1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu ảnh hưởng của đột biến lên cấu trúc và động học của chuỗi peptide amyloid beta hướng đến ức chế bệnh alzheimer

180 48 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 180
Dung lượng 9,38 MB

Nội dung

ĐẠI HỌC QUỐC GIA TP HCM TRƯỜNG ĐẠI HỌC BÁCH KHOA TRẦN THỊ MINH THƯ NGHIÊN CỨU ẢNH HƯỞNG CỦA ĐỘT BIẾN LÊN CẤU TRÚC VÀ ĐỘNG HỌC CỦA CHUỖI PEPTID AMYLOID BETA: HƯỚNG ĐẾN ỨC CHẾ BỆNH ALZHEIMER LUẬN ÁN TIẾN SĨ TP HỒ CHÍ MINH - NĂM 2020 ĐẠI HỌC QUỐC GIA TP HCM TRƯỜNG ĐẠI HỌC BÁCH KHOA NGHIÊN CỨU ẢNH HƯỞNG CỦA ĐỘT BIẾN LÊN CẤU TRÚC VÀ ĐỘNG HỌC CỦA CHUỖI PEPTID AMYLOID BETA: HƯỚNG ĐẾN ỨC CHẾ BỆNH ALZHEIMER Chuyên ngành: Vật lý kỹ thuật Mã số chuyên ngành: 62520401 Phản biện độc lập 1: PGS TS Lê Thị Lý Phản biện độc lập 2: TS Nguyễn Trung Hải Phản biện 1: GS TS Nguyễn Quốc Khánh Phản biện 2: PGS TS Thái Khắc Minh Phản biện 3: PGS TS Huỳnh Quang Linh NGƯỜI HƯỚNG DẪN: GS TSKH Mai Xuân Lý TS Lý Anh Tú LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu khoa học độc lập hướng dẫn GS.TSKH Mai Xuân Lý, TS Lý Anh Tú nhóm thực Các kết nghiên cứu kết luận luận án trung thực, không chép từ nguồn hình thức Việc tham khảo nguồn tài liệu thực trích dẫn ghi nguồn tài liệu tham khảo quy định Tác giả luận án Trần Thị Minh Thư i TÓM TẮT LUẬN ÁN Bệnh Alzheimer (AD) chứng suy giảm não nguyên nhân gây sa sút trí tuệ người AD cho có liên quan đến việc suy giảm neuron khớp nối thần kinh não Kể từ thời điểm phát AD đến nay, nguyên nhân gây bệnh chưa xác định cách cụ thể Tuy vậy, có ba giả thuyết thể ngun nhân giả thuyết cholinergic, giả thuyết protein tau giả thuyết amyloid Trong đó, giả thuyết amyloid nghiên cứu rộng rãi với lượng thông tin liệu lớn so với hai giả thuyết lại Giả thuyết amyloid nhấn mạnh tăng sinh peptid amyloid beta (Aβ) dẫn tới tích tụ ngoại bào Aβ não theo thời gian, kết hình thành nên mảng amyloid gây viêm, kéo theo tổn thương khớp nối thần kinh làm giảm số lượng neuron Peptid Aβ cắt từ protein tiền tố (amyloid precursor protein - APP) enzyme chức β, γ-secretases có độ dài chuỗi thay đổi khoảng 36-43 acid amin Hai dạng phổ biến peptid Aβ Aβ40 (gồm 40 acid amin) Aβ42 (gồm 42 acid amin) Chuỗi peptid Aβ42 khác Aβ40 hai acid amin cuối Ile41 Ala42 có tính chất khác biệt so với Aβ40 Peptid Aβ42 tạo sợi nhanh hơn, độc thành phần yếu cấu thành mảng bám amyloid, có số lượng Aβ40 Để làm rõ ảnh hưởng hai acid amin cuối cùng, nghiên cứu sinh (NCS) tiến hành nghiên cứu mô thực nghiệm ống nghiệm cho chuỗi Aβ40, Aβ41 Aβ42 Kết cho thấy Ala42 ảnh hưởng lên việc gia tăng vận tốc tạo sợi độc tố Aβ42 Ile41 Một cách ức chế bệnh Alzheimer làm giảm vận tốc tạo sợi peptid Aβ thông qua việc gây đột biến chuỗi Đã có nhiều nghiên cứu đột biến chuỗi peptid Aβ nhằm hướng đến ức chế bênh Alzheimer Nghiên cứu thực nghiệm cho thấy, đột biến ba điểm G33V-V36P-G38V (VPV) đẩy mạnh trình tạo sợi Aβ42 làm đột biến Aβ40-VPV có hành xử cuộn giống Aβ42 thể tự nhiên, đồng thời làm tăng độc tố Bằng mô cấu trúc Aβ thể tự nhiên đột biến đoạn ngắn 31-40, 31-42 ii chuỗi đầy đủ độ dài, NCS đưa đến kết luận tương đồng động học tích tụ Aβ40-VPV Aβ42-WT gây nên gia tăng cấu trúc β tồn chuỗi có đột biến Sự thay đổi Aβ42 chịu tác động đột biến VPV dựa gia tăng cấu trúc β-turn β-hairpin acid amin 36-37 đầu C chuỗi Cấu trúc khóa kéo motif glycin đầu C cho ảnh hưởng đáng kể đến vận tốc tạo sợi hình thành độc tố peptid Aβ Để khảo sát ảnh hưởng cấu trúc motif glycin lên tính chất Aβ42, chúng tơi nghiên cứu đột biến G37V thông qua thực nghiệm ống nghiệm mơ tính tốn động lực học phân tử cổ điển Kết cho thấy đột biến G37V làm giảm mạnh độc tố Aβ42 không thay đổi vận tốc tạo sợi thành phần cấu trúc bậc hai Các phân tích thực nghiệm cho thấy hình thái tích tụ đột biến G37V tạo thành mảng có hình dạng ellipse sợi lưới Aβ42 thể tự nhiên Sự khác biệt hình thái tích tụ nguyên nhân dẫn tới suy giảm độc tố Kết mô cho thấy G37V làm tăng thành phần β-turn β-hairpin acid amin 36-37 có phân bố khoảng cách cầu muối (SB) Asp23-Lys28 linh hoạt