nhanh chóng loại trừ nghiệm là ước của hệ số tự do 1.[r]
(1)CHUYÊN ĐỀ - PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ I. DẠNG TÍCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ: Định lí bổ sung:
+ Đa thức f(x) có nghiệm hữu tỉ có dạng p/q p ước hệ số tự do, q ước dương hệ số cao
+ Nếu f(x) có tổng hệ số f(x) có nhân tử x –
+ Nếu f(x) có tổng hệ số hạng tử bậc chẵn tổng hệ số hạng tử bậc lẻ f(x) có nhân tử x +
+ Nếu a nghiệm nguyên f(x) f(1); f(- 1) khác
f(1) a - 1
f(-1)
a + 1 số nguyên Để
nhanh chóng loại trừ nghiệm ước hệ số tự 1 Ví dụ 1: 3x2 – 8x + 4
Cách 1: Tách hạng tử thứ 2
3x2 – 8x + = 3x2 – 6x – 2x + = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2) Cách 2: Tách hạng tử thứ nhất:
3x2 – 8x + = (4x2 – 8x + 4) - x2 = (2x – 2)2 – x2 = (2x – + x)(2x – – x) = (x – 2)(3x – 2)
Ví dụ 2: x3 – x2 - 4
Ta nhân thấy nghiệm f(x) có x = 1; 2; 4, có f(2) = nên x = nghiệm f(x) nên f(x) có nhân tử x – Do ta tách f(x) thành nhóm có xuất nhân tử x –
Cách 1:
x3 – x2 – =
3 2 2 2 2 4 2 ( 2) 2( 2)
x x x x x x x x x x
=
2
2
x x x
Cách 2:
3 4 8 4 8 4 ( 2)( 2 4) ( 2)( 2) x x x x x x x x x x x
=
2
2 ( 2) ( 2)( 2)
x x x x x x x
Ví dụ 3: f(x) = 3x3 – 7x2 + 17x – 5
Nhận xét: 1, khơng nghiệm f(x), f(x) khơng có nghiệm ngun Nên f(x) có nghiệm nghiệm hữu tỉ
Ta nhận thấy x =
1
3 nghiệm f(x) f(x) có nhân tử 3x – Nên
f(x) = 3x3 – 7x2 + 17x – =
3 2 2
3x x 6x 2x15x 53x x 6x 2x 15x
(2)Vì x2 2x 5 (x2 2x1) ( x1)2 4 với x nên khơng phân tích thành nhân tử
Ví dụ 4: x3 + 5x2 + 8x +
Nhận xét: Tổng hệ số hạng tử bậc chẵn tổng hệ số hạng tử bậc lẻ nên đa thức có nhân tử x +
x3 + 5x2 + 8x + = (x3 + x2 ) + (4x2 + 4x) + (4x + 4) = x2(x + 1) + 4x(x + 1) + 4(x + 1) = (x + 1)(x2 + 4x + 4) = (x + 1)(x + 2)2
Ví dụ 5: f(x) = x5 – 2x4 + 3x3 – 4x2 + 2
Tổng hệ số nên đa thức có nhân tử x – 1, chia f(x) cho (x – 1) ta có: x5 – 2x4 + 3x3 – 4x2 + = (x – 1)(x4 - x3 + 2x2 - 2x - 2)
Vì x4 - x3 + 2x2 - 2x - khơng có nghiệm ngun khơng có nghiệm hữu tỉ nên khơng phân tích
Ví dụ 6: x4 + 1997x2 + 1996x + 1997 = (x4 + x2 + 1) + (1996x2 + 1996x + 1996) = (x2 + x + 1)(x2 - x + 1) + 1996(x2 + x + 1)
= (x2 + x + 1)(x2 - x + + 1996) = (x2 + x + 1)(x2 - x + 1997) Ví dụ 7: x2 - x - 2001.2002 = x2 - x - 2001.(2001 + 1)
