng dụng: HS lớp 5 được học 2 buổi/ngày, đang học SGK chương trình Tiểu học  năm 2000.  III. Khảo sát đầu năm: Đầu năm học tơi tiến hành khảo sát để  tìm hiểu về tình hình học sinh học  dạng tốn “Tìm hai số khi biết hiệu và tỉ số của hai số đó’,  tơi thu được kết  quả như sau: Thời  gian Đầu  năm  học Lớp  Sĩ số 5D 47 Hoàn thành tốt SL TL % 13 27,7 Hoàn thành SL TL % 28 59,6 Chưa hồn thành SL TL % 12,7 Trên đây là một số thực trạng và ngun nhân tồn tại của vấn đề. Muốn nâng  cao hiệu quả dạy giải bài tốn về  “Tìm hai số khi biết hiệu và tỉ  số  của hai   số đó” cho học sinh lớp 5 ta cần tìm ra các biện pháp để khắc phục 2/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 PHẦN II: GIẢI QUYẾT VẤN ĐỀ             I. Cơ sở lý luận              Cũng như các ngành khoa học khác, Tốn học nghiên cứu một số mặt   hoạt động của thế  giới vật chất. Các ngành khoa học tự  nhiên như  Vật lý  học, Hố học, Sinh học   nghiên  cứu những dạng riêng biệt của vận động   vật chất. Tốn học khơng nghiên cứu một dạng riêng biệt nào của vật chất  như nặng, nhẹ, rắn mềm, nóng lạnh, sắc mầu   mà nghiên cứu cái chung, để  giữ   ại những cái chung tồn tại khách quan   các sự  vật hiện tượng về  hình  dạng (trong khơng gian) về quan hệ (về lượng). Ăng gen nói "Đối tượng của  Tốn học thuần t là những hình học khơng gian và những quan hệ số lượng   của thế  giới hiện thực". Vậy nên, Tốn học là một khoa học nghiên cứu  những mặt xác định của thế giới hiện thực có nguồn gốc thực tiễn. Mơn Tốn  học   trường phổ  thơng nói chung,   trường Tiểu học nói riêng, ln được  coi là mơn học cơ bản, chiếm giữ vị trí quan trọng, trong đó việc giải tốn là   khâu quan  trọng khơng thể thiếu được trong q trình  học Tốn. Trong hoạt  động giải tốn, học sinh phải tư duy tích cực, linh hoạt, phải huy động tư duy  tổng hợp, tích hợp các kiến thức, năng lực, khả  năng, các kĩ năng   sẵn có   vào các  tình  huống khác nhau. Trong nhiều trường hợp, học sinh  phải biết  phát hiện những dữ  kiện hoặc những điều kiện chưa được đưa ra một cách  tường minh. Trong q trình giải tốn, địi hỏi học sinh phải ln ln tư duy  năng động, sáng tạo. Vì   vậy, giải tốn có thể  coi là một trong những hoạt  động trí tuệ năng động, sáng tạo, bổ ích nhất của học sinh. Giải tốn giúp học  sinh luyện tập, củng cố, vận dụng thực hành các kiến thức. Giải tốn cịn  giúp học sinh rèn  luyện các kĩ năng tính tốn, từng bước tập dượt vận dụng   kiến thức đã học vào đời sống thực tế  hàng ngày. Thơng qua việc giải tốn,  học sinh được rèn luyện các đức tính cần thiết như: tính kiên trì, biết khắc   phục khó khăn để làm việc, tính chu đáo, cẩn thận, làm việc có kế hoạch            II. Thưc trạng: Qua thực tế nhiều năm giảng dạy, tơi nhận thấy: * Về phía giáo viên: ­ Giáo viên chưa nhận thấy hết được tầm quan trọng của giải tốn và  việc hướng dẫn giải tốn, nhất là những dạng tốn điển hình. Vì thế, giáo   3/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 viên chưa chú trọng việc khắc sâu, chốt kiến thức hoặc chốt cách giải theo  từng dạng ­ Việc nghiên cứu sách giáo khoa và tài liệu tham khảo của một số  giáo  viên cịn hạn chế dẫn đến giáo viên cịn lệ thuộc và chỉ làm theo những gợi ý  chung của sách giáo viên, chưa có sự  phân tích, tổng hợp và chưa gắn với   thực tế  trình độ  học sinh. Thậm chí, đơi chỗ  giáo viên cịn chưa hiểu hết  được ngụ ý của sách giáo khoa đưa ra cho nên chưa khắc sâu được những cốt  lõi kiến thức cần ghi nhớ cho học sinh ­ Cho dù đã phân loại đối tượng học sinh thì cùng một lúc giáo viên phải  quan tâm đến cả  ba đối tượng học sinh nên khó khăn trong việc kèm cặp sát  sao học sinh chưa hồn thành kiến thức, kĩ năng, phát triển nâng cao với học  sinh hồn thành tốt. Giáo viên khơng có thời gian khai thác kiến thức và khắc  sâu với từng dạng bài cho các em.  * Về phía học sinh: ­ Đa số các em hiểu và vận dụng kiến thức vào làm bài thành thạo ở mức  độ đề bài cho tường minh các yếu tố có liên quan ­ Khả  năng phân tích, tìm hiểu bài của một số  em cịn hạn chế. Gặp  những dạng cịn “ẩn hiệu”, “ẩn tỉ  số” và “ẩn hai số  cần tìm” một số  em   khơng biết lập luận để  chỉ  ra các yếu tố  “hai số  cần tìm”, “hiệu số”, hay “tỉ  số” để  biểu diễn được mối quan hệ  giữa các yếu tố  có liên quan trong bài  tốn. Như vậy, các em sẽ rất khó khăn trong việc lập kế hoạch giải bài tốn.  ­ Do khả năng nhận thức của học sinh chưa đồng đều và cịn ở mức độ  cảm tính nên việc khái qt kiến thức cũng như khả năng vận dụng kiến thức   đã học vào q trình luyện tập cịn hạn chế III. Các biện pháp thực hiện      1. Giáo viên cần nắm vững các dạng tốn điển hình trong chương   trình sách giáo khoa, để nâng cao hiệu quả dạy giải bài tốn “Tìm hai số   khi biết hiệu và tỉ số của hai số đó” cho học sinh lớp 5         a. Những dạng tốn có lời văn lớp 4­5         b. Nghiên cứu dạng bài”Tìm hai số khi biết hiệu và tỉ số của hai số đó”         c. Mức độ  u cầu về kiến thức và kĩ năng khi dạy bài “Tìm hai số khi   biết hiệu và tỉ số của hai số đó” 4/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 Giúp học sinh biết giải bài tốn về “ Tìm hai số khi biết hiệu và tỉ số của   hai số đó” là một u cầu cơ bản cần đạt trong q trình dạy học tốn lớp 5.  Để học tốt bài, học sinh phải nắm chắc một số kiến thức cơ bản sau: ­ Hiệu số và tỉ số của hai số phải tìm có thể là số tự nhiên, phân số, số  thập phân hay các dạng số đo đại lượng ­ Thực tế  trong cuộc sống hàng ngày, học sinh đã thường nghe và có   thể sử  dụng khái niệm “Tỉ số”. Học sinh phải biết đọc, biết viết và biết vẽ  sơ  đồ  tỉ  số  của hai số. Muốn vậy, học sinh phải hiểu đúng về   tỉ  số của hai  số.  ­ Học sinh phải biết vận dụng những hiểu biết để chủ động khám phá,  chiếm lĩnh kiến thức mới đó là “Tìm hai số khi biết hiệu và tỉ  số  của hai số   đó”; tự rút ra và ghi nhớ được các bước giải chung ngắn gọn. Từ đó có các kĩ   năng để giải bài tốn. Vậy học sinh cần phải: + Xác định hiệu của hai số phải tìm (hoặc hiệu của hai số có liên quan   đến số phải tìm)  + Xác định tỉ số của hai số phải tìm (hoặc tỉ số của hai số có liên quan   đến số  phải tìm) biểu thị  từng số  đó thành số  các phần tử  bằng nhau tương  ứng + Thực hiện phép chia hiệu của hai số phải tìm cho hiệu các phần biểu   thị của tỉ số để tìm giá trị một phần đó.  + Tìm mỗi số theo số phần được biểu thị         d. Các phương pháp giải bài tốn “Tìm hai số khi biết hiệu và tỉ số của   hai số đó” Bài tốn “ Tìm hai số khi biết hiệu và tỉ số của hai số đó ” là một trong  những dạng tốn điển hình có các bước giải chung thống nhất. Song một bài  tốn hợp thường có nhiều cách giải khác nhau. Hơn nữa, từ bài tốn cơ bản ta   có thể  mở rộng cho học sinh nhiều bài tốn khác. Vì vậy, để  giải dạng tốn  này, cần lưu ý một số phương pháp thường dùng như sau: ­ Dùng sơ đồ đoạn thẳng  ­ Dùng phương pháp tỉ số ­ Dùng phương pháp khử hoặc phương pháp thay thế ­ Dùng đơn vị quy ước Mặc dù vậy, ở mức độ ban đầu chỉ u cầu các em thành thạo phương  pháp    Dùng sơ đồ đoạn thẳng  5/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 2. Biện pháp nâng cao hiệu quả  dạy giải bài tốn “Tìm hai số  khi   biết hiệu và tỉ số của hai số đó” cho học sinh lớp 5     ­ Cũng như dạy học các nội dung khác, khi dạy giải tốn bài tốn “ Tìm  hai số khi biết hiệu và tỉ số của hai số đó ”, tơi đã nghiên cứu kĩ chương trình,  sách giáo khoa, tìm hiểu những kiến thức có liên quan, giúp các em phát huy  vốn kiến thức đã có để chủ động tiếp thu và chiếm lĩnh kiến thức    ­ Dạy đến đâu khắc sâu kiến thức cơ  bản đến đó, giúp các em nắm  chắc các bước giải như một thuật tốn ­ Khi dạy giải tốn ­ đặc biệt là khi rèn kĩ năng làm bài cho học sinh ­ ta   cần lưu ý tới khả năng vừa sức đối với học sinh. Trong q trình hướng dẫn   học sinh luyện tập, tơi đã phân loại và đề ra những biện pháp cụ thể kèm cặp   theo từng đối tượng học sinh để  phát huy hết khả  năng học tập, khả  năng  sáng tạo của học sinh. Để giúp học sinh làm tốt bài tốn: “  Tìm hai số khi biết   hiệu và tỉ  số  của hai số  đó ”, tơi đã phân nhóm các đối tượng học sinh theo   năng lực và đưa ra ba mức độ sau: Mức độ 1: u cầu học sinh giải được bài tốn cho ở mức độ tường minh các yếu  tố “ hai số cần tìm” “hiệu số” và “tỉ số” của các số đó u cầu cần đạt: ­ Nhận diện, nêu được các bước giải dạng tốn ­ Xác định đúng các yếu tố  “hiệu số”,“tỉ  số” ,“số  lớn” và “số  bé”. Vẽ  sơ đồ biểu diễn các mối quan hệ giữa các đại lượng ­ Giải bài tốn theo dạng cơ bản (có sự hỗ trợ của giáo viên hay của bè  bạn) Mức độ 2: u cầu học sinh giải được bài tốn   mức độ  chưa tường minh các  yếu tố. Có thể “ ẩn hiệu” hoặc “ ẩn tỉ số ” u cầu cần đạt:     ­ Xác định được “ hai số cần tìm” ; “ hiệu ẩn ” hoặc “  tỉ số ẩn ”     ­ Xác định các mối quan hệ giữa các yếu tố     ­ Tự vẽ sơ đồ minh hoạ rồi giải bài tốn theo u cầu Mức độ 3: 6/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5        Bài tốn có thể cho dưới dạng “ẩn hai số cần tìm”, “ẩn hiệu” và “ ẩn tỉ  số  ” hay từ  bài tốn cơ  bản ta có thể  mở  rộng, nâng cao hơn theo khả  năng  cho học sinh   u cầu cần đạt:     ­ Xác định được “hai số cần tìm” ; “hiệu ẩn” hay “ tỉ số ẩn”     ­ Xác định các mối quan hệ giữa các yếu tố     ­ Thành thạo trong việc giải bài tốn điển hình ở dạng cơ bản     ­ Huy động, vận dụng những kiến thức đã học để giải một số bài tốn  ở dạng mở rộng, nâng cao     ­ Tìm nhiều cách giải cho một bài tốn Cụ thể như sau: Mức độ  1: Dành cho học sinh   mức độ  nhận biết, nhắc lại được  kiến thức, kĩ năng đã học: Ta giúp các em dùng “Phương pháp sơ đồ đoạn thẳng” để giải Đối tượng này, học sinh cần vận dụng ngay kiến thức vừa học để làm  bài. Qua đó giúp các em củng cố về cách làm, cách trình bày bài giải dạng cơ  bản. Tơi u cầu học sinh: ­ Đọc kĩ đề bài, xác định dạng tốn (Tìm hai số khi biết hiệu và tỉ số của  hai số đó) ­ Phân tích bài (Bài tốn cho biết gì? Bài tốn cần tìm gì?) ­ Lập kế hoạch giải và thực hiện bài giải theo quy trình         Ví dụ 1:  Hiệu của hai số là 33. Số thứ nhất bằng  số thứ hai. Tìm hai số đó Trong ví dụ  này, sau khi xác định bài tốn cho biết gì? Bài tốn cần tìm  gì? giáo viên cần giúp học sinh hiểu rõ hơn: + Bài tốn cần đi tìm gì? (Tìm hai số) + Hiệu hai số là gì? (33) + Tỉ số của hai số là gì?   () + T ỉ  s ố  này cho em bi ết đi ề u gì? (S ố  th ứ  nh ất là 8 phầ n thì   s ố  th ứ  hai là 5 ph ầ n.  ­ Hướng dẫn học sinh vẽ sơ đồ biểu diễn các mối quan hệ Căn cứ vào sơ đồ, hướng dẫn học sinh lập kế hoạch giải và giải bài tốn  (Theo quy trình hướng dẫn giải bài tốn có lời văn)  ­  Học sinh làm bài ? 7/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 Ta có sơ đồ : Số thứ nhất : Số thứ hai   : 33 ? Bài giải Theo sơ đồ, hiệu số phần bằng nhau là:  8 ­ 5 = 3 (phần) Số thứ nhất là:  33 : 3 x 8 = 88 Số thứ hai: 88 – 33 = 55 Đáp số: 88 và 55         Ví dụ 2: Mẹ hơn con 25 tuổi. Tuổi con bằng   tuổi mẹ. Tính tuổi mỗi  người ­   Trong ví dụ này, sau khi xác định Bài tốn cho biết gì? Bài tốn cần tìm   gì? giáo viên cần giúp học sinh hiểu rõ hơn: + Hai số cần tìm là gì? (Tuổi con và tuổi mẹ) + Hiệu hai số là gì? (25 tuổi) + Tỉ số của hai số là gì?   ( ) + T ỉ  s ố  này cho em bi ết đi ề u gì? (Tuổ i con là 2 ph ầ n thì tu ổ i  m ẹ  là 7 ph ầ n nh  th ế)  Hướng dẫn học sinh vẽ sơ đồ biểu diễn các mối quan hệ Căn cứ  vào sơ  đồ, hướng dẫn học sinh lập kế  hoạch giải và giải bài   tốn (Theo quy trình hướng dẫn giải bài tốn có lời văn)  Học sinh làm bài                                                               Bài giải Ta có sơ đồ :                      Theo sơ đồ, hiệu số phần bằng nhau là: 7 ­ 2 = 5 (phần)  Tuổi con là: 8/20   Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 25 : 5 x 2 = 10 (tuổi) Tuổi mẹ là: 10 + 25 = 35 tuổi Đáp số: Con: 10 tuổi    Mẹ: 35 tuổi Tóm lại: Với những học sinh ở mức độ  nhận biết, nhắc lại được kiến  thức, kĩ năng đã học thì  khả  năng vận dụng kiến thức đã học vào q trình  luyện tập cịn chưa nhanh. Vì thế, giáo viên cần chọn cho các em những bài  tốn cho ở dạng tường minh các yếu tố, u cầu các em thuộc các bước giải  cơ bản ngắn gọn để vận dụng làm bài như sau : + Vẽ sơ đồ  + Tìm hiệu số phần bằng nhau + Tìm giá trị của một phần + Lần lượt tìm hai số Mức độ 2:  Dành cho học sinh hiểu kiến thức, kĩ năng đã học Với đối tượng học sinh này, giáo viên vẫn theo 4 bước hướng dẫn giải   bài tốn có lời văn. Song giáo viên cần u cầu học sinh : ­ Nhận dạng tốn. (Tìm hai số khi biết hiệu và tỉ số của hai số đó) ­ Xác định rõ hai số cần tìm; xác định “hiệu ẩn” hay “tỉ số ẩn”, ý nghĩa   của tỉ số   Ví dụ 3: Số thứ hai hơn số thứ nhất 60. Nếu số thứ nhất gấp lên 5 lần   thì được số thứ hai. Tìm hai số đó. ( Bài tốn “ẩn tỉ số"ở mức độ đơn giản) +  Ở VD3: Học sinh phải xác định tỉ số ẩn trước khi vẽ sơ đồ Chẳng hạn ta hỏi: Nếu số thứ nhất gấp 5 lần lên thì được số  thứ  hai,  nghĩa là gì? (nghĩa là tỉ số của hai số là   tức là số thứ nhất là 1 phần thì số thứ  hai là 5 phần như vậy)  Ví dụ 4:  Lớp 5A có 35 học sinh và lớp 5B có 33 học sinh cùng tham gia trồng  cây. Lớp 5A trồng nhiều hơn lớp 5B là 10 cây. Hỏi mỗi lớp trồng được bao  nhiều cây, biết rằng mỗi học sinh đều trồng số cây như nhau.  