1. Trang chủ
  2. » Trung học cơ sở - phổ thông

BÀI TẬP VỀ TỨ GIÁC HÌNH 8

15 84 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 403,5 KB

Nội dung

BÀI TẬP VỀ TỨ GIÁC HÌNH 8BÀI TẬP VỀ TỨ GIÁC HÌNH 8BÀI TẬP VỀ TỨ GIÁC HÌNH 8BÀI TẬP VỀ TỨ GIÁC HÌNH 8BÀI TẬP VỀ TỨ GIÁC HÌNH 8BÀI TẬP VỀ TỨ GIÁC HÌNH 8BÀI TẬP VỀ TỨ GIÁC HÌNH 8BÀI TẬP VỀ TỨ GIÁC HÌNH 8BÀI TẬP VỀ TỨ GIÁC HÌNH 8

BÀI TẬP VỀ TỨ GIÁC HÌNH CHƯƠNG I: TỨ GIÁC I TỨ GIÁC VẤN ĐỀ I Sử dụng tính chất góc tứ giác để tính góc Bài Cho tứ giác ABCD có �B  1200,� C  600,� D  900 Tính góc A góc ngồi đỉnh A Bài Cho tứ giác ABCD có AB = AD, CB = CD, � C  600,�A  1000 a) Chứng minh AC đường trung trực BD ĐS: b) �B  � D  1000 b) Tính �B, � D Bài Cho tứ giác ABCD có phân giác góc A góc B cắt E, phân giác � �A  �B C � D � góc A góc B cắt F Chứng minh: � AEB  AFB  2 Bài Cho tứ giác ABCD có �B  � D  1800, CB  CD Trên tia đối tia DA lấy điểm E cho DE = AB Chứng minh: a) Các tam giác ABC EDC b) AC phân giác góc A Bài Cho tứ giác ABCD biết số đo góc �A, �B, � C, � D tỉ lệ thuận với 5; 8; 13 10 a) Tính số đo góc tứ giác ABCD b) Kéo dài hai cạnh AB DC cắt E, kéo dài hai cạnh AD BC cắt F Hai tia phân giác góc AED góc AFB cắt O Phân giác góc AFB cắt cạnh CD AB M N Chứng minh O trung điểm đoạn MN Bài Cho tứ giác ABCD có �B  � D  1800 , AC tia phân giác góc A Chứng minh CB = CD Bài Cho tứ giác ABCD có �A  a , � C  b Hai đường thẳng AD BC cắt E, hai đường thẳng AB DC cắt F Các tia phân giác hai góc AEB AFD cắt I Tính góc � EIF theo a , b Bài a) VẤN ĐỀ II Sử dụng bất đẳng thức tam giác để giải toán liên hệ đến cạnh tứ giác Bài a) Bài Bài Cho tứ giác ABCD Chứng minh: AB  BC  CD  AD b) AC  BD  AB  BC  CD  AD Cho tứ giác ABCD có AB  BD �AC  CD Chứng minh: AB  AC Cho tứ giác ABCD Gọi O giao điểm hai đường chéo AC BD AB  BC  CD  AD  OA  OB  OC  OD  AB  BC  CD  AD a) Chứng minh: b) * Khi O điểm thuộc miền tứ giác ABCD, kết luận có không? Bài Chứng minh tứ giác thì: a) Tổng độ dài cạnh đối diện nhỏ tổng độ dài hai đường chéo b) Tổng độ dài hai đường chéo lớn nửa chu vi tứ giác Bài a) Trang BÀI TẬP VỀ TỨ GIÁC HÌNH II HÌNH THANG – HÌNH THANG VNG Định nghĩa:  Hình thang tứ giác có hai cạnh đối song song  Hình thang vng hình thang có góc vng Tính chất:  Nếu hình thang có hai cạnh bên song song hai cạnh bên nhau, hai cạnh đáy  Nếu hình thang có hai cạnh đáy hai cạnh bên song song VẤN ĐỀ I Tính chất góc hình thang Bài Cho hình thang ABCD (AB // CD) có �A  � D  200, �B  2� C Tính góc hình thang Bài Cho hình thang ABCD (AB // CD) có AB < CD, AD = BC = AB, � BDC  300 Tính góc hình thang Bài Cho hình thang ABCD (AB // CD) có AB < CD Chứng minh rằng: �A  �B  � C � D Bài Cho hình thang ABCD (AB // CD) Hai đường phân giác góc A B cắt điểm K thuộc đáy CD Chứng minh AD + BC = DC Bài Cho hình thang ABCD (AB // CD) a) Chứng minh hai tia phân giác hai góc A D qua trung điểm F cạnh bên BC cạnh bên AD tổng hai đáy b) Chứng minh AD = AB + CD hai tia phân giác hai góc A D cắt trung điểm cạnh bên BC AD Bài Cho hình thang ABCD có �A  �B  900 BC  AB  Lấy điểm M thuộc đáy nhỏ BC Kẻ Mx  MA, Mx cắt CD N Chứng minh tam giác AMN vuông cân VẤN ĐỀ II Chứng minh tứ giác hình thang, hình thang vng Bài Cho tứ giác ABCD có AB = BC AC tia phân giác góc A Chứng minh ABCD hình thang Bài Cho tam giác ABC vuông A Lấy điểm M thuộc cạnh BC cho AM  BC , N trung điểm cạnh AB Chứng minh: a) Tam giác AMB cân b) Tứ giác MNAC hình thang vng Bài Cho tam giác ABC vuông A Kẻ đường cao AH Từ H kẻ HD  AC, HE  AB Gọi M, N trung điểm đoạn thẳng HB, HC Chứng minh tứ giác DEMN hình thang vng III HÌNH THANG CÂN Trang BÀI TẬP VỀ TỨ GIÁC HÌNH Định