1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Toán Hình 8. Tiết 44. Các trường hợp đồng dạng của tam giác vuông

24 32 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 1,09 MB

Nội dung

Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng1. C B.[r]

(1)

Tiết 44 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

(2)

KIỂM TRA BÀI CŨ

B

A

C

- Phát biểu trường hợp đồng dạng hai tam giác? - Điền vào chỗ trống (…) để khẳng định ?

∆ABC ∆A’B’C’ có:

A'B'

c) = =ΔA'B'C' ΔABC(c.c.c)

AB AC S

 

a) B'= ; = C ΔA'B'C'ΔABC(g.g)S A'B'

b) =ΔA'B'C' ΔABC (c.g.c)

AB AC ; = A  S

B’ C’

A’

(3)

KIỂM TRA BÀI CŨ

B

A

C

Điền vào chỗ trống (…) để khẳng định ?

∆ABC ∆A’B’C’ có:

B C '

A’C’ A'

A'C' B

= 'C'

BC

 

a) B'= ; = C ΔA'B'C'ΔABC(g.g)S A'B'

b) =ΔA'B'C' ΔABC (c.g.c)

AB AC ; = A  S

A'B'

c) = =ΔA'B'C' ΔABC(c.c.c)

AB AC S

B’ C’

A’

(4)

KIỂM TRA BÀI CŨ

B

A

C

Điền vào chỗ trống (…) để khẳng định đúng ?

∆ABC ∆A’B’C’

B C

A’C’

A' A'C' B

= 'C'

BC

  0

( A' = A = 90 ):

 

a) B'= ; = C ΔA'B'C'ΔABC(g.g)S A'B'

b) =ΔA'B'C' ΔABC (c.g.c)

AB AC ; = A  S

A'B'

c) = =ΔA'B'C' ΔABC(c.c.c)

AB AC S

B’ C’

A’

(5)

KIỂM TRA BÀI CŨ

B

A

C

Điền vào chỗ trống (…) để khẳng định đúng ?

∆ABC ∆A’B’C’

A'B' A'C'

b) =ΔA'B'C' ΔABC (c.g.c)

AB ACS

A'C' B

= 'C'

BC

  0

; A' = A = 90

A'B'

c) = =ΔA'B'C' ΔABC(c.c.c)

AB AC S

   

a) B'=B ;(hc C'= C ΔA'B'C') ΔABC(g.g)S

B’ C’

A’

(6)

B

A

C

A'B' A'C'

b) =ΔA'B'C' ΔABC

AB AC S

∆ABC ∆A’B’C’ ; A' = A = 90  0

   

a) B'=B ;(hoặc C'= C A'B'C') ABCS

Đ8 CC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

Tiết 44

1. Áp dụng trường hợp đồng dạng tam giác vào tam giác vuông

a) Tam giác vng có một góc nhọn góc nhọn

của tam giác vuông kia. Hoặc

b) Tam giác vng có hai cạnh góc vng tỉ lệ với

hai cạnh góc vng tam giác vuông kia. Hai tam giác vuông đồng dạng với nếu:

B’ C’

A’

(7)

2 Dấu hiệu đặc biệt nhận biết hai tam giác vng đồng dạng.

§8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

Tiết 44

?1 Hãy cặp tam giác đồng dạng hình vẽ sau:

E’

D’

F’

b)

5

10

a)

E F

D

5 2.5

d) B

A C

4 10

A’

B’ C’

2

5 c)

HOẠT ĐỘNG NHÓM

(8)

2 Dấu hiệu đặc biệt nhận biết hai tam giác vng đồng dạng.

§8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

Tiết 44

?1

E’

D’

F’

b)

5

10

a)

E F

D

5 2.5

+ ∆DEF ∆ D’E’F’ vì:S

µ µ 0

D = D' = 90

DE DF

=

D'E' D'F'

1 =

2

(9)

2 Dấu hiệu đặc biệt nhận biết hai tam giác vuông đồng dạng.

§8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

Tiết 44 ?1 d) B A C 4 10 A’ B’ C’ 2 5 c)

+ ∆A’B’C’và ∆ABC có: B'C' A'B' = BC AB 1 = 2 2

5 21

2 2 2

A'C' = B'C' - A'B'    (Suy từ ĐL Pytago)

1 2 2 A'C' = AC

B'C' A'B' A'C'