Đây là bài tốn “ẩn tỉ số”, học sinh có thể  lúng túng khi xác định tỉ  số  của hai số. GV cần giúp các em phân tích và hiểu được hai số  cần tìm là số  cây của lớp 5A và số cây của lớp 5B. Từ đó suy ra tỉ số  giữa số  cây của lớp  9/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 5A và 5B chính là tỉ số số học sinh của 2 lớp. Tức là tỉ số của 2 số là  35  Từ  33 đó mới vẽ được sơ đồ hoặc lập luận thay sơ đồ và áp dụng các bước để giải   bài tốn.  Tóm lại:  Ở  mức độ  học sinh đại trà chung, bài tốn có thể  cho dưới  dạng ẩn hiệu hoặc ẩn tỉ số hay ẩn hai số cần tìm. Giáo viên cần giúp các em  huy động vốn kiến thức sẵn có phân tích để: + Chỉ rõ hai số phải tìm (số lớn là gì? số bé là gì?) + Xác định rõ hiệu của hai số  phải tìm (hoặc hiệu của hai số  có liên   quan đến số phải tìm) + Xác định đúng tỉ số của hai số phải tìm ( hoặc tỉ số của hai số có liên   quan đến số  phải tìm), biểu thị  từng số  đó thành số  các phần tử  bằng nhau   tương ứng Ngồi việc giúp học sinh nắm chắc quy trình giải dạng tốn này, bước  đầu cịn giúp học sinh làm quen với cách lập luận chặt chẽ  khi giải các bài  tập nâng cao (ở mức độ đơn giản) Mức độ 3:  Dành cho học sinh biết vận dụng kiến thức, kĩ năng đã  học để giải quyết những vấn đề những vấn đề mới Với học sinh ở mức độ này khơng chỉ u cầu giải đúng bài tập mà cịn  u cầu các em tìm nhiều cách giải khác hay hơn bằng nhiều phương pháp  giải khác nhau. Đây cũng chính là cơ  hội để  giúp các em phát triển năng lực   mơn tốn. Hoặc từ bài tập cơ  bản ta có thể  mở  rộng thành các bài tốn khác   có liên quan đến phân số  hoặc dạng bài tốn tính tuổi , u cầu học sinh   phải giải bài tốn phụ  để  đưa về dạng cơ bản. Do vậy, các em phải đào sâu  suy nghĩ, phân tích, tìm tịi cách giải.  * Trường hợp ẩn hiệu, ẩn tỉ số bình thường Ví dụ 5: Sau 7 năm nữa thì tuổi của An sẽ nhiều gấp 3 lần tuổi của An   trước đây 5 năm. Tính tuổi của An hiện nay.   Đây là dạng ẩn hiệu, giáo viên cần hướng dẫn học sinh phân tích bài  tốn để chỉ rõ hiệu số: - Số bé là gì? (Tuổi An trước đây 5 năm) - Số lớn là gì? (Tuổi An sau đây 7 năm) - Hiệu của hai số  là gì ? (Khoảng cách giữa tuổi An trước 5 năm  và sau 7 năm nữa. Chính là : 7 + 5 = 12) - Bài u cầu tìm gì ? (Tuổi của An hiện nay) 10/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 Giáo viên tiếp tục hướng dẫn học sinh lập kế hoạch giải bài tốn Bài giải: Tuổi của An sau 7 năm nữa sẽ nhiều hơn tuổi của An trước đây 5 năm  là:                                    5 + 7 = 12 (tuổi) Biểu thị số tuổi của An trước đây 5 năm là 1 phần thì tuổi của An sau 7  năm nữa là 3 phần  Ta có sơ đồ:                                                 Trước đây 5 năm, tuổi của An là :                                           12 : (3 ­ 1) = 6 tuổi Tuổi của An hiện nay là :                                  6 + 5 = 11 (tuổi)                                                              Đáp số: 11 tuổi Ví dụ 6: Cho một số có chữ số hàng đơn vị là 0. Nếu xố chữ số 0 đó ta  được số mới. Biết số đã cho lớn hơn số mới 549. Tìm số đã cho.  Đây là dạng ẩn tỉ  số  và ẩn hai số  cần tìm. Giáo viên cần hướng dẫn  học sinh phân tích bài tốn, để học sinh nhận ra dạng tốn  Tìm hai số khi biết   hiệu và tỉ số của hai số đó. Tiếp tục phân tích để chỉ rõ các yếu tố liên quan: - Số bé là gì? (Là số đã cho sau khi xố đi chữ số 0) - Số lớn là gì? (Là số đã cho ) - Hiệu của hai số là gì ? (549) - Bài u cầu tìm gì ? (Tìm số đã cho) - Nếu xố chữ số 0 ở số đã cho ta được số mới, nghĩa là gì? (Nghĩa  là số mới bằng   số đã cho.) 10 Giáo viên tiếp tục hướng dẫn học sinh lập kế hoạch giải và làm bài                                                                    (Đáp số: 610) Ví dụ  7: Số  cây trồng của khối Năm nhiều hơn khối Bốn là 360 cây.  