1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Bài giải phần giải mạch P19

125 154 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 125
Dung lượng 2,85 MB

Nội dung

Chapter 19, Solution 1. To get z and , consider the circuit in Fig. (a). 11 21 z 1 Ω 4 Ω I 2 = 0 + V 2 − I o + V 1 − 2 Ω 6 Ω I 1 (a) Ω=++== 4)24(||61 1 1 11 I V z 1o 2 1 II = , 1o2 2 IIV == Ω== 1 1 2 21 I V z To get z and , consider the circuit in Fig. (b). 22 12 z 1 Ω 4 Ω I 1 = 0 I o ' + V 2 − + V 1 − 2 Ω 6 Ω I 2 (b) Ω=+== 667.1)64(||2 2 2 22 I V z 22 ' o 6 1 102 2 III = + = , 2o1 '6 IIV == Ω== 1 2 1 12 I V z Hence, =][z Ω       667.11 14 Chapter 19, Solution 2. Consider the circuit in Fig. (a) to get and . 11 z 21 z + V 2 − I 2 = 0 1 Ω 1 Ω + V 1 − 1 Ω I o 1 Ω 1 Ω I o ' 1 Ω 1 Ω I 1 1 Ω 1 Ω 1 Ω 1 Ω (a) ])12(||12[||12 1 1 11 +++== I V z 733.2 15 11 2 4111 )411)(1( 2 4 3 2||12 11 =+= + +=       ++=z ' o ' oo 4 1 31 1 III = + = 11 ' o 15 4 4111 1 III = + = 11o 15 1 15 4 4 1 III =⋅= 1o2 15 1 IIV == 06667.0 15 1 12 1 2 21 ==== z I V z To get z , consider the circuit in Fig. (b). 22 1 Ω 1 Ω 1 Ω 1 Ω I 1 = 0 + V 2 − + V 1 − 1 Ω1 Ω1 Ω I 2 1 Ω 1 Ω 1 Ω 1 Ω (b) 733.2)3||12(||12 11 2 2 22 ==++== z I V z Thus, =][z Ω       733.206667.0 06667.0733.2 Chapter 19, Solution 3. (a) To find and , consider the circuit in Fig. (a). 11 z 21 z I o + V 2 − + V 1 − 1 Ωj Ω I 2 = 0 -j Ω I 1 (a) j1 j1j )j1(j )j1(||j 1 1 11 += −+ − =−== I V z By current division, 11o j j1j j III = −+ = 1o2 jIIV == j 1 2 21 == I V z To get z and , consider the circuit in Fig. (b). 22 12 z I 1 = 0 + V 2 − + V 1 − 1 Ω -j Ω j Ω I 2 (b) 0)jj(||1 2 2 22 =−== I V z 21 j IV = j 2 1 12 == I V z Thus, =][z Ω       + 0j jj1 (b) To find and , consider the circuit in Fig. (c). 11 z 21 z + V 1 − -j Ω 1 Ω + V 2 − 1 Ω I 2 = 0 j Ω -j Ω I 1 (c) 5.0j5.1 j1 j- j1-j)(||11j 1 1 11 += − ++=++== I V z 12 )5.0j5.1( IV −= 5.0j5.1 1 2 21 −== I V z To get z and , consider the circuit in Fig. (d). 22 12 z + V 2 − -j Ω 1 Ω + V 1 − 1 Ω I 1 = 0 j Ω -j Ω I 2 (d) j1.5-1.5(-j)||11-j 2 2 22 =++== I V z 21 )5.0j5.1( IV −= 5.0j5.1 2 1 12 −== I V z Thus, =][z Ω       −− −+ 5.1j5.15.0j5.1 5.0j5.15.0j5.1 Chapter 19, Solution 4. Transform the Π network to a T network. Z 1 Z 3 Z 2 5j12 120j 5j10j12 )10j)(12( 1 + = −+ =Z j512 j60- 2 + =Z 5j12 50 3 + =Z The z parameters are j4.26--1.775 25144 j5)--j60)(12( 22112 = + === Zzz 26.4j775.1 169 )5j12)(120j( 1212111 +=+ − =+= zzZz 739.5j7758.1 169 )5j12)(50( 2121322 −=+ − =+= zzZz Thus, = ][ z Ω       −− −+ 739.5j775.126.4j775.1- 26.4j775.1-26.4j775.1 Chapter 19, Solution 5. Consider the circuit in Fig. (a). s 1 I 2 = 0 I o 1/s1/s + V 2 − + V 1 − 1 I 1 (a) s 1 s1 1s 1 s 1 s1 1s 1 s 1 s1|| s 1 1 s 1 s 1 s1|| s 1 ||1 11 +++       +       ++       + =       ++ + =       ++=z 1s3s2s 1ss 23 2 11 +++ ++ =z 1 2 11o 1ss 1s s 1s s s 1 s1 1s 1 1s 1 s 1 s1 s 1 ||1 s 1 ||1 IIII +++ + + = +++ + + = +++ = 1 23 o 1s3s2s s II +++ = 1s3s2s s 1 23 1 o2 +++ == I IV 1s3s2s 1 23 1 2 21 +++ == I V z Consider the circuit in Fig. (b). s 1 I 1 = 0 1/s1/s 1 + V 1 − + V 2 − I 2 (b)       + ++=       ++== 1s 1 s1|| s 1 s 1 ||1s1|| s 1 2 2 22 I V z 1s s ss1 1s 1 s1 1s 1 s1 s 1 1s 1 s1 s 1 2 22 + +++ + ++ = + +++       + ++       =z 1s3s2s 2s2s 23 2 22 +++ ++ =z 2112 zz = Hence, = ][ z           +++ ++ +++ ++++++ ++ 1s3s2s 2s2s 1s3s2s 1 1s3s2s 1 1s3s2s 1ss 23 2 23 2323 2 Chapter 19, Solution 6. To find and , connect a voltage source to the input and leave the output open as in Fig. (a). 11 z 21 z 1 V V o + V 2 − 20 Ω I 1 30 Ω 0.5 V 2 + − 10 Ω V 1 (a) 50 5.0 10 o 2 o1 V V VV += − , where oo2 5 3 3020 30 VV = + V = o o oo1 2.4 55 3 5 V V VVV =+       += oo o1 1 32.0 10 2.3 10 VV VV I == − = Ω=== 125.13 32.0 2.4 o o 1 1 11 V V I V z Ω=== 875.1 32.0 6.0 o o 1 2 21 V V I V z To obtain and , use the circuit in Fig. (b). 22 z 12 z I 2 0.5 V 2 + − 10 Ω + V 1 − 30 Ω 20 Ω V 2 (b) 2 2 22 5333.0 30 5.0 V V VI =+= Ω=== 875.1 5333.0 1 2 2 22 I V z 2221 -9)5.0)(20( VVVV =−= Ω=== -16.875 5333.0 9- 2 2 2 1 12 V V I V z Thus, = ][ z Ω       1.8751.875 16.875-125.13 Chapter 19, Solution 7. To get z 11 and z 21 , we consider the circuit below. I 2 =0 I 1 20 100 Ω Ω + + + v x 50 Ω 60 Ω V 1 - V 2 - - 12v x - + 1x xxxx1 V 121 40 V 160 V12V 50 V 20 VV =→ + += − 88.29 I V z) 20 V ( 121 81 20 VV I 1 1 11 1x1 1 ==→= − = 37.70 I V zI37.70 I 81 121x20 ) 121 40 ( 8 57 V) 121 40 ( 8 57 V 8 57 V12) 160 V13 (60V 1 2 211 11xx x 2 −==→−= −=−=−=−= To get z 12 and z 22 , we consider the circuit below. I 2 I 1 =0 20 100 Ω Ω + + + v x 50 Ω 60 Ω V 1 - V 2 - - 12v x - + 2 x22 222x V09.0 60 V12V 150 V I,V 3 1 V 50100 50 V = + +== + = 11.1109.0/1 I V z 2 2 22 === 704.3 I V zI704.3I 3 11.11 V 3 1 VV 2 1 12222x1 ==→==== Thus, Ω       − = 11.1137.70 704.388.29 ]z[

Ngày đăng: 06/11/2013, 09:15

w