Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 318 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
318
Dung lượng
17,89 MB
Nội dung
Chủ đề SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ Thời lượng dự kiến: 03 tiết I MỤC TIÊU Kiến thức - Hiểu định nghĩa đồng biến, nghịch biến hàm số mối liên hệ khái niệm với đạo hàm - Nắm qui tắc xét tính đơn điệu hàm số Kĩ - Biết vận dụng qui tắc xét tính đơn điệu hàm số dấu đạo hàm - Biết vận dụng tính đơn điệu hàm số vào giải toán thực tế 3.Về tư duy, thái độ - Chủ động phát hiện, chiếm lĩnh tri thức mới, biết quy lạ quen, có tinh thần hợp tác xây dựng cao Định hướng lực hình thành phát triển: + Năng lực tự học: Học sinh xác định đắn động thái độ học tập, tự nhận sai sót khắc phục sai sót + Năng lực giải vấn đề: Biết tiếp cận câu hỏi tập, biết đặt câu hỏi, phân tích tình học tập + Năng lực tự quản lý: Làm chủ cảm xúc thân học tập sống Trưởng nhóm biết quản lí nhóm mình, biết phân cơng nhiệm vụ cho thành viên biết đôn đốc, nhắc nhở thành viên hồn thành cơng việc giao + Năng lực giao tiếp: Tiếp thu kiến thức trao đổi học hỏi bạn bè thơng qua hoạt động nhóm Có thái độ, kĩ giao tiếp + Năng lực hợp tác: xác định nhiệm vụ nhóm thân, biết hợp tác với thành viên nhóm để hồn thành nhiệm vụ học tập + Năng lực sử dụng ngơn ngữ: Biết nói viết theo ngơn ngữ Toán học II CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH Giáo viên + Giáo án, phiếu học tập, phấn, thước kẻ, máy chiếu, Học sinh + Đọc trước + Chuẩn bị bảng phụ, bút viết bảng, khăn lau bảng … III TIẾN TRÌNH DẠY HỌC A HOẠT ĐỘNG KHỞI ĐỘNG Mục tiêu: Tiếp cận khái niệm đồng biến, nghịch biến Nội dung, phương thức tổ chức hoạt động học tập học sinh Dự kiến sản phẩm, đánh giá kết hoạt động Trò chơi “Quan sát hình ảnh” Mỗi nhóm viết lên giấy A4 khoảng đồng biến, nghịch biến của hàm số tương ứng từ đồ thị sau: Đội có kết đúng, nộp nhanh nhất, đội thắng Phương thức tổ chức: Theo nhóm – lớp B HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC Mục tiêu: Nắm mối liên hệ dấu đạo hàm tính đơn điệu, lập bảng biến thiên hàm số Dự kiến sản phẩm, đánh giá kết Nội dung, phương thức tổ chức hoạt động học tập học sinh hoạt động I TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ * Hồn thành xác phiếu Dự kiến sản phẩm, đánh giá kết hoạt động Nhắc lại định nghĩa học tập số 1, từ rút nhận Nhắc lại định nghĩa: Kí hiệu K khoảng, đoạn xét mối liên hệ tính đơn điệu dấu đạo hàm cấp khoảng Giả sử hàm số y = f ( x ) xác định K hàm số khoảng đơn y = f ( x ) đồng biến K x1 , x2 K : x1 x2 f ( x1 ) f ( x2 ) điệu y = f ( x ) nghịch biến K x1 , x2 K : x1 x2 f ( x1 ) f ( x2 ) Nội dung, phương thức tổ chức hoạt động học tập học sinh *Nếu hàm số đồng biến K đồ thị lên từ trái sang phải, hàm số nghịch biến K đồ thị xuống từ trái sang