so với thể tự nhiên Những đặc tính cấu trúc nguyên nhân dẫn đến thay đổi hình thái sợi Aβ chuyển từ dạng lưới sang dạng ellipse Các nghiên cứu trước cho ảnh hưởng môi trường (nồng độ pH, nồng độ muối, nhiệt độ…) từ cấu trúc nội (độ kị nước, điện tích, xu hướng tạo sợi trạng thái monomer, độ bền học…) yếu tố kiểm soát vận tốc tạo sợi protein Cấu trúc tìm từ thực nghiệm cho thấy trạng thái sợi protein bao gồm phiến β chéo Do đó, chúng tơi đưa giả thuyết monomer có thành phần nhiều β cho tạo sợi nhanh monomer có thành phần β nghiên cứu cấu trúc monomner giúp suy luận trình hình thành sợi Tuy nhiên yếu tố quan trọng chưa minh chứng cách rõ ràng Trong luận án này, NCS sử dụng vận tốc tạo sợi κ xác định từ công bố thực nghiệm trước tiến hành mô cho Aβ42 thể tự nhiên 19 đột biến để tính tốn thành phần cấu trúc β thạng thái monomer Hệ số tương quan cao mối quan hệ vật tốc tạo sợi iii thực nghiệm thành phần β cho phép khẳng định cấu trúc β trạng thái monomer kiểm soát tốc độ tạo sợi Aβ42 Hàm phụ thuộc vận tốc tạo sợi vào thành phần β thể dạng tuyến tính hàm mũ exp Nếu tỉ lệ phần trăm β lớn, vận tốc tạo sợi nhanh Các kết mô trả lời câu hỏi quan trọng phụ thuộc vận tốc tạo sợi vào thành phần β cách định lượng Công thức liên hệ vận tốc tạo sợi thành phần β cho phép xác định tốc độ tạo sợi protein thực nghiệm dựa thành phần β cấu trúc monomer, giá trị tính mơ máy tính iv ABSTRACT Alzheimer's disease (AD) is a brain-damaged disease and the main cause of dementia in humans AD is thought to be involved in the weakening of neurons and synapses in the brain Since AD was discovered, the cause of AD has not been identified, but there are three main hypotheses about it: cholinergic, protein tau, and amyloid Genetic and pathological data accumulated over the last decades have convincingly confirmed the third amyloid hypothesis, according to which extracellular accumulation of beta-amyloid (Aβ) peptides in the brain leads to the formation of inflammatory amyloid plaques This can damage synapses, entangle nerve fibers, and kill neurons Aβ peptides, cleaved from amyloid precursor protein (APP) by β- and γ-secretases, have 36-43 residues but Aβ40 (40 amino acids) and Aβ42 (42 amino acids) are most abundant Aβ40 and Aβ42 have identical sequences, with the exception of the last two hydrophobic residues Ile41 and Ala42, which strongly distinguish their behavior Aβ42 aggregates faster, is more toxic and is the major constituent of amyloid plaques, despite being present in lower abundance than Aβ40 To shed light on the role of the last two residues, we performed in silico and in vitro experiments for Aβ40, Aβ41 and Aβ42 We found that Ala42 has a stronger effect than Ile41on the increased fibril formation rate and consequently neurotoxicity of Aβ peptides One of the possible strategies for treating AD is to slow down Aβ aggregation by mutations in Aβ peptides, which has prompted many studies in this area It has been shown experimentally that the triple mutation G33V-V36P-G38V (VPV) significantly accelerates the self-assembly of Aβ42 and makes the mutant Aβ40-VPV behave like wildtype Aβ42 (Aβ42-WT) with increased toxicity Conducting MD simulations of fragments Aβ31-40 and Aβ31-42, and full length Aβ1-40 and Aβ1-42, we found that the similarity in folding pathways of Aβ40-VPV and Aβ42-WT was caused by the increase of β-content in the whole sequence The structural changes of Aβ42 under VPV mutation was due to the enhancement on β-hairpin and β-turn at amino acids 36-37 at the C-terminal Conducting MD simulations of the Aβ31-40 and Aβ31-42 fragments, as well as full-length Aβ1-40 v and Aβ1-42, we found that the similarity of the folding pathways of Aβ40-VPV and Aβ42-WT was caused by an increase in β-content in the entire sequence Structural changes in Aβ42 with VPV mutation were associated with an increase of population of the β-hairpin and β-turn centered at amino acids 36-37 of the C-terminus The glycine zipper motif at the C-terminus markedly influences the aggregation rate and toxicity of the Aβ peptide To demonstrate this, we studied the G37V mutation where glycine was with valine at position 37 using both MD modeling and in vitro experiment The G37V mutation was found to significantly reduce toxicity but leave the aggregation rate and secondary structures nearly unchanged For the first time we observed that the mutation alters the morphology of the aggregate such that the fibril has a network-like shape in the Aβ42-WT case, while the elliptical structure occurs upon G37V mutation Thus, our result suggests that changes in toxicity are associated with changes in the aggregate morphology MD simulations revealed that the G37V mutation enhances the βturn and β-hairpin content at the C-terminus and makes the Asp23-Lys28 salt bridge more flexible These structural changes may be responsible for the appearance of the ellipse-like morphology Previous studies have shown that environmental factors (pH, temperature, salt concentration, etc.) and intrinsic properties of population of fibril-prone conformation a protein (hydrophobicity, charge, in monomeric state, mechanical stability of fibrils) control the rate of protein aggregation Since the structure of fibrils consists of cross β-sheets, and the monomer can serve as a template for aggregation, the β content in the monomeric state seems to promote the fibril formation Thus, we hypothesize that the higher the β content in the monomeric state, the faster the fibril is formed To confirm this hypothesis, we calculated the β-content of the wild-type and 19 mutations of Aβ42 using all-atom replica exchange molecular dynamics (REMD) simulations in implicit water We found that the experimentally measured aggregation rate of these variants increases exponentially with increasing β-content Since the correlation between our computational result and experimental data is high, we conclude that the β-content in the monomeric vi state controls the rate of protein aggregation Currently, the calculation of the fibril formation time of proteins using all-atom simulations is prohibited due to the large gap between the real time (days) and the computation time (ms) From this point of view, our result is very useful, as it opens up a new way to estimate the rate of fibril formation using β-content, which can be easily obtained using REMD simulations vii LỜI CÁM ƠN Người tơi muốn bày tỏ lịng biết ơn GS TSKH Mai Xuân Lý (Mai Suan Li) May mắn gặp Thầy Thầy nhận hướng dẫn Nghiên cứu sinh bước ngoặt lớn nghiệp Thầy người truyền kiến thức, nguồn cảm hứng khơi gợi đam mê nghiên cứu khoa học Ngồi tơi học từ Thầy cách làm khoa học cách nghiêm túc chuyên nghiệp, giữ gìn đạo đức nghề nghiệp để góc nhìn khoa học thực sáng công tâm Nhờ học trị Thầy mà tơi tạo điều kiện để tham gia Hội nghị khoa học Quốc tế, có dịp gặp gỡ nhà khoa học hàng đầu lĩnh vực, để từ mở mang kiến thức giúp phát triển lâu bền nghiệp nghiên cứu thân Tôi xin cám ơn TS Lý Anh Tú, đóng góp to lớn Thầy q trình tơi thực luận án Thầy hướng dẫn cách làm khoa học đắn hiệu Những ý kiến chỉnh sửa Thầy sau lần báo cáo chuyên đề, seminar giúp tơi hồn thiện kiến thức phương pháp nghiên cứu Sự nhiệt tình tận tâm Thầy nguồn động viên lớn lao trình học tập nghiên cứu Tơi xin cám ơn Thầy Cô thuộc Khoa Khoa học ứng dụng đặc biệt PGS TS Huỳnh Quang Linh nhiệt tình giúp đỡ thủ tục góp ý sâu sắc chuyên môn Xin cám ơn Thầy Cơ cơng tác phịng Sau Đại học trường đại học Bách khoa TPHCM hỗ trợ để hồn thành đề tài nghiên cứu Tơi xin chân thành cám ơn đồng nghiệp Phòng Thí nghiệm Khoa học sống, Viện Khoa học cơng nghệ tính tốn TPHCM Bộ mơn Vật liệu nano Màng mỏng, Khoa Khoa học Công nghệ Vật liệu, Trường Đại học Khoa học Tự nhiên TPHCM tạo điều kiện, hỗ trợ suốt trình thực đề tài Tôi xin bày tỏ lịng biết ơn đến người bạn thuộc phịng thí nghiệm Khoa học tính tốn, trường đại học Bách khoa chia sẻ kiến thức khó khăn suốt q trình học tập Tơi xin bày tỏ lịng biết ơn sâu sắc đến gia đình hy sinh bền bỉ, kiên nhẫn lòng