nghĩa: Hình thang cân hình thang có hai góc kề đáy Tính chất: Trong hình thang cân:  Hai cạnh bên  Hai đường chéo Dấu hiệu nhận biết:  Hình thang có hai góc kề đáy hình thang cân  Hình thang có hai đường chéo hình thang cân VẤN ĐỀ I Sử dụng tính chất hình thang cân để tính tốn chứng minh Bài Cho hình thang cân ABCD (AB // CD, AB < CD) Kẻ đường cao AE, BF hình thang Chứng minh DE = CF Bài Cho hình thang cân ABCD (AB // CD) a) Chứng minh: � ACD  � BDC b) Gọi E giao điểm AC BD Chứng minh: EA  EB C � D) Đường Bài Cho hình thang cân ABCD (AB // CD, AB > CD) có CD  a , �A  �B  (� chéo AC vng góc với cạnh bên BC a) Tính góc hình thang b) Chứng minh AC phân giác góc � DAB c) Tính diện tích hình thang Bài Cho hình thang cân ABCD (AB // CD) có � BDC  450 Gọi O giao điểm AC BD a) Chứng minh tam giác DOC vuông cân b) Tính diện tích hình thang ABCD, biết BD = (cm) ĐS: b) S  18(cm2) VẤN ĐỀ II Chứng minh tứ giác hình thang cân Bài Cho tam giác ABC cân A, đường phân giác BD, CE (D  AC, E  AB) Chứng minh BEDC hình thang cân có đáy nhỏ cạnh bên Bài Cho hình thang ABCD (AB // CD) có � ACD  � BDC Chứng minh ABCD hình thang cân Bài Cho tam giác ABC cân A Trên cạnh AB, AC lấy điểm D E cho AD = AE a) Chứng minh BDEC hình thang cân b) Tính góc hình thang cân đó, biết �A  500 ĐS: b) �B  � C  650, � CED  � BDE  1150 Bài Cho hình thang ABCD (AB // CD) có AC = BD Qua B kẻ đường thẳng song song với AC cắt đường thẳng DC E Chứng minh: a) Tam giác BDE tam giác cân b) Các tam giác ACD BDC c) ABCD hình thang cân Bài Cho tam giác ABC điểm M thuộc miền tam giác Qua M kẻ đường thẳng song song với BC cắt AB D, đường thẳng song song với AC cắt BC E, đường thẳng song song với AB cắt AC F Chứng minh: a) Các tứ giác BDME, CFME, ADMF hình thang cân b) Chu vi tam giác DEF tổng khoảng cách từ M đến đỉnh tam giác ABC Trang BÀI TẬP VỀ TỨ GIÁC HÌNH c) � DME  � DMF  � EMF ĐS: c) � DME  � DMF  � EMF  1200 Bài Cho hình thang ABCD (AD // BC, AD > BC) có đường chéo AC vng góc với cạnh bên CD, � BAC  � CAD � D  600 a) Chứng minh ABCD hình thang cân b) Tính độ dài cạnh đáy AD, biết chu vi hình thang 20 cm ĐS: b) AD  8(cm) IV ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC, CỦA HÌNH THANG Đường trung bình tam giác:  Đường trung bình tam giác đoạn thẳng nối trung điểm hai cạnh tam giác  Đường thẳng qua trung điểm cạnh tam giác song song với cạnh thứ hai qua trung điểm cạnh thứ ba  Đường trung bình tam giác song song với cạnh thứ ba nửa cạnh Đường trung bình hình thang  Đường trung bình hình thang đoạn thẳng nối trung điểm hai cạnh bên hình thang  Đường thẳng qua trung điểm cạnh bên hình thang song song với hai đáy qua trung điểm cạnh bên thứ hai  Đường trung bình hình thang song song với hai đáy nửa tổng hai đáy Bài Cho tam giác ABC, trung tuyến AM Trên cạnh AB, lấy hai điểm D, E cho AD = DE = EB Gọi I giao điểm AM với CD Chứng minh: AI = IM Bài Cho tam giác ABC hai đường trung tuyến BD, CE cắt G Gọi M, N trung điểm BG, CG Chứng minh tứ giác MNDE có cặp cạnh đối song song Bài Cho tam giác ABC Trên tia BA lấy điểm D cho A trung điểm BD Trên tia CB lấy điểm E cho B trung điểm CE Hai đường thẳng AC DE cắt I Chứng minh DE rằng: DI  Bài Cho tứ giác ABCD có góc � C  400 , � D  800 , AD = BC Gọi E, F theo thứ tự trung điểm AB CD Tính góc nhọn tạo đường thẳng FE với đường thẳng AD BC Bài Cho A, B, C theo thứ tự nằm đường thẳng d (AB > BC) Trên nửa mặt phẳng bờ d, vẽ tam giác AMB BNC Gọi P, Q, R, S trung điểm BM, CM, BN, AN Chứng minh: a) PQRS hình thang cân b) SQ  MN Bài Cho tam giác ABC, trung tuyến AM Gọi I trung điểm AM, D giao điểm BI AC a) Chứng minh: AD  DC b) So