phải Ví dụ Hồn thành phiếu học tập số Phương thức tổ chức: Theo nhóm – lớp KQ1 a) y = 0, x Tính đơn điệu dấu đạo hàm Định lí: Cho hàm số y = f ( x ) có đạo hàm K • Nếu f ( x ) 0, x K y = f ( x ) đồng biến K • Nếu f ( x ) 0, x K y = f ( x ) nghịch biến K b) y = −2 x + VD2: Tìm khoảng đơn điệu hàm số: a) y = x − b) y = − x + x Chú ý: Giải sử hàm số y = f ( x ) có đạo hàm K Nếu f ( x ) ( f ( x ) ) , x K f ( x ) = số hữu hạn điểm KQ2 y = x hàm số đồng biến (nghịch biến) K x − VD3: Tìm khoảng đơn điệu hàm số: y = x + y' Phương thức tổ chức: Cá nhân – lớp + + + y − II QUY TẮC XÉT TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ Quy tắc Tìm tập xác định Tính f ( x ) *Đọc hiểu quy tắc xét tính đơn điệu hàm số Tìm điểm f ( x ) = f ( x ) không xác định Sắp xếp điểm theo thứ tự tăng dần lập bảng biến thiên Kết luận khoảng đồng biến, nghịch biến hàm số Phương thức tổ chức: Cá nhân – lớp Áp dụng VD4: Xét đồng biến, nghịch biến hàm số a) y = x3 − 3x + x −1 b) y = x +1 c) y = x − x + Phương thức tổ chức: Cá nhân – lớp *Thực vào tập, bạn thực nhanh xác lên bảng thực câu a) Hàm số ĐB ( −; −1) (1; + ) Hàm số NB ( −1;1) b) Hàm số ĐB ( −; −1) ( −1; + ) c) Hàm số NB ( −; −1) Dự kiến sản phẩm, đánh giá kết hoạt động ( 0;1) Hàm số ĐB ( −1;0 ) Nội dung, phương thức tổ chức hoạt động học tập học sinh (1; + ) *Hàm số VD5 Chứng minh x sin x 0; cách xét khoảng 2 đơn điệu hàm số f ( x ) = x − sin x Phương thức tổ chức: Cá nhân – lớp C f ( x ) = − cos x nên hàm số f ( x ) đồng biến 0; Do f ( x ) = x − sin x nửa khoảng HOẠT ĐỘNG LUYỆN TẬP Mục tiêu:Thực dạng tập SGK Nội dung, phương thức tổ chức hoạt động học tập Dự kiến sản phẩm, đánh giá kết hoạt động học sinh Tìm khoảng đồng biến, nghịch biến hàm D = y = x − x số y = x3 − 3x + Phương thức tổ chức: Cá nhân – lớp x = y = Cho y = x − x x = y = −2 Bảng biến thiên: Kết luận: + Hàm số đồng biến khoảng ( −;0 ) ( 2; + ) + Hàm số nghịch biến khoảng ( −;0 ) Tìm khoảng đồng biến, nghịch biến hàm − x2 + x − số y = x−2 Phương thức tổ chức: Cá nhân – lớp Các nhóm thảo luận, trình bày kết nhóm lên giấy A0, giáo viên đánh giá kết theo gợi ý: D = \ 2 y = − x2 + x + ( x − 2) Cho y = − x + x + = x = −1 y = x = y = −9 Bảng biến thiên: Kết luận: + Hàm số đồng biến khoảng ( −1; ) ( 2;5 ) + Hàm số nghịch biến khoảng ( −; −1) Chứng minh hàm số y = − x + x + đồng biến khoảng ( −2;1) , nghịch biến khoảng (1; ) Phương thức tổ chức: Cá nhân – lớp ( 5; + ) D = −2; 4 y = −x +1 − x2 + x + Cho y = −x + = x = Bảng biến thiên: Kết luận: + Hàm số đồng biến khoảng ( −2;1) hàm số nghịch biến khoảng (1; ) Chứng minh sin x + cos x − x 1, x ( 0; + ) Phương thức tổ chức: Cá nhân – lớp Các nhóm thảo luận, trình bày kết nhóm lên giấy A0, giáo viên đánh giá kết theo gợi ý: Ta có: sin x + cos x − x sin x + − x 4 Xét f ( x ) = sin