Hai đường trung tuyến AM và BK cắt nhau tại G.. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.[r]
(1)PHÒNG GD & ĐT NGHĨA ĐÀN ĐỀ KHẢO SÁT HỌC SINH VÀO LỚP CLC Năm học 2013 – 2014
Mơn: Tốn 8
Thời gian: 120 phút ( không kể thời gian giao đề)
Câu 1: (5 điểm)
a) Thực phép tính: [6.(−1 )
3
+3.(−1
3 )+1]−( −1
3 −1)
b) Biết đồ thị hàm số y = f(x) = (a+2)x + qua điểm M(2; 3) Xác định giá trị a.
c) Cho A = 12+1
3+
4+ .+ 2012+
1
2013 ; B = 2012
1 + 2011
2 + 2010
3 + + 2011+
1 2012
Tính: BA
Câu 2:(5 điểm). Cho đa thức: A(x) = x3 + 2x2 - 3x + B(x) = - x3 - 2x - - x2
a) Tính C(x) = A(x) - B(x), D(x) = A(x) + B(x) b) Chứng tỏ x = - nghiệm đa thức C(x) c) Tìm tất nghiệm đa thức D(x)
Câu 3: (3 điểm)
a) Tìm x, biết: (x −1 2)
2
=
16 −
b) Cho số a, b, c, d khác thỏa mãn: b2 = a.c c2 = b.d
Chứng minh rằng: a3+b3+c3
b3+c3+d3=
a d
Câu 4: (7 điểm) Cho tam giác ABC vuông A Hai đường trung tuyến AM BK cắt G Trên tia đối tia MA lấy điểm D cho MA = MD Gọi giao điểm DK BC N
a) Chứng minh rằng: AB = CD và AB // CD b) Chứng minh: KG = KN
c) Cho ∠ B = 600 Chứng minh: GK2 - MN2 = AC2
36
Hết
Họ tên thí sinh : Số báo danh :
(Thí sinh không được sử dụng tài liệu, cán bộ coi thi không giải thích gì thêm.)
(2)PHÒNG GD & ĐT NGHĨA ĐÀN KỲ THI KHẢO SÁT HỌC SINH VÀO LỚP CHẤT LƯỢNG CAO
Năm học 2013 – 2014
HƯỚNG DẪN VÀ BIỂU ĐIỂM CHẤM MƠN TỐN 8
(Hướng dẫn biểu điểm chấm gồm 02 trang)
Câu Nội dung Điểm
1 (5đ)
a) [6.(−1 )
3
+3.(−1
3 )+1]−( −1
3 −1) = [−92−1+1]−(−4
3 ) = −92+4
3 = 109
0,5 0,5 0,5 b) Đồ thị hàm số qua A(2;3) nên ta có :
= (a+2).2 + 5 (a+2).2 = -2 a+2= -1 a =-3
0,5 0,5 0,5 0,5 c) B = 20121 +2011
2 + 2010
3 + + 2011+
1 2012 = (1+2011
2 )+(1+ 2010
3 )+ +(1+
2011)+(1+ 2012)+1 = 20132 +2013
3 + .+ 2013 2011 +
2013 2012+
2013 2013 = 2013(1
2+ 3+ +
1 2011+
1 2012+
1 2013) = 2013A
⇒ B
A=2013
0,5 0,5 0,25
0,25 2
(5đ)
a)C(x) =A(x) - B(x)
= (x3 + 2x2 - 3x +1) - (-x3 - 2x - - x2 )
= 2x3 + 3x2 - x + D(x) = A(x) + B(x)
= (x3 + 2x2 - 3x + 1) + (-x3 - 2x - - x2 )
= x2 - 5x
0,5 0,5 0,5 0,5 b) Ta có: C(-2) = = 2(-2)3 + 3(-2)2 - (-2) +
= -16 +12+2+2=0
(3)Vậy x = -2 nghiệm đa thức C(x) 0,5 c) Ta có: D(x) = x2 - 5x = x(x - 5)
Có: x(x - 5) = Khi x = x =
Do D(x) đa thức bậc hai nên nhiều hai nghiệm Vậy D(x) có hai nghiệm x = x = 5
0,25 0,25 0,25 0,25 3
(3đ) a) (x −
1 2)
2
=
16− ⇒ (x −1
2)
2
=
16 ⇒ x - 12 = ±
4 ⇒ x = 14 x = 34 Vậy x {14;3
4}
0,25 0,25 0,5 0,5 b) Từ b2
=ac⇒a
b= b c ; c
2
=bd⇒b
c= c
d ⇒
a b=
b c=
c d Do (ab)
3
=(b
c)
3
=(c
d)
3
=a
b b c
c d=
abc bcd=
a d
3 3
3 3
a b c a
b c d d
(1)
Áp dụng tính chất dãy tỉ số nhau: a3 b3=
b3 c3=
c3 d3=
a3+b3+c3
b3+c3+d3 (2) Từ (1) (2), suy ra a3+b3+c3
b3
+c3+d3=
a d
0,25 0,5 0,5 0,25 4
(7đ)
Vẽ hình đúng
0,5
a) Xét Δ MAB và Δ MDC
Có: MA = MD(gt)
∠ AMB= ∠ DMC(đối đỉnh)
MB = MC( Do AM trung tuyến)
⇒ Δ MAB= Δ MDC(c.g.c)
⇒ AB = CD( cặp cạnh tương ứng)
Và ∠ BAM = ∠ CDM(cặp góc tương ứng) vị trí so le
⇒ AB//CD
(4)b) Do AB//CD mà AB AC nên CD AC ⇒ ∠ ACD = 1v
Xét Δ KAB và Δ KCD
Có: AB = CD(do Δ MAB= Δ MDC)
∠ BAK= ∠ DCK ( = 1v )
KA = KC( Do BK trung tuyến)
⇒ Δ KAB = Δ KCD(c.g.c)
⇒ KB = KD
Do G trọng tâm tam giác ABC nên KG = 13 KB Do N trọng tâm tam giác CAD nên KN = 13 KD Mặt khác: KB = KD (cmt)
⇒ KG = KN
0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 c) Ta có MN= 13 MC, KG = 13 KB, AC = AK(1)
Ta có: Δ ABC = Δ CDA ⇒ AD = BC mà MB= MC, MA = MD
⇒ MA = MB = MC(2)
⇒ Δ ABM cân có ∠ B = 600 ⇒ Δ ABM đều ⇒ MB = AB(3)
Từ (1) (2) (3) ta có:GK2 - MN2 = BK2 -
BA2 =
AK2 =
AC2 36
0,25 0,25 0,25 0,25