Nếu khối Năm trồng thêm được 30 cây nữa và khối Bốn trồng bớt đi 30 cây   thì số cây của khối Năm sẽ nhiều gấp 4 lần số cây của khối Bốn. Tính số cây đã   trồng lúc đầu của mỗi khối Giúp học sinh phân tích bài tốn: Bài tốn cho biết “tỉ số mới” đó là tỉ số giữa số cây nếu khối Năm trồng  thêm 30 cây và khối Bốn trồng bớt đi 30 cây nên phải xác định lại “hiệu mới”  11/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 (Theo chú ý 3.b). Sau đó hướng dẫn học sinh cách giải bài tập theo các bước   thơng thường Cách 1: Sau khi xác định “hiệu mới” học sinh giải bằng “phương pháp sơ  đồ  đoạn thẳng” . (Theo cách giải thơng thường ­ khuyến khích học sinh tự  làm bài, rồi chữa bài) Cách 2: Giáo viên khuyến khích học sinh vận dụng kiến thức đã học về  tỉ số và dùng “phương pháp tỉ số” để giải bài tập. Cụ thể như sau: Bài giải Nếu khối Năm trồng thêm 30 cây và khối Bốn trồng bớt đi 30 cây  thì lúc đó số cây trồng của khối Năm nhiều hơn khối Bốn là: 360 + (30 + 30) = 420 (cây) Giả sử lúc này, Khối 4 trồng được 1 cây thì Khối 5 trồng được 4  cây như vậy Khối 5 trồng được nhiều hơn Khối 4 là: 4 ­ 1 = 3 (cây) Tỉ số của 420 và 3 là: 420 : 3 = 140 Số cây trồng lúc đầu của Khối 4 là : 1 x 140 + 30 = 170 (cây) Số cây trồng lúc đầu của Khối 5 là: 170 + 360 = 530 (cây) Đáp số : Khối 4 : 170 cây; Khối 5 : 530 cây Ví dụ  8:  Thương của hai số bằng số lẻ nhỏ nhất có hai chữ  số. Hiệu  của hai số đó thì bằng số lượng số có ba chữ số. Tìm tích của hai số đó Gặp bài này, học sinh sẽ  lúng túng vì bài tốn cho  ẩn cả  hai yếu tố  “hiệu số” và “tỉ số”của hai số. Tỉ số lại cho dưới dạng “thương của hai số”.  Giáo viên cần hướng dẫn các em chỉ rõ: ­ Thương (tức là tỉ số) của hai số là: 11 (số lẻ nhỏ nhất có hai chữ số) ­ Hiệu của hai số là 900 (do có 900 số có ba chữ số)  Sau đó các em tiếp tục giải bài tốn và tìm được: hai số là 90 và 990 ­ Tích hai số: 81000.     * Trường hợp "Tìm ba, bốn  số khi biết hiệu và tỉ số của các số đó".  Ví dụ 9: Cho 3 số tự nhiên, trong đó số thứ nhất bằng   số thứ hai ; số thứ ba  bằng trung bình cộng của 2 số kia. Tìm ba số đó, biết rằng số thứ nhất kém số thứ  ba là 35 đơn vị 12/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5       Phân tích: Bài tốn cho biết hiệu giữa số thứ nhất với số thứ ba là 35 đơn vị. Ta   phải chỉ ra được tỉ số giữa số thứ nhất với số thứ ba để tìm được hiệu số phần bằng   nhau tương ứng.                                                         Bài giải Cách 1:                          Vì  Biểu thị số  thứ  nhất là 4 phần bằng nhau thì số  thứ  2 là 6 phần   như thế khi đó số thứ 3 được biểu thị là:                                  (4 + 6) : 2 = 5 (phần) Ta có sơ đồ:                          Số thứ nhất là :  35 : (5 ­ 4) x 4 = 140 Số thứ hai là:  35 : (5 ­ 4) x 6 = 210 (Hoặc 140 : 2 x 3 = 210) Số thứ ba là :  (140 + 210) : 2 = 175  (Hoặc 140 + 35 = 175) Đáp số : 140 ; 210 ; 175 Cách 2 : Giúp học sinh tìm hiểu và giải bài tốn bằng phương pháp  ‘‘Dùng đơn vị quy ước’’ Bài giải      Coi số thứ nhất là 1 đơn vị thì số thứ hai là  đơn vị khi đó số thứ 3 là: :2 (đơn vị) Số thứ 3 lớn hơn số thứ nhất là:                               1  (đơn vị) 4 13/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5      Theo bài ra, số thứ ba lớn hơn số thứ nhất là 35 . Do đó số thứ nhất phải   140       Số thứ hai phải tìm là:             140 :    = 210        Số thứ ba phải tìm là:                                                          140 + 35 = 175                           Đáp số: 140 ; 210 ; 175 Bài tốn “Tìm hai số khi biết hiệu và tỉ số của hai số đó”  ta cũng có thể  hướng dẫn học sinh giải bằng phương pháp khác: “Phương pháp khử” hoặc   “phương pháp thay thế” tìm là:                               35 : Ví dụ 10: Điểm kiểm tra Tốn cuối năm của Linh hơn Quang 1 điểm và bằng   điểm của Anh. Điểm của Quang bằng   điểm của Anh. Hãy tính điểm Tốn của  mỗi người Hướng dẫn học sinh phân tích bài tốn: Bài tập cho biết hiệu hai số (Điểm của Linh và Quang) nhưng lại cho   biết tỉ số điểm giữa Linh và Anh; giữa Quang và Anh. Vậy cần phải tìm tỉ số  điểm của Linh và Quang(tương  ứng với hiệu hai số) rồi giải bài tốn theo  mẫu (Dùng Phương pháp khử) Bài giải                         Tỉ số điểm của Linh so với điểm của Quang là: :   10    Ta có sơ đồ:                         Hiệu số phần bằng nhau là: 10 ­ 9 = 1 (phần) Điểm của Linh là: 1 x 10 = 10 (điểm) Điểm của Quang là:                         1  x 9 = 9 (điểm) Điểm của Anh là : 14/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 10  (điểm)                                               Đáp số :10 điểm; 9 điểm; 8 điểm Đây là dạng mở  rộng của bài tập