x + − x, x ( 0; + ) 4 f ( x ) = cos x + − 4 Do − cos x + 4 f ( x ) = cos x + − 4 Hàm số nghịch biến ( 0; + ) f ( x ) f ( 0) = Vậy : sin x + cos x − x 1, x ( 0; + ) D,E HOẠT ĐỘNG VẬN DỤNG, TÌM TỊI MỞ RỘNG Mục tiêu: Làm số tập tìm giá trị tham số m Nội dung, phương thức tổ chức hoạt động học tập Dự kiến sản phẩm, đánh giá kết hoạt động học sinh Tập hợp tất giá trị tham số m để TXĐ: D = y = x − 2mx + ( 2m + 3) hàm số y = x − mx + ( 2m + 3) x + đồng biến Ta có Để hàm số đồng biến khoảng y , x Phương thức tổ chức: Cá nhân - nhà x − 2mx + 2m + 0, x m − 2m − −1 m Vậy −1 m giá trị cần tìm TXĐ: D = Tập hợp tất giá trị tham số m để Ta có y = −3x + 2mx + m2 hàm số y = − x3 + mx + m2 x + đồng biến x = m y = −3x + 2mx + m = x = − m khoảng ( 0;4) Phương thức tổ chức: Cá nhân - nhà Để hàm số đồng biến khoảng ( 0;4) m m − − 04m m4 m Vậy m giá trị cần tìm Hỏi có số nguyên m để hàm số TH1: m = Ta có: y = − x + phương trình y = ( m2 − 1) x3 + ( m − 1) x − x + nghịch biến đường thẳng có hệ số góc âm nên hàm số ln nghịch biến Do nhận m = − ; + khoảng ( ) TH2: m = −1 Ta có: y = −2 x − x + phương Phương thức tổ chức: Cá nhân - nhà trình đường Parabol nên hàm số khơng thể nghịch biến Do loại m = −1 TH3: m 1 Khi hàm số nghịch biến khoảng ( −; + ) y x ( m2 − 1) x + ( m − 1) x − , x a m − m − + ( m2 − 1) ( ) −1 m m2 − ( m − 1)( 4m + ) − m 1 − m 1 Vì m nên m = Vậy có giá trị m ngun cần tìm m m IV CÂU HỎI/BÀI TẬP KIỂM TRA, ĐÁNH GIÁ CHỦ ĐỀ THEO ĐỊNH HƯỚNG PHÁT TRIỂN NĂNG LỰC Câu NHẬN BIẾT Cho hàm số y = f ( x ) có bảng xét dấu đạo hàm sau: Mệnh đề đúng? A Hàm số đồng biến khoảng ( −2;0 ) B Hàm số đồng biến khoảng ( −;0 ) D Hàm số nghịch biến khoảng ( −; −2 ) C Hàm số nghịch biến khoảng ( 0; ) Câu Câu Câu Câu Cho hàm số y = f ( x ) có bảng biến thiên sau Hàm số cho nghịch biến khoảng đây? A ( 0;1) B ( −;0 ) C (1; + ) D ( −1;0 ) Hàm số sau đồng biến ? x +1 x −1 A y = B y = x3 + x C y = x+3 x−2 Cho hàm số f ( x ) có bảng biến thiên sau: D y = − x3 − 3x Hàm số cho nghịch biến khoảng đây? A ( −2;0 ) B ( 2; + ) C ( 0; ) D ( 0; + ) Cho hàm số y = x + x − Mệnh đề đúng? A Hàm số đồng biến khoảng ( −; + ) B Hàm số nghịch biến khoảng ( 0; + ) C Hàm số nghịch biến khoảng ( −; + ) Câu Cho hàm số y = f ( x ) có đạo hàm f ( x) = x + 1, x Mệnh đề đúng? A Hàm số nghịch biến khoảng ( −;0 ) B Hàm số nghịch biến khoảng (1; + ) C Hàm số nghịch biến khoảng ( −1;1) D Hàm số đồng biến khoảng ( −; + ) Câu Câu D Hàm số nghịch biến khoảng ( −;0 ) THÔNG HIỂU Cho hàm số y = x3 − 3x Mệnh đề đúng? A Hàm số nghịch biến khoảng ( 0; ) B Hàm số nghịch biến khoảng ( 2; + ) C Hàm số đồng biến khoảng ( 0; ) D Hàm số nghịch biến khoảng ( −;0 ) Khoảng đồng biến hàm số y = x − x − 3x là: A ( − ; − 1) B (-1; 3) C ( ; + ) D ( − ; − 1) (3 ; + ) Trong hàm số sau, hàm số đồng biến khoảng