1. Trang chủ
  2. » Giáo án - Bài giảng

DAU TAM THUC BAC HAI

10 371 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 840,5 KB

Nội dung

Giáo viên: Nguyễn Ngọc Giang Trường: THPT Bình Gia, Lạng Sơn. Xét dấu của biểu thức: ( ) ( 1)( 2)f x x x= − + 1x − 2x + ( )f x −∞ +∞ -2 1 - - - + - + + + + 0 0 00 x DẤU CỦA TAM THỨC BẬC HAI I. Định lí về dấu của tam thức bậc hai 1. Tam thức bậc hai Định nghĩa: Tam thức bậc hai đối với x là biểu thức có dạng trong đó a, b, c là những hệ số, 2 ( ) ax ,f x bx c= + + 0a ≠ Tiết 40 Bài toán 1. Xét tam thức bậc hai . Tính: và nhận xét về dấu của chúng. 2 ( ) 5 4f x x x= − + (4), f(2), f(-1), f(0) f Giải: (0) 4f = ( 1) 10f − = (2) 2f = − (4) 0f = 2. Quan sát các đồ thị trong hình dưới đây và rút ra mối liên hệ về dấu của giá trị ứng với x tuỳ theo dấu của biệt thức 2 ( ) axf x bx c= + + 2 4b ac∆ = − f(x)=x^2-4x+5 1 2 3 4 5 1 2 3 4 5 x y 2 ( ) 4 5y f x x x= = − + f(x)=x^2-4x+4 1 2 3 4 1 2 3 4 x y 2 ( ) 4 4y f x x x= = − + f(x)=x^2-5x+4 1 2 3 4 -2 -1 1 2 3 4 x y 2 ( ) 5 4y f x x x= = − + 1 4 2 2. Dấu của tam thức bậc hai Định lí: Cho , 2 ( ) ax ,f x bx c= + + ( 0)a ≠ 2 4b ac∆ = − Nếu thì luôn cùng dấu với a, 0∆ < ( )f x x∀ ∈ ¡ Nếu thì luôn cùng dấu với a, trừ khi 0∆ = ( )f x 2 b x a − = Nếu thì cùng dấu với a khi hoặc Trái dấu với hệ số a khi trong đó là hai nghiệm của 0∆ > ( )f x 1 2 x x x< < 2 x x> 1 x x< 1 2 1 2 , ( )x x x x< ( )f x f(x)=x^2-2x+2 1 2 1 2 3 4 x y f(x)=x^2-2x+1 1 2 1 2 3 4 x y f(x)=x^2-2x-1 -4 -3 -2 -1 1 2 3 4 5 6 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 x y f(x)=-x^2+2x-2 -1 1 2 3 -3 -2 -1 1 x y f(x)=-x^2+2x-1 -1 1 2 3 -3 -2 -1 1 x y f(x)=-x^2+2x+1 -1 1 2 3 -3 -2 -1 1 2 x y 0∆ = 0∆ = 0∆ > 0∆ < 0∆ < 0∆ > 0a > 0a < + + + + + + + ++ + + + + 2 b a − - - - - - - - - - - - - - 2 b a − + + + + + + + 1 x 1 x 2 x - 2 x - - - - - - Điền dấu <, >, = thích hợp vào chỗ trống f(x)=-x^2 -4 -3 -2 -1 1 2 3 4 -4 -3 -2 -1 1 x y f(x)=x^2+x+1 -2 -1 1 2 1 2 3 4 x y f(x)=x^2+3x+2 -4 -3 -2 -1 1 -1 1 2 3 x y f(x)=-x^2+3x+1 -2 -1 1 2 3 4 -3 -2 -1 1 2 3 4 x y a 0 a 0 a 0 0∆ a 0 0∆ 0∆ 0∆ = < < > <>> > H4 H3 H2 H1 3. ÁP DỤNG Ví dụ 1: Xét dấu các tam thức bậc hai sau: a. 2 ( ) 3 4f x x x= − + − b. 2 ( ) 3 2 5f x x x= + − 2 ( ) 4 4 1f x x x= − + c. Giải: c. Ta có bảng xét dấu như sau: ( )f x ( )f x −∞ + ∞ x 5 1 3 − 0 0 − + + Ví dụ 2: Xét dấu biểu thức 2 2 3 2 5 ( ) 4 x x f x x + − = − Giải: x 2 4x − 2 3 2 5x x+ − ( )f x −∞ + ∞ 2− 5 3 − 1 2 0 0 + + + + 0 0 − − − − + + 0 0 + ++ − − Xét dấu các tam thức và rồi lập bảng xét dấu ta được: 2 3 2 5x x+ − 2 4x − ( )f x BÀI TẬP TRẮC NGHIỆM 1. Tam thức nhận giá trị dương khi và chỉ khi: 2 ( ) 2 3f x x x= − − 2 ( ) 8 16f x x x= − + 2 ( ) 3 4f x x x= − − − 2 ( ) 4 3f x x x= − + A. hoặc 3x < − 3x > B. hoặc 1x > − 1x < − C. hoặc 2x < − 6x > 1 3x− < < D. 2. Tam thức nhận giá trị âm khi và chỉ khi: B. 1x > − 4 1x− < < − C. hoặc 1x < 4x > x∈ ¡ D. A. hoặc 4x < − 3. Tam thức nhận giá trị âm khi và chỉ khi: B. 1 3x− < < C. hoặc 1x < 3x > x∈ ¡ D. A. 1 3x< < B. 1x > − 4 1x− < < − C. 4x ≠ x∈ ¡ D. A. hoặc 4x < − 4. Tam thức nhận giá trị + khi và chỉ khi: . + + + + 0 0 00 x DẤU CỦA TAM THỨC BẬC HAI I. Định lí về dấu của tam thức bậc hai 1. Tam thức bậc hai Định nghĩa: Tam thức bậc hai đối với x là biểu thức. là những hệ số, 2 ( ) ax ,f x bx c= + + 0a ≠ Tiết 40 Bài toán 1. Xét tam thức bậc hai . Tính: và nhận xét về dấu của chúng. 2 ( ) 5 4f x x x= − + (4),

Ngày đăng: 10/11/2013, 17:11

HÌNH ẢNH LIÊN QUAN

2. Quan sát các đồ thị trong hình dưới đây và rút ra mối liên hệ về dấu của giá trị                                     ứng với x tuỳ theo dấu  của biệt thức    - DAU TAM THUC BAC HAI
2. Quan sát các đồ thị trong hình dưới đây và rút ra mối liên hệ về dấu của giá trị ứng với x tuỳ theo dấu của biệt thức (Trang 4)
c. Ta có bảng xét dấu như sau: ) - DAU TAM THUC BAC HAI
c. Ta có bảng xét dấu như sau: ) (Trang 8)
Xét dấu các tam thức và rồi lập bảng xét dấu              ta được:   - DAU TAM THUC BAC HAI
t dấu các tam thức và rồi lập bảng xét dấu ta được: (Trang 9)

TỪ KHÓA LIÊN QUAN

w