= =

BC AB AC

A’B’C’ ABC (c.c.c)S Vậy

1

A'C' AC =

2

10 84

2 2 2

AC = BC - AB   

(10)

2 Dấu hiệu đặc biệt nhận biết hai tam giác vuông đồng dạng.

§8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VNG

Tiết 44

?1

d) B

A C

4 10

A’

B’ C’

2

5 c)

10

S

Khơng tính cạch A’C’

(11)

2 Dấu hiệu đặc biệt nhận biết hai tam giác vuông đồng dạng.

B'C' A'B'

=

BC AB

A’B’C’ ABCABC A’B’C’

ˆ ˆ 0

A' = A = 90 GT

KL S

§8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

Tiết 44

Định lí 1

Nếu cạnh huyền cạnh góc vuông tam giác vuông tỉ lệ với cạnh huyền cạnh góc vng tam giác vng thì hai tam giác vng đồng dạng.

A

C B

B'

A'

C'

(12)

2 Dấu hiệu đặc biệt nhận biết hai tam giác vuông đồng dạng.

Định lý 1: (SGK/81)

§8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG Tiết 44 A C B B' A' C' 2 2 2 2 B'C' A'B' = BC AB

2 2 2

2 2 2 B'C' A'B' = BC A A'C' = AC B

Theo T/c dãy tỉ số nhau, ta có:

    Do đó: A'B' A'C' AB B'C' = = BC AC

A’B’C’ SABC (c.c.c)

ABC A’B’C’

B'C' A'B'

= (1)

BC AB

A’B’C’ ABC

ˆ ˆ 0

A' = A = 90 GT

KL S

Từ gt (1), bình phương vế ta được:

Ta lại có: 2

2 2

2 2

2

B'C' - A'B' =

= AC (suyratừĐLP

A'C'

y - ta

BC - AB - go)

Vậy

2

2

2 2 2

2 2 2

B'C' B'C' - A'B'

= A'B'

B

=

BC AB C - AB

12

(13)

A'B'C' ABC có:

Đ8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

Tiết 44

  

    

     

0 A' = A = 90

A'B' B'C' 1

= =

AB BC 2 (C¹nh hun - cạnh góc vuông)

A'B'C' S ABC

2 Dấu hiệu đặc biệt nhận biết hai tam giác vuông đồng dạng. ?1

d) B

A C

4 10

A’

B’ C’

2

5 c)

(14)

§8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

Tiết 44

3.Tỉ số hai đường cao, tỉ số diện tích hai tam giác đồng dạng. Bài tốn:

Cho A’B’C’ ABC theo tỉ số đồng dạng k A’H’, AH hai

đường cao tương ứng Chứng minh rằng:

S A'H' =k AH B A C H B' A' C' H'

∆A’B’C’ ∆ABCS

∆A’B’H’ ∆ABHS

A'H' A'B' = AH AB A'H' = k AH A'H' = k AH GT KL

A’B’C’ ABC theo tỉ số

đồng dạng k

S       A'B' k = AB

A’H’ ⊥ B’C’, AH ⊥ BC A'B' =k

AB



µ µ 0 µ µ

H' = H = 90 ; B' = B

(15)

§8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

Tiết 44

3.Tỉ số hai đường cao, tỉ số diện tích hai tam giác đồng dạng. Bài toán:

Cho A’B’C’ ABC theo tỉ số đồng dạng k A’H’, AH hai

đường cao tương ứng Chứng minh rằng:

S A'H' =k AH B A C H B' A' C' H' Chứng minh

Xét ∆A’B’H’ ∆AHB có :            0

H = H = 90

B' = BΔA'B'C' ΔABC

'

S

=> ∆A’B’H’ ∆AHB (g.g)S

; Mà A'H' A'B' = AH AB A'B' =

AB k (GT)

A'H' = k AH Vậy: A'H' = k AH GT KL

A’B’C’ SABC ; 

 

A'B'

= k AB

A’H’ ⊥ B’C’, AH ⊥ BC

(16)

§8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

Tiết 44

3.Tỉ số hai đường cao, tỉ số diện tích hai tam giác đồng dạng.