vị tha suốt thời gian thực luận án Sau cùng, xin cám ơn người bạn đời hai gái tiếp thêm động lực lúc tơi thấy khó khăn viii [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] of the blood-brain barrier in Alzheimers disease," in Alzheimer's Disease–Challenges for the Future, ed: InTech United Kingdom, 2015, pp 48-71 P T Francis, A M Palmer, M Snape, and G K Wilcock, "The cholinergic hypothesis of Alzheimer’s disease: a review of progress," Journal of Neurology, Neurosurgery & Psychiatry, vol 66, pp 137-147, 1999 A Mudher and S Lovestone, "Alzheimer's disease–do tauists and baptists finally shake hands?," Trends in neurosciences, vol 25, pp 22-26, 2002 M Goedert, M Spillantini, and R Crowther, "Tau proteins and neurofibrillary degeneration," Brain pathology, vol 1, pp 279-286, 1991 K Iqbal, A d C Alonso, S Chen, M O Chohan, E El-Akkad, C.-X Gong, et al., "Tau pathology in Alzheimer disease and other tauopathies," Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, vol 1739, pp 198-210, 2005 W Chun and G Johnson, "The role of tau phosphorylation and cleavage in neuronal cell death," Frontiers in bioscience: a journal and virtual library, vol 12, pp 733-756, 2007 D Williams, "Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule‐associated protein tau," Internal medicine journal, vol 36, pp 652-660, 2006 M Fändrich, M A Fletcher, and C M Dobson, "Amyloid fibrils from muscle myoglobin," Nature, vol 410, p 165, 2001 D M Holtzman, J C Morris, and A M Goate, "Alzheimer’s disease: the challenge of the second century," Science translational medicine, vol 3, pp 77sr1-77sr1, 2011 D J Selkoe, M B Podlisny, C L Joachim, E A Vickers, G Lee, L C Fritz, et al., "Beta-amyloid precursor protein of Alzheimer disease occurs as 110-to 135-kilodalton membrane-associated proteins in neural and nonneural tissues," Proceedings of the National Academy of Sciences, vol 85, pp 7341-7345, 1988 W G Tharp and I N Sarkar, "Origins of amyloid-β," BMC genomics, vol 14, p 290, 2013 R J O'Brien and P C Wong, "Amyloid precursor protein processing and Alzheimer's disease," Annual review of neuroscience, vol 34, pp 185-204, 2011 R Sandbrink, C Masters, and K Beyreuther, "APP Gene Family Alternative Splicing Generates Functionally Related Isoforms a," Annals of the New York Academy of Sciences, vol 777, pp 281-287, 1996 C Solà, G Mengod, A Probst, and J M Palacios, "Differential regional and cellular distribution of β-amyloid precursor protein messenger RNAs containing and lacking the Kunitz protease inhibitor domain in the brain of human, rat and mouse," Neuroscience, vol 53, pp 267-295, 1993 B Hess, C Kutzner, D Van Der Spoel, and E Lindahl, "GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation," Journal of chemical theory and computation, vol 4, pp 435-447, 2008 A Serrano-Pozo, M P Frosch, E Masliah, and B T Hyman, "Neuropathological alterations in Alzheimer disease," Cold Spring Harbor perspectives in medicine, vol 1, p a006189, 2011 H Yamaguchi, S Hirai, M Morimatsu, M Shoji, and Y Harigaya, "Diffuse type of senile plaques in the brains of Alzheimer-type dementia," Acta neuropathologica, vol 77, pp 113-119, 1988 C Duyckaerts, B Delatour, and M.-C Potier, "Classification and basic pathology of Alzheimer disease," Acta neuropathologica, vol 118, pp 5-36, 2009 144 [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] D Selkoe, E Mandelkow, and D Holtzman, "Deciphering alzheimer disease," Cold Spring Harbor perspectives in medicine, vol 2, p a011460, 2012 P Thomas and M Fenech, "A review of genome mutation and Alzheimer's disease," Mutagenesis, vol 22, pp 15-33, 2007 D R Thal, U Rüb, M Orantes, and H Braak, "Phases of Aβ-deposition in the human brain and its relevance for the development of AD," Neurology, vol 58, pp 1791-1800, 2002 C M Aldwin, H Igarashi, D F Gilmer, and M R Levenson, Health, illness, and optimal aging: Biological and psychosocial perspectives: Springer Publishing Company, 2017 G Glenner and C