cơ  bản mà tỉ  số bài tập cho cũng  ở  dạng phức tạp hơn. Song bài tập cũng khơng q khó đối với học sinh giỏi   Các em phải xác định đúng u cầu của bài, gắn tỉ số với hiệu số của hai số  tương  ứng để  vẽ  đúng sơ  đồ  và giải theo  phương pháp sơ  đồ  đoạn thẳng  hoặc kết hợp với phương pháp khử * Trường hợp liên quan đến phân số Có một số bài tốn dạng Tìm hai số khi biết hiệu và tỉ số của hai số đó   liên quan đến phân số. Gặp dạng tốn này, học sinh rất lúng túng, khó xác  định được các yếu tố  “hai số  cần tìm” ; “hiệu số” hoặc “tỉ  số”, giáo viên  cần hướng dẫn học sinh phân tích bài tốn để nhận ra dạng tốn và chỉ rõ các  yếu tố cần thiết. Sau đó, ta tiếp tục hướng dẫn học sinh lập kế hoạch giải Ví dụ 11::  Cho phân số   73  Hãy tìm một số sao cho khi đem tử số và  98 mẫu số của phân số đã cho trừ đi số đó ta được phân số tối giản  Phân tích: Ta thấy mẫu số hơn tử số là 25 ( 98 ­ 73 = 25). Lúc này ta đã   dùng mẫu số làm số lớn (số bị trừ), tử số làm số bé (số trừ), mà khi cùng bớt    cả  số  bị  trừ  và số  trừ  một số  như  nhau (theo chú ý 3.a) thì hiệu số  khơng   thay đổi. Như vậy sau khi cùng bớt, mẫu số vẫn hơn tử số 25 đơn vị. Phân số   tức là tử số chiếm 1 phần, mẫu số chiếm 6 phần. Bài tốn trở về dạng bài   tốn “Tìm hai số khi biết hiệu và tỉ số của hai số đó” Bài giải              Mẫu số hơn tử số là:                                                                98 ­ 73 = 25 Ta có sơ đồ:                                       Khi cùng bớt ở cả tử số và mẫu số một số đơn vị như nhau thì  mẫu số   vẫn hơn tử số 25 đơn vị. Hiệu số phần bằng nhau là:                                    6 ­ 1 =  5  (phần) Tử số của phân số mới là:                                    25 : 5 = 5                                      15/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 Mẫu số của phân số mới là:                                5  x  6 = 30 Số phải tìm là:                                73 ­ 5 = 68 (hoặc 98 ­ 30 = 68)                                                              Đáp số: 68    Ví dụ  12:  Cho phân số   29  Hãy tìm một số  sao cho khi đem tử  số  và  99 mẫu số của phân số đã cho cộng với số đó ta được phân số tối giản  Phân tích: Ta thấy mẫu số hơn tử số là 70 ( 99 ­ 29 = 70). Lúc này ta đã   dùng mẫu số làm số lớn (số bị trừ), tử số làm số bé (số trừ), mà khi cùng cùng  thêm   cả  số  bị  trừ  và số  trừ  một số  như  nhau (theo chú ý 3.a) thì hiệu số  khơng thay đổi. Như vậy sau khi thêm, mẫu số vẫn hơn tử số 70 đơn vị. Phân   số    tức là tử số chiếm 1 phần, mẫu số chiếm 3 phần.  Bài tốn trở về dạng bài  tốn “Tìm hai số khi biết hiệu và tỉ số của hai số đó” Bài giải Mẫu số hơn tử số là:                                                       99 ­ 29 = 70 Ta có sơ đồ:                   Khi cùng thêm vào tử số và mẫu số một số đơn vị như nhau thì mẫu số  vẫn hơn tử số 70 đơn vị.  Hiệu số phần bằng nhau giữa mẫu số và tử số là:                                  3 ­ 1 =  2  (phần) Tử số của phân số mới là:                                      70 : 2 = 35                                      Mẫu số của phân số mới là:                                     35  x  3 = 105 Số phải tìm là:                   35 ­ 29 = 6                                                              Đáp số: 6   Qua ví dụ 13 và ví dụ 14 dạng “cùng thêm”  hoặc “cùng bớt” ở tử số và  mẫu số một số đơn vị như nhau (theo chú ý 3.a: hiệu số giữa tử số và mẫu số  vẫn khơng thay đổi), cũng như các dạng khác, khi dạy bài tốn dạng  Tìm hai  16/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 số khi biết hiệu và tỉ số của hai số đó liên quan đến phân số, ta cần lưu ý học  sinh cách xác định rõ các yếu tố:  ­ Hai số cần tìm chính là tử số và mẫu số của phân số cần tìm ­ Hiệu là hiệu giữa mẫu số và tử số (Nếu mẫu số lớn hơn tử số). Hoặc   hiệu là hiệu giữa tử số và mẫu số (Nếu tử số lớn hơn mẫu số) ­ Tỉ  số  giữa tử  số  và mẫu số  của phân số  mới chính là phân số  rút gọn  (tối giản).    Ngồi ra, giáo viên cần giúp học sinh rút ra cách giải chung. Cụ  thể như sau: Bước 1: Xác định đúng hiệu giữa mẫu số và tử số Bước 2: Chỉ rõ: hiệu giữa mẫu số và tử số vẫn khơng thay đổi Bước 3: Xác định tỉ số giữa mẫu số và tử số của phân số mới Bước 4: Vẽ sơ đồ, tìm tử số mới, mẫu số mới, lập phân số mới và giản  ước để được phân số mới đã cho Bước 5: Tìm số cần tìm.  * Trường hợp liên quan đến các bài tốn về tính tuổi  Khi các em đã nắm chắc dạng cơ bản, giáo viên tiếp tục hướng dẫn các  em vận dụng bài tốn “Tìm hai số  khi biết hiệu và tỉ  số  của hai số  đó”  để  giải các bài tốn về tính tuổi dạng Cho biết hiệu số tuổi và tỉ số tuổi của A   và B.  Ví dụ  13: Hiện nay em 5 tuổi, anh 19 tuổi. Hỏi mấy năm nữa tuổi anh  gấp 3 lần tuổi em? GV cần giúp học sinh xác định đúng hai số  cần tìm, hiệu của hai số  (19­5 = 14) và tỉ số của hai số là   rồi giải bài tốn theo mẫu Bài giải Hiệu số tuổi của hai anh em là:                                   19 ­ 5 = 14 (tuổi) Do hiệu số tuổi của hai anh em khơng thay đổi theo thời gian, nên khi  tuổi          anh gấp 3 lần tuổi em thì anh vẫn hơn em 14 tuổi. Lúc đó ta có sơ  đồ:                Vậy: Tuổi của em khi tuổi anh gấp 3 lần tuổi em là:                                 14 : ( 3 ­ 1) = 7  (tuổi) 17/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 Do hiện nay em 5 tuổi nên cịn 2 năm nữa ( vì 7 ­ 2 = 5) thì tuổi anh gấp  3  lần tuổi em.                                                                                          Đáp số: 2 năm Đối với dạng tốn này, giáo viên hướng dẫn học sinh rút ra cách giải  như sau: 1­ Dùng sơ đồ đoạn thẳng để biểu diễn tỉ số tuổi của hai người ở thời điểm  đã cho 2­ Nhận xét: Hiệu số tuổi của hai người bằng hiệu số phần bằng nhau   trên sơ đồ đoạn thẳng. (Lưu ý: Hiệu số tuổi của hai người khơng thay đổi   theo thời gian) 3­ Tìm số tuổi ứng với một phần bằng nhau trên sơ đồ 4­ Tìm số tuổi của mỗi người Tóm lại: Muốn Nâng cao hiệu quả  dạy giải bài tốn về “Tìm hai số   khi biết hiệu và tỉ số của hai số đó” cho học sinh lớp 5, khi hướng dẫn học   sinh giải bài tốn, giáo viên cần giúp các em nắm chắc một số kiến thức cơ  bản: ­ Tỉ số của hai số được nêu dưới những dạng thức sau: + Số này gấp mấy lần số kia + Số này bằng mấy phần số kia + Thương của hai số phải tìm, hoặc thương của hai số có liên quan đến số  phải tìm + Phân số được coi là thương của số bị chia và số chia + Tỉ số của hai số + Tỉ số phần trăm của hai số (Lớp 4 chưa học ­ chỉ mở rộng hoặc đưa   về dạng phân số. Ví dụ : Tỉ số của hai số là  25% 25 100   ) ­ Và hiệu số của hai số cũng được nêu dưới nhiều hình thức khác nhau.  Có thể các em phải giải bài tốn phụ mới xác định được. Với đối tượng học   sinh khá giỏi, địi hỏi giáo viên phải giúp các em có khả  năng phân tích, tổng   hợp, xác định rõ các yếu tố, phối hợp tất cả các phương pháp để giải Trên đây là một số ví dụ, qua đó tơi nhận thấy : ­ Chỉ với dạng bài “Tìm hai số khi biết hiệu và tỉ số của hai số đó ” ta  đã có thể mở rộng ra thành nhiều kiểu bài khác nhau, với những dạng “hiệu”,  “tỉ số” khác nhau 18/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 ­ Tuỳ  mức độ  học sinh mà giáo viên giao cho những mức độ  bài khác  ­ Học sinh tuỳ khả năng mà vận dụng những kiến thức đã học để tìm ra   một hay nhiều cách giải khác nhau cho cùng một bài tốn.  ­ Sau khi học xong cần giúp các em rút ra phương pháp giải chung như  sau: + Đọc kĩ đề, xác định rõ các yếu tố “hai số cần tìm”, “hiệu số” và “tỉ  số” + Tóm tắt đề tốn bằng sơ đồ + Tìm hiệu số phần bằng nhau + Tìm giá trị 1 phần:                  Giá trị 1 phần = Hiệu số : Hiệu số phần bằng nhau + Tìm từng số cần tìm:  Cách 1:  Số  bé   = Giá trị  1 phần   số  phần của số  bé. ­ Tìm tiếp số  lớn Cách 2:  Số lớn = Giá trị  1 phần   số  phần của số lớn. ­ Tìm tiếp số  bé 3. Kết quả đạt được a. Tỉ lệ HS hồn thành tốt qua các bài kiểm tra ở các lớp cao hơn b. Kĩ năng thực hành, thảo luận nhóm, trình bày ý kiến cá nhân  của   học sinh cũng cao hơn c.  Ở  các tơi, hứng thú học tập của HS cũng cao hơn rõ rệt.   