sánh độ dài BD ID Bài Cho hình thang ABCD (AB // CD) Gọi M, N, P, Q trung điểm đoạn thẳng AD, BC, AC, BD a) Chứng minh bốn điểm M, N, P, Q nằm đường thẳng Trang BÀI TẬP VỀ TỨ GIÁC HÌNH b) Tính MN, PQ, biết cạnh đáy hình thang AB  a, CD  b (a  b) c) Chứng minh MP = PQ = QN a  2b Bài Cho hình thang ABCD (AB // CD) Gọi E, F, K trung điểm AD, BC, BD Chứng minh ba điểm E, K, F thẳng hàng Bài Cho hình thang ABCD (AB // CD) Gọi E, F trung điểm AD BC Đường thẳng EF cắt BD I, cắt AC K a) Chứng minh: AK = KC, BI = ID b) Cho AB = 6, CD = 10 Tính EI, KF, IK Bài 10.Cho tứ giác ABCD Gọi E, F, K trung điểm AD, BC, AC a) So sánh độ dài đoạn thẳng EK CD, KF AB AB  CD b) Chứng minh: EF � AB  CD c) Khi EF  tứ giác ABCD hình ĐS: c) ABCD hình thang Bài 11 Tính độ dài đường trung bình hình thang cân biết đường chéo vng góc với đường cao 10 cm Bài 12.Cho tam giác ABC, trọng tâm G Vẽ đường thẳng d qua G cắt đoạn thẳng AB, AC Gọi A’, B’ C’ thứ tự hình chiếu A, B, C d Tìm liên hệ độ dài AA’, BB’, CC’ Bài 13.Cho tam giác ABC, trọng tâm G Vẽ đường thẳng d nằm tam giác ABC Gọi A’, B’ C’, G’ thứ tự hình chiếu A, B, C d Tìm liên hệ độ dài AA’, BB’, CC’ , GG’ V ĐỐI XỨNG TRỤC Bài Cho góc � xOy  500 điểm A nằm góc Vẽ điểm B đối xứng với A qua Ox , điểm C đối xứng với A qua Oy a) So sánh độ dài OB OC b) Tính số đo góc � BOC ĐS: b) � BOC  1000 Bài Cho tam giác nhọn ABC, trực tâm H Gọi K điểm đối xứng với H qua BC a) Chứng minh hai tam giác BHC BKC b) Cho � BAC  700 Tính số đo góc � BKC ĐS: b) � BKC  1100 Bài Cho hình thang vng ABCD ( �A  � D  900 ) Gọi K điểm đối xứng với B qua AD, E giao điểm CK AD Chứng minh � CED  � AEB Bài Cho tam giác ABC vuông A, đường cao AH Gọi I, K điểm đối xứng với điểm H qua cạnh AB, AC Chứng minh: a) Ba điểm I, A, K thẳng hàng b) Tứ giác BIKC hình thang c) IK  2AH Trang BÀI TẬP VỀ TỨ GIÁC HÌNH Bài Cho tam giác ABC, phân giác BM CN cắt I Từ A vẽ đường vng góc với BM CN, chúng cắt BC thứ tự E F Gọi I hình chiếu I BC Chứng minh E F đối xứng qua II Bài Cho hai điểm A, B nằm nửa mặt phẳng bờ đường thẳng d Tìm điểm M �d cho MA  MB ngắn Bài Cho góc � xOy  600 điểm A nằm góc Gọi B, C hai điểm đối xứng với điểm A qua Ox, Oy a) Chứng minh tam giác BOC tam giác cân Tính góc tam giác b) Tìm điểm I �Ox điểm K �Oy cho tam giác AIK có chu vi nhỏ ĐS: a) � b) I, K giao điểm đường thẳng BC với BOC  1200, � OBC  � OCB  300 tia Ox Oy Bài Cho tam giác ABC, Cx phân giác ngồi góc C Trên Cx lấy điểm M (khác C) Chứng minh rằng: MA + MB > CA + CB Bài Cho góc nhọn � xOy điểm A góc Tìm điểm B tia Ox điểm C tia Oy cho chu vi tam giác ABC nhỏ VI HÌNH BÌNH HÀNH Định nghĩa: Hình bình hành tứ giác có cặp cạnh đối song song Tính chất: Trong hình bình hành:  Các cạnh đối  Các góc đối  Hai đường chéo cắt trung điểm đường Dấu hiệu nhận biết:  Tứ giác có cạnh đối song song hình bình hành  Tứ giác có cạnh đối hình bình hành  Tứ giác có hai cạnh đối song song hình bình hành  Tứ giác có hai đường chéo cắt trung điểm đường hình bình hành VẤN ĐỀ I Vận dụng tính chất hình bình hành để chứng minh tính chất hình học Bài Cho hình bình hành ABCD Gọi E trung điểm AD, F trung điểm BC a) Chứng minh BE  DF � ABE  � CDF b) Chứng minh tứ giác EBFD hình bình hành c) Chứng minh đường thẳng EF, DB AC đồng qui Bài Cho hình bình hành ABCD (AB > BC) Tia phân giác góc D cắt AB E, tia phân giác góc B cắt CD F a) Chứng minh DE P BF b) Tứ giác DEBF hình gì? Bài Cho hình bình hành ABCD Gọi K, I trung điểm cạnh AB vad CD, M N giao điểm AI CK với BD a) Chứng minh: AI P CK b) Chứng minh: DM  MN  NB Trang BÀI TẬP VỀ TỨ GIÁC HÌNH VẤN ĐỀ II Vận dụng dấu hiệu nhận biết để chứng minh tứ giác hình bình hành Bài Cho hình bình hành ABCD, đường chéo BD Kẻ AH vng góc với BD H, CK vng góc với BD K Chứng minh tứ giác AHCK hình bình hành Bài Cho hình bình hành ABCD Gọi O giao điểm hai đường chéo AC BD Qua điểm O, vẽ đường thẳng a cắt hai đường thẳng AD, BC E, F, vẽ đường thẳng b cắt hai cạnh AB, CD K, H Chứng minh tứ giác EKFH hình bình hành Bài Cho tam giác ABC Từ điểm E cạnh AC vẽ đường thẳng song song với BC cắt AB F đường thẳng song song với AB cắt BC D Giả sử AE = BF a) Chứng minh tam giác AED cân b) Chứng minh AD phân giác góc A Bài Cho tứ giác ABCD Gọi M, N, P, Q trung điểm cạnh AB, BC, CD, DA I, K trung điểm đường chéo AC, BD Chứng minh: a) Các tứ giác MNPQ, INKQ hình bình hành b) Các đường thẳng MP, NQ, IK đồng qui Bài Cho tam giác ABC H trực tâm Các đường thẳng vng góc với AB B, vng góc với AC C cắt D a) Chứng minh tứ giác BDCH hình bình hành b) Tính số đo góc � BDC , biết � BAC  600 Bài Cho hình bình hành ABCD, AD  2AB Từ C vẽ CE vng góc với AB Nối E với trung điểm M AD Từ M vẽ MF vng góc với CE, MF cắt BC N a) Tứ giác MNCD hình gì? b) Tam giác EMC tam giác gì? � � c) Chứng minh: BAD  2AEM Bài Cho tứ giác ABCD Gọi E, F giao điểm AB CD, AD BC; M, N, P, Q trung điểm AE, EC, CF, FA Chứng minh tứ giác MNPQ hình bình hành Bài Cho hình bình hành ABCD Các điểm E, F thuộc đường chéo AC cho AE = EF = FC Gọi M giao điểm BF CD; N giao điểm DE AB Chứng minh rằng: a) M, N theo thứ tự trung điểm CD, AB b) EMFN hình bình hành Bài Cho hình thang vng ABCD, có �A  �B  900 AD = 2BC Kẻ AH vng góc với BD (H thuộc BD) Gọi I trung điểm HD Chứng minh rằng: CI  AI Bài 10.Cho tam giác ABC O điểm thuộc miền tam giác Gọi D, E, F trung điểm cạnh AB, BC, CA L, M, N trung điểm đoạn OA, OB, OC Chứng minh rằng: đoạn thẳng EL, FM DN đồng qui VII ĐỐI XỨNG TÂM Bài Cho hình bình hành ABCD Gọi E điểm đối xứng với D qua A, F điểm đối xứng với D qua C Chứng minh: a) AC P EF b) Điểm E đối xứng với điểm F qua điểm B Bài Cho tam giác ABC, trung tuyến BD, CE Gọi H điểm đối xứng với B qua D, K điểm đối xứng với C qua E Chứng minh điểm H đối xứng với điểm K qua điểm A Bài Cho hình bình hành ABCD điểm E cạnh AB, I K trung điểm cạnh AD BC Gọi điểm M, N đối xứng với điểm E qua điểm I điểm K a) Chứng minh điểm M, N thuộc đường thẳng CD b) Chứng minh MN  2CD Bài Cho góc vng � xOy , điểm A nằm góc Gọi B điểm đối xứng với A qua Ox , C điểm đối xứng với A qua Oy Chứng minh B đối xứng với C qua O Trang BÀI TẬP VỀ TỨ GIÁC HÌNH Bài Cho hình bình hành ABCD, O giao điểm hai đường chéo Một đường thẳng qua O cắt cạnh AB CD theo thứ tự M N Chứng minh điểm M đối xứng với điểm N qua O Bài Cho hình bình hành ABCD có tâm đối xứng O, điểm E đoạn OD Gọi F điểm đối xứng điểm C qua E a) Chứng minh tứ giác ODFA hình thang b) Xác định vị trí điểm E OD để hình thang ODFA hình bình hành Bài Cho tam giác ABC, trọng tâm G Gọi M, N, P theo thứ tự điểm đối xứng A, B, C qua tâm G a) Chứng minh tứ giác BPNC hình bình hành b) Chứng minh tam giác ABC, MNP c) Chứng minh tam giác ABC, MNP có trọng tâm Bài Cho tam giác ABC, H trực tâm, I giao điểm đường trung trực K điểm đối xứng với H qua trung điểm đoạn thẳng BC Chứng minh K đối xứng với A qua I Bài Cho hình bình hành ABCD Gọi O giao điểm hai đường chéo AC BD Trên AB lấy điểm E, CD lấy điểm F cho AE = CF a) Chứng minh E đối xứng với F qua O b) Từ E dựng Ex // AC cắt BC I, dựng Fy // AC cắt AD K Chứng minh rằng: EF = FK; I K đối xứng với qua O Bài 10 Cho tam giác ABC Gọi A' điểm đối xứng với A qua C, B' điểm đối xứng với B qua A, C' điểm đối xứng với C qua B Gọi BM trung tuyến tam giác ABC, B'M' trung tuyến tam giác A'B'C' a) Chứng