1. Trang chủ
  2. » Giáo án - Bài giảng

Toán 12 nguyên hàm tự luận có đáp án

16 264 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 1,09 MB

Nội dung

1 F (x) f(x) K f (x)dx kf(x)dx f(x) C k f(x)dx (f(x) g(x))dx x dx dx x ex dx x a dx x f(x)dx C( 1) ln | x | C ex ax ln a g(x)dx C C HDedu - Page cos xdx sin xdx dx cos2 x dx sin2 x sin x C cos x C tan x C cot x C f(u)du f[u(x)] u (x)dx (*) F(x) C dt u (x)dx f(t)dt F(t) C F[u(x)] C K thì: u(x) v (x)dx Hay: udv uv u(x) v(x) u (x) v(x)dx vdu VD1: Tính nguyên hàm: I1 sin x cos xdx = HD t sin x dt cos xdx I1 tdt t2 C sin2 x C 3x 2x dx x3 x VD2: Tính nguyên hàm: I = HD (x3 t x3 x2 I2 x2 5) (3x2 du du u ln|u| C HDedu - Page 3x2 2x 2x)dx ln|x3+x 2+5| C VD3: Tính nguyên hàm sau: I3 xex dx = HD u x e xdx dv Chú ý du ex v xe x I3 dx ex dx xex VD4: Tính nguyên hàm sau: I ex C cos xdx = HD vdu t x, x x cos x dx x cos xdx I4 t t costdt u t dv cos tdt I4 du dt v sin t t sin t sin tdt x sin x 2(t sin t 2cos x cos t C) 2C Tính nguyên hàm sau: I1 2e2x 5dx I3 2cos 2x I5 I7 x (x x(x2 I2 dx I4 2x x dx 2x sin x2 dx I6 sin(3x 1)dx 1)99 dx I8 cos3 x sin xdx 4)5 Tính nguyên hàm sau: I1 x sin 2xdx I2 x cos 2xdx I3 xe2x dx I4 ln xdx HDedu - Page dx P(x) dx, Q(x) Bài toán 1: 1)(x P(x) Q(x) a A x x1 – x2 B x x2 , 0) P(x) Q(x) a A x x0 B , (x x )2 1)(x P(x) Q(x) a A x x1 – x2)(x – x3) thì: B x x2 – x2)2 thì: 1)(x P(x) Q(x) a A x x1 B x x2 1)(x P(x) Q(x) a A x x1 C , x x3 C , (x - x )2 + mx + n) thì: Bx C , x mx n HDedu - Page VD6: Tính nguyên hàm sau: (a) I1 2x dx; x 3x 2x dx x 3x (b) I 2 = HD (a) – Ta có: 2x x 3x 2 2x (x 1)(x 2) A B x A(x 2) B(x 1) (x 1)(x 2) A B 2A B I1 x x (A B)x (2A B) (x 1)(x 2) A B dx x x dx x dx 3ln|x+1| ln|x+2| + C (b) – Ta có: x 2x 3x 2x (x 1)(x 2)2 A(x 2)2 (A B)x2 A B 4A B C 4A 2B C I2 3(x 1) 3(x 2) A B (x 1) 2) B(x 1)(x 2) C(x 1) (x 1)(x 2)2 (4A B C)x 4A (x 1)(x 2)2 A B C 1/3 1/3 3 (x 2)2 dx dx dx dx 3 x x (x 2)2 1 ln | x | ln | x | 3 (x 2) HDedu - Page (x C (x 2)2 C 2B C Tính nguyên hàm sau: 2x dx, x 5x 5x dx, 2x 4x I1 I3 4x dx x 6x 3x dx x 3x I2 2 I4 Tính nguyên hàm sau: 2x dx, x 5x 6x x 2x dx, x x 5x I1 I3 I2 I4 x3 x3 P(x) dx, Q(x) Bài toán 2: P(x) Q(x) x 2x dx 2x 5x x 3x dx 2x 5x P1 (x) , Q(x) R(x) P1 (x) P(x) dx Q(x) P1 (x) dx Q(x) R(x)dx x5 VD7: Tính nguyên hàm sau: I 2x 4x3 x 2x dx = HD x5 x3 I x4 2x 4x3 x 2x 2x 2 x + 2x – 4x3 + cho x2 x3 2x 2x dx x 2x ln x ln|x - 2| C HDedu - Page 2x x 2x Tính nguyên hàm sau: I1 x2 x3 dx, 2x I2 x3 2x 10x dx x 2x Tính nguyên hàm sau: I1 x5 3x3 dx, x2 x I2 HDedu - Page x3 4x dx, x2 2x I3 x3 5x dx 2x e2x I1 I2 +C I5 8(x ln x ln x C I3 I4 cos x I7 C (x2 200 x cos 2x x sin 2x I2 I2 I2 ln x ln x ln x C x2 3ln x x2 ln x 2 x4 I1 I3 2x x2 x3 x3 2x 2x 2x 8ln x 3x 11x x 1 2x e C I4 x ln x x C x I4 ln x 14 ln x I3 11 ln x I4 ln x 5ln x C C C 4x ln x 2x xe ln x C I3 I3 C 12 C x ln x I1 I2 ln x 4ln x I1 I2 cos2x C ln x I1 sin 2x C C 49 ln 2x 16 1)100 C cos4 x C I8 I1 C 4)4 cos(3x-1)+C I6 ) C sin(2x C C ln x ln x C C 2(x 1) C sin2 x cos2 x 1 cos 2x sin2 x cos 2x cos2 x 3sin x sin3x 3cos x cos 3x cos3 x sin3 x Tính nguyên hàm: T1 = (sinx)n dx – T1 (sin x)n dx (sin x)2k dx (sin2 x)k ( cos x) dx (1 cos2 x)k d(cos x) T1 (sin x)n dx (1 t2 )k dt, VD1: Tính nguyên hàm: T 2)k sin2 xdx = HD T sin2 xdx cos 2x dx dx x HDedu - Page cos 2xdx sin 2x C VD2: Tính nguyên hàm: T sin3 3xdx = Chú ý T 3sin3x sin 9x sin3 3xdx sin3xdx cos 3x VD3: Tính nguyên hàm: T sin 9xdx cos 9x 36 C sin5 ( 3x)dx = HD Ta có: T sin5 ( 3x)dx sin5 3xdx sin4 3xd(cos 3x) (1 2cos2 3x cos4 3x)d(cos 3x) (1 cos2 3x)2d(cos 3x) d(cos 3x) cos2 3xd(cos 3x) cos4 3xd(cos 3x) cos 3x cos3 3x cos5 3x C 15 HDedu - Page Tính nguyên hàm: T2 = (cosx)n dx – T2 (cos x)n dx (cos x)2k dx (cos2 x)k (sin x) dx (1 sin2 x)k d(sin x) T2 (cos x)n dx (1 t2 )k dt, VD4: Tính nguyên hàm sau: T 2)k cos4 3xdx = HD T 1 (1 cos 6x)2 dx (1 2cos 6x 4 1 1 cos12x x sin 6x dx 12 1 1 x sin 6x x sin12x C 12 96 1 x sin 6x sin12x C 12 96 cos 3xdx VD5: Tính nguyên hàm: T (sin8 x cos2 6x)dx cos8 x)dx = HD 8x sin8 x cos8 x + cos8 (sin4 x cos x)2 cos 4x cos2 4x 16 2sin4 x cos x sin 2x cos 4x 16 1 cos 4x 1 cos 8x cos 4x 16 16 35 cos 8x cos 4x 64 16 64 HDedu - Page 10 (1 2cos 4x 32 cos2 4x)2 I cos 8xdx 64 sin 8x 512 cos 4xdx 16 sin 4x 64 35x 64 35 dx 64 C T3 = sinf(x).cosg(x)dx [ sin(a b) sin(a b)] cos a cosb [ cos(a b) cos(a b)] sin a sinb [ cos(a b) cos(a b)] sin a cos a VD6: Tính nguyên hàm sau: (a) T1 (b) I cos 3x cos5xdx cos x sin 2x cos 3xdx = HD (a) cos3x.cos5x = T1 (cos 8x (cos 8x cos 2x) cos 2x)dx 1 sin 8x sin 2x (b) Ta có: cos x sin 2x cos 3x T2 cos 6x 24 (sin3x sin x) cos 3x (sin3x cos 3x cos 3x sin x) 1 [ sin 6x (sin 4x sin 2x)] 2 = (sin 6x sin 4x sin 2x) cos 4x 16 HDedu - Page 11 cos 2x C C tann xdx, dx cos2 x dx sin2 x tan x cot x cot nxdx (n dx cos (ax b) dx sin (ax b) C C ) tan(ax b) C a cot(ax b) C a VD7: Tính nguyên hàm: (b) T2 = (1 (a) T1 = tan xdx tan2 x)dx = HD (a) Ta có: T1 = tan xdx sin x dx cos x d(cos x) cos x ln|cosx| C (b) Ta có: T2 = Chú ý dx cos2 x tan2 x)dx tan x C VD8: Tính nguyên hàm: (a) T1 