Wong, "Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein," Alzheimer Disease & Associated Disorders, vol 2, p 134, 1988 C L Joachim, L K Duffy, J H Morris, and D J Selkoe, "Protein chemical and immunocytochemical studies of meningovascular β-amyloid protein in Alzheimer's disease and normal aging," Brain research, vol 474, pp 100-111, 1988 C W Wong, V Quaranta, and G G Glenner, "Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related," Proceedings of the National Academy of Sciences, vol 82, pp 8729-8732, 1985 A Roher, D Wolfe, M Palutke, and D KuKuruga, "Purification, ultrastructure, and chemical analysis of Alzheimer disease amyloid plaque core protein," Proceedings of the National Academy of Sciences, vol 83, pp 2662-2666, 1986 S Oddo, A Caccamo, B Tseng, D Cheng, V Vasilevko, D H Cribbs, et al., "Blocking Aβ42 accumulation delays the onset and progression of tau pathology via the C terminus of heat shock protein70-interacting protein: a mechanistic link between Aβ and tau pathology," Journal of Neuroscience, vol 28, pp 12163-12175, 2008 J Hardy and D Allsop, "Amyloid deposition as the central event in the aetiology of Alzheimer's disease," Trends in pharmacological sciences, vol 12, pp 383-388, 1991 S W Pimplikar, "Reassessing the amyloid cascade hypothesis of Alzheimer's disease," The international journal of biochemistry & cell biology, vol 41, pp 1261-1268, 2009 D A Snowdon, "Healthy aging and dementia: findings from the Nun Study," Annals of internal medicine, vol 139, pp 450-454, 2003 V L Villemagne, M T Fodero-Tavoletti, K E Pike, R Cappai, C L Masters, and C C Rowe, "The ART of loss: Aβ imaging in the evaluation of Alzheimer’s disease and other dementias," Molecular neurobiology, vol 38, pp 1-15, 2008 S Lesné, L Kotilinek, and K H Ashe, "Plaque-bearing mice with reduced levels of oligomeric amyloid-β assemblies have intact memory function," Neuroscience, vol 151, pp 745-749, 2008 C Holmes, D Boche, D Wilkinson, G Yadegarfar, V Hopkins, A Bayer, et al., "Longterm effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial," The Lancet, vol 372, pp 216-223, 2008 L Billings, S Oddo, K Green, J McGaugh, and F Laferla, "Intraneuronal Abeta causes the onset of early Alzheimer’s disease-relat," 2005 V L Villemagne, K E Pike, G Chételat, K A Ellis, R S Mulligan, P Bourgeat, et al., "Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease," Annals of neurology, vol 69, pp 181-192, 2011 145 [88] M.-F Chesselet, Molecular mechanisms of neurodegenerative diseases: Springer Science & Business Media, 2000 [89] B Permanne, C Adessi, G P Saborio, S Fraga, M.-J Frossard, J Van Dorpe, et al., "Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer’s disease by treatment with a β-sheet breaker peptide," The FASEB Journal, vol 16, pp 860-862, 2002 [90] N G Sgourakis, Y Yan, S A McCallum, C Wang, and A E Garcia, "The Alzheimer’s peptides Aβ40 and 42 adopt distinct conformations in water: a combined MD/NMR study," Journal of molecular biology, vol 368, pp 1448-1457, 2007 [91] M Yang and D B Teplow, "Amyloid β-protein monomer folding: free-energy surfaces reveal alloform-specific differences," Journal of molecular biology, vol 384, pp 450464, 2008 [92] A Vitalis and A Caflisch, "Micelle-like architecture of the monomer ensemble of Alzheimer’s amyloid-β peptide in aqueous solution and its implications for Aβ aggregation," Journal of molecular biology, vol 403, pp 148-165, 2010 [93] A Rojas, A Liwo, D Browne, and H A Scheraga, "Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field," Journal of molecular biology, vol 404, pp 537-552, 2010 [94] M H Viet, S T Ngo, N S Lam, and M S Li, "Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity," The Journal of Physical Chemistry B, vol 115, pp 7433-7446, 2011 [95] M Coles, W Bicknell, A A Watson, D P Fairlie, and D J Craik, "Solution Structure of Amyloid β-Peptide (1− 40) in a Water− Micelle Environment Is the MembraneSpanning Domain Where We Think It Is?," Biochemistry, vol 37, pp 11064-11077, 1998 [96] S Tomaselli, V Esposito, P Vangone, N A van Nuland, A M Bonvin, R Guerrini, et al., "The α‐to‐β conformational transition of Alzheimer's Aβ‐(1–42) peptide in aqueous media is reversible: A step by step conformational analysis suggests the location of β conformation seeding," ChemBioChem, vol 7, pp 257-267, 2006 [97] T J Huang, D.