minh ABM'M hình bình hành b) Gọi G giao điểm BM B'M' Chứng minh G trọng tâm hai tam giác ABC tam giác A'B'C' VIII HÌNH CHỮ NHẬT Định nghĩa: Hình chữ nhật tứ giác có bốn góc vng Tính chất: Trong hình chữ nhật, hai đường chéo cắt trung điểm đường Dấu hiệu nhận biết:  Tứ giác có ba góc vng hình chữ nhật  Hình thang cân có góc vng hình chữ nhật  Hình bình hành có góc vng hình chữ nhật  Hình bình hành có hai đường chéo hình chữ nhật Áp dụng vào tam giác:  Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền nửa cạnh huyền  Nếu tam giác có đường trung tuyến ứng với cạnh nửa cạnh tam giác tam giác vng VẤN ĐỀ I Vận dụng dấu hiệu nhận biết để chứng minh tứ giác hình chữ nhật Trang BÀI TẬP VỀ TỨ GIÁC HÌNH Bài Cho tam giác ABC, đường cao AH Gọi I trung điểm AC, E điểm đối xứng với H qua I Gọi M, N trung điểm HC, CE Các đường thẳng AM, AN cắt HE G K a) Chứng minh tứ giác AHCE hình chữ nhật b) Chứng minh HG = GK = KE Bài Cho tứ giác ABCD có hai đường chéo vng góc với Gọi E, F, G, H theo thứ tự trung điểm cạnh AB, BC, CD, DA Tứ giác EFGH hình gì? ĐS: EFGH hình chữ nhật Bài Cho tam giác ABC vng A Về phía ngồi tam giác ABC, vẽ hai tam giác vuông cân ADB (DA = DB) ACE (EA = EC) Gọi M trung điểm BC, I giao điểm DM với AB, K giao điểm EM với AC Chứng minh: a) Ba điểm D, A, E thẳng hàng b) Tứ giác IAKM hình chữ nhật c) Tam giác DME tam giác vng cân Bài Cho hình thang cân ABCD (AB // CD, AB < CD) Gọi M, N, P, Q trung điểm đoạn thẳng AD, BD, AC, BC a) Chứng minh bốn điểm M, N, P, Q thẳng hàng b) Chứng minh tứ giác ABPN hình thang cân c) Tìm hệ thức liên hệ AB CD để ABPN hình chữ nhật ĐS: c) DC  3AB ABPN hình chữ nhật Bài Cho tam giác ABC Gọi O điểm thuộc miền tam giác, M, N, P, Q trung điểm đoạn thẳng OB, OC, AC, AB a) Chứng minh tứ giác MNPQ hình bình hành b) Xác định vị trí điểm O đế tứ giác MNPQ hình chữ nhật ĐS: b) O thuộc đường cao AH ABC Bài Cho tam giác ABC vuông cân C Trên cạnh AC, BC lấy điểm P, Q cho AP = CQ Từ điểm P vẽ PM song song với BC (M  AB) a) Chứng minh tứ giác PCQM hình chữ nhật b) Gọi I trung điểm PQ Chứng minh P di chuyển cạnh AC, Q di chuyển cạnh BC điểm I di chuyển đoạn thẳng cố định ĐS: b) I di chuyển đường trung bình ABC Bài Cho hình chữ nhật ABCD Nối C với điểm E đường chéo BD Trên tia đối tia EC lấy điểm F cho EF = EC Vẽ FH FK vng góc với AB AD Chứng minh rằng: a) Tứ giác AHFK hình chữ nhật b) AF song song với BD KH song song với AC c) Ba điểm E, H, K thẳng hàng Bài Cho tam giác ABC H trực tâm Gọi M, N, P trung điểm cạnh AB, BC CA; D, E, F trung điểm đoạn HA, HB HC a) Chứng minh tứ giác MNFD MEFP hình chữ nhật b) Để đoạn MD, ME DP tam giác ABC phải tam giác gì? VẤN ĐỀ II Vận dụng kiến thức hình chữ nhật để giải tốn Trang BÀI TẬP VỀ TỨ GIÁC HÌNH Bài Tính độ dài trung tuyến ứng với cạnh huyền tam giác vng có cạnh góc vng 7cm 24cm Bài ĐS: AM  12,5(cm) Bài Cho tam giác ABC cân A, CH đường cao (H  AB) Gọi D điểm đối xứng với điểm B qua A a) Chứng minh tam giác DCB tam giác vuông b) Chứng minh � DCA  � HCB Bài Cho hình chữ nhật ABCD Vẽ BH  AC (H  AC) Gọi M, K trung điểm AH DC; I, O trung điểm AB IC a) Chứng minh IC  KB MO  IC � b) Tính số đo góc BMK ĐS: b) � BMK  900 Bài Cho tam giác ABC vng A M điểm thuộc cạnh BC Vẽ MD  AB, ME  AC O trung điểm DE a) Chứng minh ba điểm A, O, M thẳng hàng b) Khi điểm M di chuyển cạnh BC điểm O di chuyển đường nào? c) Điểm M vị trí cạnh BC AM có độ dài ngắn ĐS: b) O di chuyển đường trung bình ABC c) M �H (AH  BC) Bài Cho hình chữ nhật ABCD, AB = 2AD Vẽ tia AM (M thuộc cạnh DC) cho � DAM  150 Chứng minh tam giác ABM tam giác cân Bài Cho tam giác ABC vuông A, AC > AB AH