xác định nó? 2x +1 x +1 2x +1 x+2 A y = B y = C y = D y = x +1 2x +1 x −1 x +1 Câu 10 Hàm số y = nghịch biến khoảng đây? x +1 A ( 0; + ) B ( −1;1) C ( −; + ) D ( −;0 ) Câu Câu 11 Cho hàm số y = x + Mệnh đề đúng? A Hàm số nghịch biến khoảng ( −1;1) B Hàm số đồng biến khoảng ( 0; + ) C Hàm số đồng biến khoảng ( −;0 ) D Hàm số nghịch biến khoảng ( 0; + ) Câu 12 Hàm số y = x − x nghịch biến khoảng A (1; + ) 1 B 0; 2 Câu 13 Tất giá trị m để hàm số y = A m 1 C ;1 2 D ( −;0 ) VẬN DỤNG x3 − ( m − 1) x + ( m − 1) x + đồng biến tập xác định D m x+6 Câu 14 Có giá trị nguyên tham số m để hàm số y = nghịch biến khoảng x + 5m (10; + ) B m C m A B Vô số C D Câu 15 Cho hàm số y = − x − mx + ( 4m + ) x + với m tham số Có giá trị nguyên m để hàm số nghịch biến ( −; + ) A B C D 2 Câu 16 Tìm tất giá trị tham số m để hàm số y = x − 3mx + ( m + 1) x + đồng biến A − 2 m 2 B − 2 m 2 C − m Câu 17 Có giá trị nguyên tham số m để hàm số y = ( − ; − 10 ) ? D − m x+2 đồng biến khoảng x + 5m A B C D Câu 18 Tìm tất giá trị tham số m để hàm số y = mx − sin x đồng biến A m B m C m D m Câu Câu Câu Câu Câu VẬN DỤNG CAO mx + 4m với m tham số Gọi S tập hợp tất giá trị nguyên m để x+m hàm số nghịch biến khoảng xác định Tìm số phần tử S A B C Vô số D mx − 2m − Cho hàm số y = với m tham số Gọi S tập hợp tất giá trị nguyên x−m m để hàm số đồng biến khoảng xác định Tìm số phần tử S A B C Vô số D Tìm tập hợp tất giá trị thực tham số m để hàm số y = x − ( m + 1) x + ( m + 2m ) x − 3 0;1 nghịch biến khoảng ( ) Cho hàm số y = A −1 m B m C m −1 A B C D −1 m Có giá trị nguyên âm tham số m để hàm số y = x + mx − đồng biến 5x khoảng ( 0; + ) D tan x − Tìm tất giá trị thực tham số m cho hàm số y = đồng biến khoảng tan x − m 0; 4 A ( − ;0 1; ) B ( − ;0 C 1; ) D ( − ;0 ) (1; ) Câu Hỏi có số nguyên m để hàm số y = ( m2 − 1) x3 + ( m − 1) x − x + nghịch biến khoảng ( − ; + ) ? A Vô số V PHỤ LỤC B C D PHIẾU HỌC TẬP PHIẾU HỌC TẬP SỐ Cho hai hàm số sau đồ thị chúng a) y = x b) y = x Sử dụng máy tính cầm tay tính đạo hàm hồn thành bảng biến thiên sau PHIẾU HỌC TẬP SỐ 2 Nội dung Nhận thức MƠ TẢ CÁC MỨC ĐỘ Thơng hiểu Vận dụng Vận dụng cao …………………………………………………Hết………………………………………… Chủ đề CỰC TRỊ CỦA HÀM SỐ Thời lượng dự kiến: tiết I MỤC TIÊU Kiến thức - Biết khái niệm cực đại, cực tiểu; biết phân biệt khái niệm lớn nhất, nhỏ - Biết điều kiện đủ để hàm số có cực trị - Nắm vững định lí định lí 2 Kĩ - Sử dụng thành thạo điều kiện đủ để tìm cực trị hàm số - Vận dụng quy tắc I quy tắc II để tìm cực trị hàm số 3.Về tư duy, thái độ - Hiểu mối quan hệ tồn cực trị dấu đạo hàm - Cẩn thận, xác; Tích cực hoạt động; rèn luyện tư trực quan, tương tự - Chủ động phát hiện, chiếm lĩnh tri thức mới, biết quy lạ quen, có tinh thần hợp tác xây dựng cao Định hướng lực hình thành phát triển: Năng