-S Yang, N P Plaskos, S Go, C M Yip, P E Fraser, et al., "Structural studies of soluble oligomers of the Alzheimer β-amyloid peptide," Journal of molecular biology, vol 297, pp 73-87, 2000 [98] I A Mastrangelo, M Ahmed, T Sato, W Liu, C Wang, P Hough, et al., "Highresolution atomic force microscopy of soluble Aβ42 oligomers," Journal of molecular biology, vol 358, pp 106-119, 2006 [99] C G Glabe and R Kayed, "Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis," Neurology, vol 66, pp S74-S78, 2006 [100] C Haass and D J Selkoe, "Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide," Nature reviews Molecular cell biology, vol 8, p 101, 2007 [101] T Lührs, C Ritter, M Adrian, D Riek-Loher, B Bohrmann, H Döbeli, et al., "3D structure of Alzheimer's amyloid-β (1–42) fibrils," Proceedings of the National Academy of Sciences, vol 102, pp 17342-17347, 2005 [102] Y Xiao, B Ma, D McElheny, S Parthasarathy, F Long, M Hoshi, et al., "Aβ (1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease," Nature structural & molecular biology, vol 22, p 499, 2015 146 [103] M A Wälti, F Ravotti, H Arai, C G Glabe, J S Wall, A Böckmann, et al., "Atomicresolution structure of a disease-relevant Aβ (1–42) amyloid fibril," Proceedings of the National Academy of Sciences, vol 113, pp E4976-E4984, 2016 [104] A K Paravastu, R D Leapman, W.-M Yau, and R Tycko, "Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils," Proceedings of the National Academy of Sciences, vol 105, pp 18349-18354, 2008 [105] J.-X Lu, W Qiang, W.-M Yau, C D Schwieters, S C Meredith, and R Tycko, "Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue," Cell, vol 154, pp 1257-1268, 2013 [106] C Iannuzzi, G Irace, and I Sirangelo, "The effect of glycosaminoglycans (GAGs) on amyloid aggregation and toxicity," Molecules, vol 20, pp 2510-2528, 2015 [107] J B Reece, L A Urry, M L Cain, S A Wasserman, P V Minorsky, and R B Jackson, Campbell biology: Pearson Boston, 2014 [108] F Chiti, M Stefani, N Taddei, G Ramponi, and C M Dobson, "Rationalization of the effects of mutations on peptide and protein aggregation rates," Nature, vol 424, p 805, 2003 [109] D E Otzen, O Kristensen, and M Oliveberg, "Designed protein tetramer zipped together with a hydrophobic Alzheimer homology: a structural clue to amyloid assembly," Proceedings of the National Academy of Sciences, vol 97, pp 9907-9912, 2000 [110] K Ono, M M Condron, and D B Teplow, "Effects of the English (H6R) and Tottori (D7N) familial Alzheimer disease mutations on amyloid β-protein assembly and toxicity," Journal of Biological Chemistry, vol 285, pp 23186-23197, 2010 [111] N T Co, M H Viet, P M Truong, M Kouza, and M S Li, "Key factors governing fibril formation of proteins: insights from simulations and experiments," Task Quarterly, vol 18, pp 245-254, 2014 [112] E Gazit, "A possible role for π-stacking in the self-assembly of amyloid fibrils," The FASEB Journal, vol 16, pp 77-83, 2002 [113] L Adler-Abramovich and E Gazit, "The physical properties of supramolecular peptide assemblies: from building block association to technological applications," Chemical Society Reviews, vol 43, pp 6881-6893, 2014 [114] C J Bowerman, D M Ryan, D A Nissan, and B L Nilsson, "The effect of increasing hydrophobicity on the self-assembly of amphipathic β-sheet peptides," Molecular Biosystems, vol 5, pp 1058-1069, 2009 [115] F T Senguen, N R Lee, X Gu, D M Ryan, T M Doran, E A Anderson, et al., "Probing aromatic, hydrophobic, and steric effects on the self-assembly of an amyloid-β fragment peptide," Molecular BioSystems, vol 7, pp 486-496, 2011 [116] H B Nam, M Kouza, H Zung, and M S Li, "Relationship between