đường cao Trên tia HC lấy HD = HA, đường vng góc với BC D cắt AC E a) Chứng minh AE = AB b) Gọi M trung điểm BE Tính số đo góc � AHM Bài Cho tam giác ABC vuông A AC = 3AB Trên cạnh góc vng AC lấy điểm D E cho AD = DE = EC Tính � ACB  � AEB Bài Cho hình chữ nhật ABCD Kẻ AH  BD Gọi I trung điểm DH Kẻ đường thẳng vng góc với AI I cắt cạnh BC K Chứng minh K trung điểm cạnh BC IX HÌNH THOI Trang 10 BÀI TẬP VỀ TỨ GIÁC HÌNH Định nghĩa: Hình thoi tứ giác có bốn cạnh Tính chất: Trong hình thoi:  Hai đường chéo vng góc với  Hai đường chéo đường phân giác góc hình thoi Dấu hiệu nhận biết:  Tứ giác có bốn cạnh hình thoi  Hình bình hành có hai cạnh kề hình thoi  Hình bình hành có hai đường chéo vng góc với hình thoi  Hình bình hành có đường chéo đường phân giác góc hình thoi VẤN ĐỀ I Vận dụng dấu hiệu nhận biết để chứng minh tứ giác hình thoi Bài Cho hình chữ nhật ABCD Gọi M, N, P, Q trung điểm cạnh AB, BC, CD, AD Chứng minh tứ giác MNPQ hình thoi Bài Cho tứ giác ABCD có � C  400 , � D  800 , AD  BC Gọi E, F, M, N trung điểm AB, DC, DB, AC a) Chứng minh tứ giác EMFN hình thoi b) Tính góc � MFN ĐS: b) � MFN  600 Bài Cho hình bình hành ABCD, O giao điểm hai đường chéo AC BD Gọi E, F, G, H giao điểm phân giác tam giác OAB, OBC, ODC, ODA a) Chứng minh: ba điểm E, O, G thẳng hàng, ba điểm H, O, F thẳng hàng b) Chứng minh tam giác AEB CGD c) Chứng minh tứ giác EFGH hình thoi Bài Cho tam giác ABC điểm M thuộc cạnh BC Qua M vẽ đường thẳng song song với AB, cắt AC E đường thẳng song song với AC, cắt AB F a) Chứng minh tứ giác AFME hình bình hành b) Xác định vị trí điểm M cạnh BC để tứ giác AFME hình thoi ĐS: b) M chân đường phân giác góc B ABC Bài Cho hình bình hành ABCD có AB = 2AD, � D  700 Vẽ BH  AD (H  AD) Gọi M, N trung điểm cạnh CD, AB a) Chứng minh tứ giác ANMD hình thoi b) Tính góc � HMC ĐS: b) � HMC  1050 Bài Cho tam giác ABC Gọi H trực tâm tam giác, AD đường cao Trên cạnh BC lấy điểm M Từ M vẽ ME  AB (E  AB) MF  AC (F  AC) Gọi I trung điểm AM a) Chứng minh tứ giác DEIF hình thoi b) Chứng minh đường thẳng MH, ID, EF đồng qui Bài Cho hình bình hành ABCD, hai đường chéo cắt O Hai đường thẳng d d2 qua O vng góc với Đường thẳng d cắt cạnh AB CD M P Đường thẳng d2 cắt cạnh BC AD N Q Chứng minh tứ giác MNPQ hình thoi VẤN ĐỀ II Vận dụng kiến thức hình thoi để giải toán Trang 11 BÀI TẬP VỀ TỨ GIÁC HÌNH Bài Cho hình thoi ABCD có AC = 8cm, BD = 10cm Tính độ dài cạnh hình thoi ĐS: AB  41 (cm) Bài Cho hình thoi ABCD có �A  600 Trên cạnh AB, AC lấy hai điểm M, N cho BM = CN Chứng minh tam giác MDN tam giác Bài Cho hình thoi ABCD có �A  600 Trên AD CD lấy điểm M, N cho AM + CN = AD Gọi P điểm đối xứng N qua BC, MP cắt BC Q Tứ giác MDCQ hình ? Bài Cho P điểm chuyển động tam giác ABC cho � PBA  � PCA Hạ PM  AB; PN  AC (M  AB; N  AC) Gọi K, S hai đỉnh khác hình thoi KMSN Chứng minh KS qua điểm cố định X HÌNH VNG Định nghĩa: Hình vng tứ giác có bốn góc vng có bốn cạnh Tính chất: Hình vng có tất tính chất hình chữ nhật hình thoi Dấu hiệu nhận biết:  Hình chữ nhật có hai cạnh kề hình vng  Hình chữ nhật có hai đường chéo vng góc với hình vng  Hình chữ nhật có đường chéo đường phân giác góc hình vng  Hình thoi có góc vng hình vng  Hình thoi có hai đường chéo hình vng  Một tứ giác vừa hình chữ nhật, vừa hình thoi tứ giác hình vng VẤN ĐỀ I Vận dụng dấu hiệu nhận biết để chứng minh tứ giác hình vng Bài Cho tam giác ABC vuông A Phân giác AD góc A (D  BC) Vẽ DF  AC, DE  AB Chứng minh tứ giác AEDF hình vng Bài Cho hình vng ABCD Trên cạnh AB, BC, CD, DA lấy điểm E, F, G, H cho AE = BF = CG = DH Chứng minh tứ giác EFGH hình vuông Bài Cho tam giác ABC vuông