Các em  hoạt động tích cực hơn và chủ động trong q trình chiếm lĩnh tri thức Kết quả cụ thể như sau: Thời  Lớp  Sĩ số gian Cuối  học kì I 5D 47 Hoàn thành tốt SL TL % 29 61,7 Hoàn thành SL TL % 18 38,3 Chưa hồn thành SL TL % 0 Những kết quả  trên đã chứng tỏ  q trình thực nghiệm đã khẳng định  được giả  thuyết khoa học mà sáng kiến kinh nghiệm đã đề  ra. Việc nắm  vững cấu trúc chương trình sách giáo khoa, phối hợp các phương pháp dạy  học tích cực, cộng với sự  nhiệt tình của giáo viên sẽ  đem lại hiệu quả  cao  trong giờ học                         19/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 20/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 PHẦN III: KẾT LUẬN  Qua q trình nghiên cứu và thực nghiệm, tơi rút ra một số bài học trong   dạy học tốn nói chung và dạy dạng bài “Tìm hai số khi biết hiệu và tỉ số của   hai số đó” nói riếng cho học sinh như sau: ­ Giáo viên cần nghiên cứu kĩ nội dung chương trình cũng như nội dung  từng bài để đặt ra mục tiêu, phương pháp và hình thức tổ chức dạy học phù hợp   cho từng tiết dạy ­ Giúp học sinh hình thành thói quen: phân tích đề, nắm chắc u cầu  của đề, xác định rõ ràng các yếu tố  “hai số  cần tìm”, “hiệu số”, “tỉ  số” và  nắm chắc phương pháp chung để giải dạng tốn ­ Với những bài mở rộng và nâng cao dành cho học sinh hồn thành tốt,  ngồi cách giải theo dạng cơ  bản, giáo viên cần khuyến khích các em suy   nghĩ, tìm tịi nhiều cách giải khác hay hơn cho cùng một bài để phát triển năng  lực mơn Tốn cho các em. Học sinh cần được làm quen với việc lập luận   chặt chẽ  khi làm bài. Ta cần chọn ra những bài tốn giải theo phương pháp  chung, tương tự như nhau, để đưa vào từng nhóm, từng loại bài, theo mức độ  từ  dễ  đến khó. Sau khi làm quen với mỗi loại bài nâng cao trong dạng bài,  giáo viên cần giúp các em khái qt kiến thức, những điều cần ghi nhớ  và  cách giải với từng loại bài đó.  ­ Đặc biệt, giáo viên cần phân loại và nắm chắc từng đối tượng học   sinh trong lớp để có biện pháp cung cấp kiến thức và rèn kĩ năng cho phù hợp.  Nhà giáo khơng phải là người nhồi nhét kiến thức mà phải là người khơi dậy   ngọn lửa cho tâm hồn. Vì vậy, ta cần thường xun động viên khuyến khích,   tạo khơng khí thi đua học tập, tạo niềm vui và say mê trong học tốn cho các   em. Đó chính là ta đã khơi nguồn, tạo hướng nâng cao và phát triển cho học  sinh Trên đây là những ý kiến nhỏ của riêng tơi về “Nâng cao hiệu quả dạy­ học dạng tốn “Tìm hai số  khi biết hiệu và tỉ  số  của hai số  đó” cho học  sinh lớp 5 . Tuy tơi đã đầu tư nhiều thời gian, đúc kinh nghiệm nhiều năm dạy   dỗ  các em nhưng vì khả  năng tìm tịi, phân tích tổng hợp của tơi cịn nhiều   hạn chế nên chưa bao qt hết được mọi vấn đề. Tơi rất mong nhận được sự  đóng góp ý kiến của các đồng chí cán bộ giáo viên để cho nội dung sáng kiến  của tơi được đầy đủ hơn. Cũng qua đó giúp tơi vững vàng hơn trong q trình   21/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5 đổi mới phương pháp giảng dạy, góp phần nâng cao chất lượng dạy ­ học   Tơi xin chân trọng cảm ơn.                  22/20 Nâng cao hiệu quả dạy­học dạng tốn “Tìm hai số khi biết hiệu và tỉ số   của hai số đó” cho học sinh lớp 5                                         TÀI LIỆU THAM KHẢO 1. Phương pháp dạy học mơn Tốn – Nguyễn Bá Kim – Vũ Dương Thuỵ 2. Phương pháp dạy học mơn Tốn   Tiểu học ­ Đỗ  Trung Hiệu, Đỗ  Đình Hoan, Vũ Dương Thuỵ, Vũ Quốc Chung 3. Tài liệu bồi dưỡng thường xun theo chu kì ( 2003­2007) 4. Các phương pháp giải Tốn ở Tiểu học­ Nhà xuất bản giáo dục 5. Các bài Tốn điển hình lớp 4 ­ 5 ­ Nhà xuất bản giáo dục 6. 10 chun đề bồi dưỡng học sinh giỏi ­ Nhà xuất bản giáo dục 7. Các tạp chí “Thế  giới trong ta”, “Giáo dục Tiểu học”, “Toán tuổi   thơ” 23/20 ...         b. Nghiên cứu? ?dạng? ?bài? ?Tìm? ?hai? ?số? ?khi? ?biết? ?hiệu? ?và? ?tỉ? ?số? ?của? ?hai? ?số? ?đó? ??         c. Mức độ  u cầu về? ?kiến? ?thức? ?và? ?kĩ năng? ?khi? ?dạy bài ? ?Tìm? ?hai? ?số? ?khi   biết? ?hiệu? ?và? ?tỉ? ?số? ?của? ?hai? ?số? ?đó? ?? 4/20 Nâng? ?cao? ?hiệu? ?quả? ?dạy­học? ?dạng? ?tốn ? ?Tìm? ?hai? ?số? ?khi? ?biết? ?hiệu? ?và? ?tỉ? ?số. .. vẫn khơng thay đổi), cũng như các? ?dạng? ?khác,? ?khi? ?dạy bài tốn? ?dạng? ? Tìm? ?hai? ? 16/20 Nâng? ?cao? ?hiệu? ?quả? ?dạy­học? ?dạng? ?tốn ? ?Tìm? ?hai? ?số? ?khi? ?biết? ?hiệu? ?và? ?tỉ? ?số   của? ?hai? ?số? ?đó? ?? cho học sinh lớp 5 số? ?khi? ?biết? ?hiệu? ?và? ?tỉ? ?số? ?của? ?hai? ?số? ?đó? ?liên quan đến phân? ?số,  ta cần lưu ý học ... Nâng? ?cao? ?hiệu? ?quả? ?dạy­học? ?dạng? ?tốn ? ?Tìm? ?hai? ?số? ?khi? ?biết? ?hiệu? ?và? ?tỉ? ?số   của? ?hai? ?số? ?đó? ?? cho học sinh lớp 5 2. Biện pháp? ?nâng? ?cao? ?hiệu? ?quả  dạy giải bài tốn ? ?Tìm? ?hai? ?số ? ?khi   biết? ?hiệu? ?và? ?tỉ? ?số? ?của? ?hai? ?số? ?đó? ?? cho học sinh lớp 5 

Ngày đăng: 27/03/2021, 08:53

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w