lực tự học, lực giải vấn đề, lực tự quản lý, lực giao tiếp, lực hợp tác, lực sử dụng ngôn ngữ II CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH Giáo viên + Giáo án, phiếu học tập, phấn, thước kẻ, máy chiếu, Học sinh + Đọc trước + Chuẩn bị bảng phụ, bút viết bảng, khăn lau bảng … III TIẾN TRÌNH DẠY HỌC A HOẠT ĐỘNG KHỞI ĐỘNG Mục tiêu: Làm cho hs thấy vấn đề cần thiết phải nghiên cứu cực trị hàm số Nội dung, phương thức tổ chức hoạt động học tập Dự kiến sản phẩm, đánh giá kết học sinh hoạt động Hình dạng Parabol, có điểm cao GV: Em nhìn cổng chào trường ĐHBK Hà Nội đỉnh? nêu nhận xét hình dạng, điểm cao nhất? B HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC Mục tiêu: Học sinh nắm đn cực trị hàm số, phát cách tìm cực trị hàm số quy tắc va quy tắc Nội dung, phương thức tổ chức hoạt động học tập học sinh Hoạt động 1: Hình thành kiến thức định nghĩa Dự kiến sản phẩm, đánh giá kết hoạt động y x O 3 Giao nhiệm vụ cho nhóm GV: Chiếu máy chiếu đồ thị hàm số y = − x ( x − 3) H1: Dựa vào đồ thị, điểm hàm số có giá trị lớn khoảng 1 3 ; ? 2 2 H2: Dựa vào đồ thị, điểm hàm 3 số có giá trị nhỏ khoảng ;4 ? 2 GV: Gợi ý để HS phát định nghĩa ý Nhận xét: f '( x0 ) x0 khơng phải điểm cực trị Hoạt động 2: Hình thành kiến thức định lí 1: Chuyển giao: GV chiếu lại đồ thị HĐ1 H: Nêu mối liên hệ đạo hàm cấp điểm hàm số có có giá trị lớn nhất? Báo cáo, thảo luận Đánh giá, nhận xét, chốt kiến thức : Cho HS nhận xét GV xác hố kiến thức, từ dẫn dắt đến nội dung định lí SGK Giáo viên nêu ý cho học sinh đk cần để hàm số đạt cực trị x0 Ví dụ:Tìm cực trị hàm số sau : 1) y = x3 − 3x + 2) y = − x + x + x +1 3) y = 2x − Thực : Học sinh tự nghiên cứu, khoảng phút để nháp Báo cáo, thảo luận : Các cá nhân nhận xét bạn Đánh giá, nhận xét, chốt kiến thức : GV nhấn mạnh trình tự xét cưc trị hàm số xét dấu đạo hàm, kết luận cho chuẩn xác TL1: x = TL2: x = HS phát nêu định nghĩa nắm yếu tố ý -Các nhóm thảo luận trả lời: Ta thấy x = x = nghiệm phương trình f ' ( x ) = - HS tiếp thu kiến thức định lí 1) D = R y ' = 3x − 3; y ' = x = 1 Bảng xét dấu y’ x - -1 y’ y + - + + -1 Cực trị hàm số 2) D= R y ' = −4 x3 + 8x; y ' = x = 2; x = Bảng xét dấu y’ ... tự quản lý, lực giao tiếp, lực hợp tác, lực sử dụng ngôn ngữ II CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH Giáo viên + Giáo án, phiếu học tập, phấn, thước kẻ, máy chiếu, Học sinh + Đọc trước + Chuẩn... tự quản lý, lực giao tiếp, lực hợp tác, lực sử dụng ngôn ngữ II CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH Giáo viên - Giáo án, phiếu học tập, phấn, thước kẻ, máy chiếu, Học sinh - Đọc trước - Chuẩn... x−2 Phương thức tổ chức: Cá nhân – lớp Các nhóm thảo luận, trình bày kết nhóm lên giấy A0, giáo viên đánh giá kết theo gợi ý: D = 2 y = − x2 + x + ( x − 2) Cho y = − x + x + = x