A, M điểm thuộc cạnh BC Qua M vẽ đường thẳng song song với AB AC, chúng cắt cạnh AB, AC theo thứ tự E F a) Tứ giác AFME hình gì? b) Xác định vị trí điểm M cạnh BC để tứ giác AFME hình vng Bài Cho hình chữ nhật ABCD có AB = 2AD Gọi E, F theo thứ tự trung điểm AB, CD Gọi M giao điểm AF DE, N giao điểm BF CE a) Tứ giác ADFE hình gì? b) Tứ giác EMFN hình gì? Bài Cho tam giác ABC Dựng phía ngồi tam giác hình vng ABCD ACEF Gọi Q, N giao điểm đường chéo ABCD ACEF; M, P trung điểm BC DF Chứng minh tứ giác MNPQ hình vng VẤN ĐỀ II Vận dụng kiến thức hình vng để giải tốn Trang 12 BÀI TẬP VỀ TỨ GIÁC HÌNH Bài Cho hình vng ABCD Trên cạnh AD, DC lấy điểm E, F cho AE = DF Gọi M, N trung điểm EF, BF a) Chứng minh tam giác ADF BAE b) Chứng minh MN vng góc với AF Bài Cho hình vuông ABCD Trên tia đối tia BA lấy điểm E, tia đối tia CB lấy điểm F cho AE = CF a) Chứng minh tam giác EDF vuông cân b) Gọi I trung điểm EF Chứng minh BI = DI c) Gọi O giao điểm hai đường chéo AC BD Chứng minh O, C, I thẳng hàng Bài Cho tam giác ABC, dựng phía ngồi tam giác hình vuông ABCD ACEF Vẽ đường cao AH kéo dài HA gặp DF E Chứng minh DI = IF Bài Cho hình bình hành ABCD Vẽ phía ngồi hình bình hành, hai hình vng ABEF ADGH Chứng minh: a) AC = FH AC  FH b) Tam giác CEG tam giác vuông cân Bài Cho đoạn thẳng AB điểm M thuộc đoạn thẳng Vẽ phía AB, hình vng AMCD, BMEF a) Chứng minh AE vng góc với BC b) Gọi H giao điểm AE BC Chứng minh ba điểm D, H, F thẳng hàng c) Chứng minh đường thẳng DF qua điểm cố định M di chuyển đoạn thẳng cố định AB ĐS: c) DF qua K (K = AF  AC) Bài Cho hình vng ABCD Trên cạnh CD lấy điểm M Tia phân giác góc � ABM cắt AD I Chứng minh rằng: BI  MI Bài Cho hình vng ABCD Lấy điểm E thuộc đường chéo AC Kẻ EF  AD, EG  CD a) Chứng minh rằng: EB = FG EB  FG b) Chứng minh rằng: Các đường thẳng BE, AG, CF đồng qui Bài Cho tam giác ABC Vẽ phía ngồi tam giác ABC, hình vng ABDE ACFG Vẽ hình bình hành EAGH Chứng minh rằng: a) AK = BC AH  BC b) Các đường thẳng KA, BF, CD đồng qui BÀI TẬP ÔN CHƯƠNG I Trang 13 BÀI TẬP VỀ TỨ GIÁC HÌNH Bài Cho tứ giác ABCD Gọi E, F, G, H trung điểm AB, BC, CD, DA Các đường chéo AC, BD tứ giác ABCD thoả điều kiện tứ giác EFGH là: a) Hình chữ nhật ĐS: AC  BD b) Hình thoi ĐS: AC = BD c) Hình vng ĐS: AC = BD AC  BD Bài Cho tam giác ABC cân A, trung tuyến AM Gọi I trung điểm AC, K điểm đối xứng điểm M qua điểm I a) Tứ giác AMCK hình gì? b) Tứ giác AKMB hình gì? c) Có trường hợp tam giác ABC để tứ giác AKMB hình thoi ĐS: a) AMCK hình chữ nhật b) AKMB hình bình hành c) Khơng Bài Cho tam giác ABC vng A Về phia ngồi tam giác, vẽ hình vng ABDE, ACGH a) Chứng minh tứ giác BCHE hình thang cân b) Vẽ đường cao AK tam giác ABC Chứng minh AK, DE, GH đồng qui ĐS: b) Đồng qui F với F  DE �GH Bài Cho hình thang cân ABCD với AB // CD Gọi M, N, P, Q trung điểm AB, BC, CD, DA a) Tứ giác MNPQ hình gì? b) Cho biết diện tích tứ giác ABCD 30cm2 Tính diện tích tứ giác MNPQ ĐS: a) MNPQ hình thoi b) SMNPQ  15cm2 Bài Cho tam giác ABC vuông A, trung tuyến AM Gọi D trung điểm AB, E điểm đối xứng điểm M qua điểm D a) Chứng minh điểm E đối xứng với điểm M qua đường thẳng AB b) Các tứ giác AEMC, AEBM hình gì? c) Cho BC = 4cm Tính chu vi tứ giác AEBM d) Tam giác vng thoả điều kiện AEBM hình vng ĐS: b) AEMC hình bình hành, AEBM hình thoi c) PAEBM  8cm d) ABC vng cân Bài Cho hình bình hành ABCD, O giao điểm hai đường chéo Gọi M, N trung điểm cạnh AD, BC Các đường thẳng BM, DN cắt đường chéo AC P, Q a) Chứng minh AP = PQ = QC b) Tứ giác MPNQ hình gì? CA c) Xác định tỉ số để MPNQ hình chữ nhật CD d) Xác định góc � ACD để MPNQ hình thoi e) Tam giác ACD thoả mãn