B A C H B' A' C' H' Chứng minh

Xét ∆A’B’H’ ∆AHB có :            0

H = H = 90

B' = BΔA'B'C' ΔABC

'

S

=> ∆A’B’H’ ∆AHB (g.g)S

A'H' = A'B' =k

AH AB

A'H'

= k AH

Vậy:

Định lí 2

Tỉ số hai đường cao tương ứng hai tam giác đồng dạng bằng tỉ số đồng dạng.

A'H'

= k AH

GT

KL

A’B’C’ SABC ; 

 

A'B'

= k AB

A’H’ ⊥ B’C’, AH ⊥ BC

(17)

§8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

Tiết 44

3.Tỉ số hai đường cao, tỉ số diện tích hai tam giác đồng dạng.

B

A

C B'

A'

C'

Định lí 3

Tỉ số diện tích hai tam giác đồng dạng bình phương tỉ số đồng dạng.

Dựa vào cơng thức tính diện tích tam giác, em nhà

chứng minh định lí

GT

KL

A’B’C’ SABC ; 

 

B'C'

= k BC

2 A'B'C'

ABC

S

= k

(18)

§8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

Tiết 44

● CỦNG CỐ: ● TRẢ LỜI:

Hai tam giác vng đồng dạng có:

- Một cặp góc nhọn

- Hai cặp cạnh góc vng tương ứng tỉ lệ - Cặp cạnh huyền cặp cạnh góc vng tương ứng tỉ lệ.

Tỷ số hai đường cao tương ứng hai tam giác đồng dạng tỷ số đồng dạng Tỷ số diện tích hai tam giác đồng

dạng bình phương tỷ số đồng dạng

1 Phát biểu trường hợp đồng dạng tam giác vng?

2 Nêu tính chất tỉ số hai đường cao, tỉ số hai diện tích hai tam giác đồng dạng?

(19)

b

a Hai tam giác vuông

đồng dạng. Sai!

Hai tam giác vng cân đồng dạng.

Bài tập: Chọn ô sau cho biết khẳng định sai?

● LUYỆN TẬP

19

(20)

c

d

Sai!

2

A'H' = k AH

B A

C H

B'

A'

C' H'

theo tỉ số k

A’B’C’ SABC

Hai tam giác có cặp góc nhọn nhau đồng dạng.

Bài tập: Chọn ô sau cho biết khẳng định sai?

● LUYỆN TẬP

(21)

e

ĐÚNG!

Trên hình vẽ có cặp tam giác đồng dạng.

F A

C

E D

B

Bài tập: Chọn ô sau cho biết khẳng định sai?

● LUYỆN TẬP

(22)

F A

C E

D

B

1

2

Trên hình vẽ có cặp tam giác đồng dạng ?

Bài 46/84 SGK

§8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

Tiết 44

-Có tam giác vng là:

∆BAE, ∆DAC, ∆DFE, ∆BFC

∆BAE S ∆DAC (A chung)(1) - Có cặp tam giác đồng dạng:

∆DAC S ∆BFC (Cchung)(2)

S

Echung)

(

∆BAE ∆DFE (3)

S  

(F = F ñ ñ)1 2

∆DFE ∆BFC (4)

S   

E = C cùngphụ A( )

∆BAE ∆BFC

S   

A = F (cùngphụE)1

∆DAC ∆DFE

(23)

HƯỚNG DẪN VỀ NHÀ:

1 Học thuộc trường hợp đồng dạng hai

tam giác vuông định lý

2 Chứng minh lại định lý 3.

3 Làm bài: 47; 48; 50 trang 84 SGK.

4 Chuẩn bị Luyện tập.

§8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

Tiết 44

2 Dấu hiệu đặc biệt nhận biết hai tam giác vuông đồng dạng.

1. Áp dụng trường hợp đồng dạng tam giác vào tam giác vuông

3.Tỉ số hai đường cao, tỉ số diện tích hai tam giác đồng dạng.

(24)

B

A C C’

B’

A’

Bóng cột điện mặt đất: AC = 4,5m Thanh sắt: A’B’ = 2,1m

Bóng sắt: A’C’ = 0,6m Tính chiều cao AC cột điện ?

4,5

2,

1

0,6

- Cùng thời điểm tia nắng mặt trời chiếu song song với

Nên BC // B’C’ => (đồng vị)

- Do ∆A’B’C’ ∆ABC

 

C' = C

S

Bài 48

Ngày đăng: 13/02/2021, 22:45

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w