= x2 - x – 20012 - 2001 = (x2 – 20012) – (x + 2001) = (x + 2001)(x – 2002) II DẠNG THÊM , BỚT CÙNG MỘT HẠNG TỬ:
1 Thêm, bớt số hạng tử để xuất hiệu hai bình phương: Ví dụ 1: 4x4 + 81 = 4x4 + 36x2 + 81 - 36x2 = (2x2 + 9)2 – 36x2
= (2x2 + 9)2 – (6x)2 = (2x2 + + 6x)(2x2 + – 6x) = (2x2 + 6x + )(2x2 – 6x + 9)
Ví dụ 2: x8 + 98x4 + = (x8 + 2x4 + ) + 96x4
= (x4 + 1)2 + 16x2(x4 + 1) + 64x4 - 16x2(x4 + 1) + 32x4
= (x4 + + 8x2)2 – 16x2(x4 + – 2x2) = (x4 + 8x2 + 1)2 - 16x2(x2 – 1)2 = (x4 + 8x2 + 1)2 - (4x3 – 4x )2
= (x4 + 4x3 + 8x2 – 4x + 1)(x4 - 4x3 + 8x2 + 4x + 1)
2 Thêm, bớt số hạng tử để xuất nhân tử chung Ví dụ 1: x7 + x2 + = (x7 – x) + (x2 + x + ) = x(x6 – 1) + (x2 + x + ) = x(x3 - 1)(x3 + 1) + (x2 + x + ) = x(x – 1)(x2 + x + ) (x3 + 1) + (x2 + x + 1) = (x2 + x + 1)[x(x – 1)(x3 + 1) + 1] = (x2 + x + 1)(x5 – x4 + x2 - x + 1)
Ví dụ 2: x7 + x5 + = (x7 – x ) + (x5 – x2 ) + (x2 + x + 1) = x(x3 – 1)(x3 + 1) + x2(x3 – 1) + (x2 + x + 1)
(3)= (x2 + x + 1)[(x5 – x4 + x2 – x) + (x3 – x2 ) + 1] = (x2 + x + 1)(x5 – x4 + x3 – x + 1) Ghi nhớ:
Các đa thức có dạng x3m + 1 + x3n + 2 + như: x7 + x2 + ; x7 + x5 + ; x8 + x4 + ; x5 + x + ; x8 + x + ; … có nhân tử chung x2 + x + 1
III DẠNG ĐẶT BIẾN PHỤ:
Ví dụ 1: x(x + 4)(x + 6)(x + 10) + 128 = [x(x + 10)][(x + 4)(x + 6)] + 128 = (x2 + 10x) + (x2 + 10x + 24) + 128
Đặt x2 + 10x + 12 = y, đa thức có dạng
(y – 12)(y + 12) + 128 = y2 – 144 + 128 = y2 – 16 = (y + 4)(y – 4) = ( x2 + 10x + )(x2 + 10x + 16 ) = (x + 2)(x + 8)( x2 + 10x + ) Ví dụ 2: A = x4 + 6x3 + 7x2 – 6x + 1
Giả sử x ta viết
x4 + 6x3 + 7x2 – 6x + = x2 ( x2 + 6x + –
6
+
x x ) = x2 [(x2 +
1
x ) + 6(x -
x ) + ]
Đặt x -
x = y x2 +
1
x = y2 + 2, đó
A = x2(y2 + + 6y + 7) = x2(y + 3)2 = (xy + 3x)2 = [x(x -
x )2 + 3x]2 = (x2 + 3x – 1)2 Chú ý: Ví dụ giải cách áp dụng đẳng thức sau:
A = x4 + 6x3 + 7x2 – 6x + = x4 + (6x3 – 2x2 ) + (9x2 – 6x + ) = x4 + 2x2(3x – 1) + (3x – 1)2 = (x2 + 3x – 1)2
Ví dụ 3: A = (x2y2z2)(x y z )2(xy yz +zx)2
=
2 2 2 2
(x y z ) 2(xy yz+zx) (x y z ) (xy yz+zx)
Đặt x2y2z2 = a, xy + yz + zx = b ta có
A = a(a + 2b) + b2 = a2 + 2ab + b2 = (a + b)2 = ( x2y2z2 + xy + yz + zx)2 Ví dụ 4: B = 2(x4y4z4) ( x2y2z2 2) 2(x2y2z2)(x y z )2(x y z )4 Đặt x4 + y4 + z4 = a, x2 + y2 + z2 = b, x + y + z = c ta có:
B = 2a – b2 – 2bc2 + c4 = 2a – 2b2 + b2 - 2bc2 + c4 = 2(a – b2) + (b –c2)2
Ta lại có: a – b2 = - 2(x y2 2y z2 2z x2 2) b –c2 = - 2(xy + yz + zx) Do đó; B = - 4(x y2 2y z2 z x2 2) + (xy + yz + zx)2
(4)Ví dụ 5: (a b c )3 4(a3b3c3) 12 abc Đặt a + b = m, a – b = n 4ab = m2 – n2 a3 + b3 = (a + b)[(a – b)2 + ab] = m(n2 +
2
m - n
4 ) Ta có:
C = (m + c)3 –
3
3 2
m + 3mn
4c 3c(m - n )
4 = 3( - c3 +mc2 – mn2 + cn2) = 3[c2(m - c) - n2(m - c)] = 3(m - c)(c - n)(c + n) = 3(a + b - c)(c + a - b)(c - a + b) IV PHƯƠNG PHÁP HỆ SỐ BẤT ĐỊNH:
Ví dụ 1: x4 - 6x3 + 12x2 - 14x + 3
Nhận xét: số 1, 3 không nghiệm đa thức, đa thức khơng có nghiệm ngun củng
khơng có nghiệm hữu tỉ
Như đa thức phân tích thành nhân tử phải có dạng
(x2 + ax + b)(x2 + cx + d) = x4 + (a + c)x3 + (ac + b + d)x2 + (ad + bc)x + bd
đồng đa thức với đa thức cho ta có:
6 12 14
a c ac b d ad bc bd
Xét bd = với b, d Z, b 1, 3 với b = d = hệ điều kiện trở thành
6
8
3 14
3
a c
ac c c
a c ac a
bd
Vậy: x4 - 6x3 + 12x2 - 14x + = (x2 - 2x + 3)(x2 - 4x + 1) Ví dụ 2: 2x4 - 3x3 - 7x2 + 6x + 8
Nhận xét: đa thức có nghiệm x = nên có thừa số x - ta có: 2x4 - 3x3 - 7x2 + 6x + = (x - 2)(2x3 + ax2 + bx + c)
= 2x4 + (a - 4)x3 + (b - 2a)x2 + (c - 2b)x - 2c
4 a a b a b c b c c
Suy ra: 2x4 - 3x3 - 7x2 + 6x + = (x - 2)(2x3 + x2 - 5x - 4)
Ta lại có 2x3 + x2 - 5x - đa thức có tổng hệ số hạng tử bậc lẻ bậc chẵn nahu nên có nhân tử x + nên 2x3 + x2 - 5x - = (x + 1)(2x2 - x - 4)
(5)Ví dụ 3:
12x2 + 5x - 12y2 + 12y - 10xy - = (a x + by + 3)(cx + dy - 1) = acx2 + (3c - a)x + bdy2 + (3d - b)y + (bc + ad)xy –
12
4 10
3
3
6 12
2
3 12
ac
a bc ad
c c a
b bd
d d b
12x2 + 5x - 12y2 + 12y - 10xy - = (4 x - 6y + 3)(3x + 2y - 1) BÀI TẬP:
Phân tích đa thức sau thành nhân tử:
1) x3 - 7x + 6
2) x3 - 9x2 + 6x + 16
3) x3 - 6x2 - x + 30
4) 2x3 - x2 + 5x + 3
5) 27x3 - 27x2 + 18x - 4
6) x2 + 2xy + y2 - x - y - 12
7) (x + 2)(x +3)(x + 4)(x + 5) - 24 8) 4x4 - 32x2 + 1
9) 3(x4 + x2 + 1) - (x2 + x + 1)2
10) 64x4 + y4
11) a6 + a4 + a2b2 + b4 - b6
12) x3 + 3xy + y3 - 1
13) 4x4 + 4x3 + 5x2 + 2x + 1
14) x8 + x + 1
15) x8 + 3x4 +
16) 3x2 + 22xy + 11x + 37y + 7y2 +10