điều kiện để MPNQ hình vng CA 3 ĐS: b) MPNQ hình bình hành c) d) � ACD  900 CD e) ACD vuông C CA  3CD Bài Cho hình thoi ABCD, O giao điểm hai đường chéo Vẽ đường thẳng qua B song song với AC, đường thẳng qua C song song với BD, hai đường thẳng cắt K a) Tứ giác OBKC hình gì? b) Chứng minh AB = OK c) Tìm điều kiện hình thoi ABCD để OBKC hình vng ĐS: a) OBKC hình chữ nhật c) ABCD hình vng Bài Cho hình bình hành ABCD có BC = 2AB �A  600 Gọi E, F trung điểm BC AD a) Tứ giác ECDF hình gì? b) Tứ giác ABED hình gì? c) Tính số đo góc � AED Trang 14 BÀI TẬP VỀ TỨ GIÁC HÌNH ĐS: a) ECDF hình thoi b) ABED hình thang cân c) � AED  900 Bài Cho hình thang ABCD (AB // CD) Gọi E, F theo thứ tự trung điểm AB, CD Gọi O trung điểm EF Qua O vẽ đường thẳng song song với AB, cắt AD BC theo thứ tự M N a) Tứ giác EMFN hình gì? b) Hình thang ABCD có thêm điều kiện để EMFN hình thoi c) Hình thang ABCD có thêm điều kiện để EMFN hình vng ĐS: a) EMFN hình bình hành b) ABCD hình thang cân c) ABCD hình thang cân có hai đường chéo vng góc Bài 10 Cho tam giác ABC vng A với AB = AC = a a) Lấy điểm D cạnh AC điểm E cạnh AB cho AD = AE Các đường thẳng vuông góc với EC vẽ từ A D cắt cạnh BC K L Chứng minh BK = KL b) Một hình chữ nhật APMN thay đổi có đỉnh P cạnh AB, đỉnh N cạnh AC có chu vi ln 2a Điểm M di chuyển đường nào? c) Chứng minh hình chữ nhật APMN thay đổi đường vng góc vẽ từ M xuống đường chéo PN qua điểm cố định ĐS: b) M di chuyển cạnh BC c) HM qua điểm I cố định (với ACIB hình vng) Bài 11 Cho hình vng ABCD E điểm cạnh DC, F điểm tia đối tia BC cho BF = DE a) Chứng minh tam giác AEF vuông cân b) Gọi I trung điểm EF Chứng minh I thuộc BD c) Lấy điểm K đối xứng với A qua I Chứng minh tứ giác AEKF hình vng Bài 12 Cho hình bình hành ABCD có AD = 2AB, �A  600 Gọi E F trung điểm BC AD a) Chứng minh AE  BF b) Chứng minh tứ giác BFDC hình thang cân c) Lấy điểm M đối xứng A qua B Chứng minh tứ giác BMCD hình chữ nhật d) Chứng minh ba điểm M, E, D thẳng hàng Bài 13 Cho tam giác ABC vuông A có � BAC  600 Kẻ tia Ax song song với BC Trên Ax lấy điểm D cho AD = DC a) Tính số đo góc � BAD , � DAC b) Chứng minh tứ giác ABCD hình thang cân c) Gọi E trung điểm BC Chứng minh tứ giác ADEB hình thoi Bài 14 Cho ABCD hình bình hành Gọi M, N, P, Q trung điểm AB, BC, CD, DA Gọi K giao điểm AC DM, L trung điểm BD CM a) Tứ giác MNPQ hình gì? b) Tứ giác MDPB hình gì? c) Chứng minh: AK = KL = LC Bài 15 Cho hình bình hành ABCD có AB = 2AD Gọi E, F thứ tự trung điểm AB CD a) Các tứ giác AEFD, AECF hình gì? b) Gọi M giao điểm AF DE, N giao điểm BF CE Chứng minh tứ giác EMFN hình chữ nhật c) Hình bình hành ABCD nói có thêm điều kiện để EMFN hình vng? Bài 16 Cho tam giác ABC vng A, đường trung tuyến AM Gọi H điểm đối xứng với M qua AB, E giao điểm MH AB Gọi K điểm đối xứng với M qua AC, F giao điểm MK AC a) Xác định dạng tứ giác AEMF, AMBH, AMCK b) Chứng minh H đối xứng với K qua A c) Tam giác vng ABC có thêm điều kiện AEMF hình vng? Trang 15 ... 13 BÀI TẬP VỀ TỨ GIÁC HÌNH Bài Cho tứ giác ABCD Gọi E, F, G, H trung điểm AB, BC, CD, DA Các đường chéo AC, BD tứ giác ABCD thoả điều kiện tứ giác EFGH là: a) Hình chữ nhật ĐS: AC  BD b) Hình. .. Chứng minh tứ giác MNPQ hình thoi VẤN ĐỀ II Vận dụng kiến thức hình thoi để giải tốn Trang 11 BÀI TẬP VỀ TỨ GIÁC HÌNH Bài Cho hình thoi ABCD có AC = 8cm, BD = 10cm Tính độ dài cạnh hình thoi ĐS:... với hình vng  Hình chữ nhật có đường chéo đường phân giác góc hình vng  Hình thoi có góc vng hình vng  Hình thoi có hai đường chéo hình vng  Một tứ giác vừa hình chữ nhật, vừa hình thoi tứ giác

Ngày đăng: 14/03/2021, 16:44

TỪ KHÓA LIÊN QUAN

w