ĐỀ RA Câu 1: (2đ) Thực hiện phép tính: a) 2 1 + 3 1 - 4 1 b) 13 25 : 13 5 + 2 1 .( 2 5 .3 2 + 2 5 ) Câu 2: (2đ) Tìm x, biết: a) 2.( 2x + 2 1 ) - 3 = 2 b) 1.2 − x - 5 = 0 Câu 3: (2đ) Tìm x, y, z biết: 3x = 5y = 7z và x + y - z = 41 Câu 4: (1đ) Cho hàm số y = f(x) = 2 1 x Tính: f(-2); f(0); f(2); f(4) Câu 5: (3đ) Cho µ ( ) 0 ABC A 90∆ = đường thẳng AH vng góc với BC tại H. Trên đường vng góc với BC tại B lấy điểm D (khơng cùng nửa mặt phẳng bờ BC với điểm A) sao cho AH = BD. a) Chứng minh rằng AHB DBH∆ = ∆ b) Chứng minh rằng: AB // DH c) Biết · 0 35BAH = . Tính · ACB Phù Hóa, ngày 08 tháng 12 năm 2010 Duyệt của Hiệu trưởng Tổ trưởng Người ra đề Trần Thị Hồi Nhung ĐÁP ÁN VÀ BIỂU ĐIỂM ĐỀ THI MƠN TỐN 7 HỌC KỲI NĂM HỌC 2010 - 2011 THỜI GIAN: 90 Phút (Khơng kể thời gian giao đề) PHỊNG GD&ĐT QUẢNG TRẠCH TRƯỜNG THCS PHÙ HĨA Câu Nội dung Điểm 1 a) 2 1 + 3 1 - 4 1 = 12 6 + 12 4 - 12 3 = 6 4 3 12 + − 7 12 = 0,5 0,5 b) 13 25 : 13 5 + 2 1 .( 2 5 .3 2 + 2 5 ) = 13 25 . 5 13 + 2 1 .320 = 5 + 160 = 165 0,5 0,5 2 a) 2.( 2x + 2 1 ) - 3 = 2 ⇔ 4.x + 1 - 3 = 2 ⇔ 4.x = 4 ⇔ x = 1 0,5 0,5 b) 1.2 − x - 5 = 0 ⇔ 2. 1 5x − = 2. 1 5 2. 1 5 x x − = <=> − = − 2. 6 2. 4 x x = <=> = − 3 2 x x = <=> = − 0,5 0,5 3 3x = 5y = 7z ⇔ 3 1 x = 5 1 y = 7 1 z Áp dụng tính chất dãy tỉ số bằng nhau ta có: 7 1 5 1 3 1 −+ −+ zyx = 105 41 41 = 105 ⇒ x = 3 1 .105 => x = 35 ; y = 5 1 .105 => y = 21; z = 7 1 .105 => z = 15 Vậy x = 35; y = 21; z = 15 0,5 0,5 0,5 0,5 4 f(-2) = 2 1 .(-2) = -1; f(0) = 2 1 .0 = 0 f(2) = 2 1 .2 = 1; f(4) = 2 1 .4 = 2 0,5 0,5 5 35 0 D H B A C 0,5 a) AHB DBH∆ = ∆ xét AHB∆ và DBH∆ có: AH = BD; · · 0 90AHB DBH= = ; BH cạnh chung Vậy AHB DBH∆ = ∆ (c-g-c) 0,75 0,25 b) AB // DH Theo câu a) · · ABH DBH⇒ = ( 2 góc tương ứng) mà · · ,ABH DBH ở vị trí so le trong nên AB // DH 0,25 0,5 c) Tính · ACB : · · 0 35BAH ACB= = (cùng phụ với · HAC ) 0,75 Phù Hóa, ngày 08 tháng 12 năm 2010 Duyệt của Hiệu trưởng Tổ trưởng Người làm đáp án Hình vẽ và ghi GT + KL Trần Thị Hoài Nhung . Trần Thị H i Nhung ĐÁP ÁN VÀ BIỂU I M ĐỀ THI MƠN TỐN 7 HỌC KỲ I NĂM HỌC 2010 - 2011 TH I GIAN: 90 Phút (Khơng kể th i gian giao đề) PHỊNG GD&ĐT QUẢNG. AH vng góc v i BC t i H. Trên đường vng góc v i BC t i B lấy i m D (khơng cùng nửa mặt phẳng bờ BC v i i m A) sao cho AH = BD. a) Chứng minh rằng AHB