cách làm hoàn toàn (1 tan2 xdx (b) T2 tan3 xdx = HD Ta có: T1 tan2 xdx [(tan2 x 1) 1]dx (tan2 x 1)dx dx tan2 x tan xdx [(tan2 x 1) tan x tan x x C (b) Ta có: T2 (tan2 x 1) tan xdx tan xd(tan x) tan xdx tan xdx tan2 x ln|cosx| C HDedu - Page 12 tan x]dx Tính nguyên hàm sau: T1 (2sin3x T2 T3 T4 cos 2x)dx, T7 sin 2x.coxdx, sin2 (1 2x)dx T8 sin x cos 2x sin3xdx sin4 2xdx, T9 (1 cot2 x)dx, sin3 (2x 1)dx, T5 [3x2 sin5 (1 2x)]dx, T6 [ cos3 3x sin3 ( 2x)]dx T10 cot3 2xdx T11 tan4 2xdx, T12 cot (1 3x)dx Tính nguyên hàm sau: T1 cos 2x(sin4 x cos4 x)dx T2 sin3 x sin3x.dx T3 (sin6 x cos6 x)dx T4 cos x(cos4 x cos3 x)dx Tính nguyên hàm: (a) T1 (sin x cos x)dx sin x cos x (b) T2 cos 2xdx sin x cos x (b) T2 tan5 xdx (b) T2 sin x sin 2x cos5xdx Tính nguyên hàm: (a) T1 sin2 x dx Tính nguyên hàm: (a) T1 sin(x (c) T3 cos2 x cos 2xdx (d) T4 cos3 x cos5xdx (e) T5 sin2 x cos2 2xdx (f) T6 sin x cos x(1 cos x)2 dx )(2 sin 2x)dx HDedu - Page 13 T1 cos3x+2sin2x+C T2 1 x sin(2 - 4x)+C T3 1 x sin2x+ sin4x+C 32 T4 1 cos(2x-1)- cos3 (2x 1)+C T5 x3 1 cos(2x-1)+ cos2 (2x-1) cos5 (2x-1)+C 2 10 T6 1 1 sin3x+ sin3 3x+ cos2x - cos3 2x+C 6 T7 1 cos3x- cos x+C T8 x T9 cot x+C T10 T11 T12 sin 4x cos2 2x tan3 2x sin 6x sin 2x +C ln sin 2x +C tan 2x cot3 (3x 1) x+C cot(3x 1) x+C T1 sin 2x 16 sin 6x+C 48 T2 sin 2x 16 sin 4x 32 T3 x+ sin4x+C 32 T4 sin x sin x 1 x+ sin6x+C 48 sin x 3x sin 2x sin 4x +C 32 (sin x cos x) cos x sin x nên: d(sin x cos x) sin x cos x T1 ln|sinx + cosx| C (b) Vì cos2x = cos2x – sin2x nên T2 T2 (cos x sin x)dx sin x cos x C (a) T1 (x sin x) C tan3 x tan2 xdx T2 tan3 x tan3 xd(tan x) tan4 x T2 cos2 x dx tan x tan2 xdx tan2 x ln cos x C (a) T1 = [ cos x (b) T2 1 sin 6x (c) T3 sin 2x (d) T4 sin 8x 8 (e) T5 x (f) T6 cos 4x x 4 cos 2x sin 4x sin 6x 12 cos4 x C C ] C C C sin 6x sin 2x 2cos3 x sin 3x cos 8x sin 4x 16 sin 2x sin x cos2 x sin x C ... 3xdx = HD T 1 (1 cos 6x)2 dx (1 2cos 6x 4 1 1 cos12x x sin 6x dx 12 1 1 x sin 6x x sin12x C 12 96 1 x sin 6x sin12x C 12 96 cos 3xdx VD5: Tính nguyên hàm: T (sin8 x cos2 6x)dx cos8 x)dx = HD 8x sin8... C 2B C Tính nguyên hàm sau: 2x dx, x 5x 5x dx, 2x 4x I1 I3 4x dx x 6x 3x dx x 3x I2 2 I4 Tính nguyên hàm sau: 2x dx, x 5x 6x x 2x dx, x x 5x I1 I3 I2 I4 x3 x3 P(x) dx, Q(x) Bài toán 2: P(x) Q(x)... cos 2xdx sin 2x C VD2: Tính nguyên hàm: T sin3 3xdx = Chú ý T 3sin3x sin 9x sin3 3xdx sin3xdx cos 3x VD3: Tính nguyên hàm: T sin 9xdx cos 9x 36 C sin5 ( 3x)dx = HD Ta có: T sin5 ( 3x)dx sin5 3xdx

Ngày đăng: 11/02/2021, 15:54

TỪ KHÓA LIÊN QUAN

w