population of the fibril-prone conformation in the monomeric state and oligomer formation times of peptides: Insights from all-atom simulations," The Journal of chemical physics, vol 132, p 04B613, 2010 [117] G Reddy, J E Straub, and D Thirumalai, "Influence of preformed asp23− lys28 salt bridge on the conformational fluctuations of monomers and dimers of Aβ peptides with implications for rates of fibril formation," The journal of physical chemistry B, vol 113, pp 1162-1172, 2009 [118] K L Sciarretta, D J Gordon, A T Petkova, R Tycko, and S C Meredith, "Aβ40Lactam (D23/K28) models a conformation highly favorable for nucleation of amyloid," Biochemistry, vol 44, pp 6003-6014, 2005 147 [119] S W Snyder, U S Ladror, W S Wade, G T Wang, L W Barrett, E D Matayoshi, et al., "Amyloid-beta aggregation: selective inhibition of aggregation in mixtures of amyloid with different chain lengths," Biophysical journal, vol 67, pp 1216-1228, 1994 [120] L Nielsen, R Khurana, A Coats, S Frokjaer, J Brange, S Vyas, et al., "Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism," Biochemistry, vol 40, pp 6036-6046, 2001 [121] H Jang, F T Arce, S Ramachandran, B L Kagan, R Lal, and R Nussinov, "Disordered amyloidogenic peptides may insert into the membrane and assemble into common cyclic structural motifs," Chemical Society reviews, vol 43, pp 6750-6764, 2014 [122] H.-X Zhou, G Rivas, and A P Minton, "Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences," Annu Rev Biophys., vol 37, pp 375-397, 2008 [123] J Kuriyan and D Eisenberg, "The origin of protein interactions and allostery in colocalization," Nature, vol 450, p 983, 2007 [124] D A White, A K Buell, T P Knowles, M E Welland, and C M Dobson, "Protein aggregation in crowded environments," Journal of the American Chemical Society, vol 132, pp 5170-5175, 2010 [125] A Magno, A Caflisch, and R Pellarin, "Crowding effects on amyloid aggregation kinetics," The Journal of Physical Chemistry Letters, vol 1, pp 3027-3032, 2010 [126] E P O’Brien, J E Straub, B R Brooks, and D Thirumalai, "Influence of nanoparticle size and shape on oligomer formation of an amyloidogenic peptide," The journal of physical chemistry letters, vol 2, pp 1171-1177, 2011 [127] S Asakura and F Oosawa, "On interaction between two bodies immersed in a solution of macromolecules," The Journal of Chemical Physics, vol 22, pp 1255-1256, 1954 [128] S Linse, C Cabaleiro-Lago, W.-F Xue, I Lynch, S Lindman, E Thulin, et al., "Nucleation of protein fibrillation by nanoparticles," Proceedings of the National Academy of Sciences, vol 104, pp 8691-8696, 2007 [129] C Cabaleiro-Lago, F Quinlan-Pluck, I Lynch, S Lindman, A M Minogue, E Thulin, et al., "Inhibition of amyloid β protein fibrillation by polymeric nanoparticles," Journal of the American Chemical Society, vol 130, pp 15437-15443, 2008 [130] N T Co, C.-K Hu, and M S Li, "Dual effect of crowders on fibrillation kinetics of polypeptide chains revealed by lattice models," The Journal of chemical physics, vol 138, p 05B610_1, 2013 [131] M Kouza, N T Co, M S Li, S Kmiecik, A Kolinski, A Kloczkowski, et al., "Kinetics and mechanical stability of the fibril state control fibril formation time of polypeptide chains: A computational study," The Journal of chemical physics, vol 148, p 215106, 2018 [132] N T H Thương and N T Thắng, Giáo trình Hóa học protein TPHCM: Nhà xuất Đại học Quốc gia TP Hồ Chí Minh, 2019 [133] T Tomiyama, T Nagata, H Shimada, R Teraoka, A Fukushima, H Kanemitsu, et al., "A new amyloid β variant favoring oligomerization in Alzheimer's‐type dementia," Annals of neurology, vol 63, pp 377-387, 2008 [134] Y Hori, T Hashimoto, Y Wakutani, K Urakami, K Nakashima, M M Condron, et al., "The Tottori (D7N) and English (H6R) familial Alzheimer disease mutations accelerate Aβ fibril formation without increasing protofibril formation," Journal of biological chemistry, vol 282, pp 4916-4923, 2007 148 [135] M H Viet, P H Nguyen, P Derreumaux, and M S Li, "Effect of the English Familial Disease Mutation (H6R) on the Monomers and Dimers of Aβ40 and Aβ42," ACS chemical neuroscience, vol 5, pp 646-657, 2014 [136] M H Viet, P H Nguyen, S T Ngo, M S Li, and P Derreumaux, "Effect of the Tottori Familial Disease Mutation (D7N) on the Monomers and Dimers of Aβ40 and Aβ42," ACS chemical neuroscience, vol 4, pp 1446-1457, 2013 [137] P M Truong, M H Viet, P H Nguyen, C.-K Hu, and M S Li, "Effect of Taiwan Mutation (D7H) on Structures of Amyloid-β Peptides: Replica Exchange Molecular Dynamics Study," The Journal of Physical Chemistry B, vol 118, pp 8972-8981, 2014 [138] J A Maloney, T Bainbridge, A Gustafson, S Zhang, R Kyauk, P Steiner, et al., "Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein," Journal of Biological Chemistry, vol 289, pp 30990-31000, 2014 [139] T T M Thu, S.-H Huang, L A Tu, S.-T Fang, M S Li, and Y.-C Chen, "G37V mutation of Aβ42 induces a nontoxic ellipse-like aggregate: An in vitro and in silico study," Neurochemistry international, vol 129, p 104512, 2019 [140] K Kamino, H T Orr, H Payami, E M Wijsman, M E Alonso, S M Pulst, et al., "Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region," American journal of human genetics, vol 51, p 998, 1992 [141] T J Grabowski, H S Cho, J P G Vonsattel, G W Rebeck, and S M Greenberg, "Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy," Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, vol 49, pp 697-705, 2001 [142] F Massi and J E Straub, "Probing the origins of increased activity of the E22Q “Dutch” mutant Alzheimer's β-amyloid peptide," Biophysical journal, vol 81, pp 697-709, 2001 [143] S Côté, P Derreumaux, and N Mousseau, "Distinct morphologies for amyloid beta protein monomer: Aβ1–40, Aβ1–42, and Aβ1–40 (D23N)," Journal of chemical theory and computation, vol 7, pp 2584-2592, 2011 [144] Y.-S Lin and V S Pande, "Effects of familial mutations on the monomer structure of Aβ42," Biophysical journal, vol 103, pp L47-L49, 2012 [145] A Huet and P Derreumaux, "Impact of the mutation A21G (Flemish variant) on Alzheimer’s β-amyloid dimers by molecular dynamics simulations," Biophysical journal, vol 91, pp 3829-3840, 2006 [146] O Coskuner, O Wise-Scira, G Perry, and T Kitahara, "The structures of the E22Δ mutant-type amyloid-β alloforms and the impact of E22Δ mutation on the structures of the wild-type amyloid-β alloforms," ACS chemical neuroscience, vol 4, pp 310-320, 2012 [147] S Mitternacht, I Staneva, T Härd, and A Irbäck, "Comparing the folding free‐energy landscapes of Aβ42 variants with different aggregation properties," Proteins: Structure, Function, and Bioinformatics, vol 78, pp 2600-2608, 2010 [148] M G Krone, A Baumketner, S L Bernstein, T Wyttenbach, N D Lazo, D B Teplow, et al., "Effects of familial Alzheimer’s disease mutations on the folding nucleation of the amyloid β-protein," Journal of molecular biology, vol 381, pp 221-228, 2008 [149] A Baumketner, M G Krone, and J.-E Shea, "Role of the familial Dutch mutation E22Q in the folding and aggregation of the 15–28 fragment of the Alzheimer amyloid-β protein," Proceedings of the National Academy of Sciences, vol 105, pp 6027-6032, 2008 149 [150] W Qiang, W.-M Yau, Y Luo, M P Mattson, and R Tycko, "Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils," Proceedings of the National Academy of Sciences, vol 109, pp 4443-4448, 2012 [151] O Y Ovchinnikova, V H Finder, I Vodopivec, R M Nitsch, and R Glockshuber, "The Osaka FAD mutation E22Δ leads to the formation of a previously unknown type of amyloid β fibrils and modulates Aβ neurotoxicity," Journal of molecular biology, vol 408, pp 780-791, 2011 [152] W M Berhanu, E J Alred, and U H Hansmann, "Stability of Osaka mutant and wildtype fibril models," The journal of physical chemistry B, vol 119, pp 13063-13070, 2015 [153] C.-J Lo, C.-C Wang, H.-B Huang, C.-F Chang, M.-S Shiao, Y.-C Chen, et al., "The Arctic mutation accelerates Aβ aggregation in SDS through reducing the helical propensity of residues 15–25," Amyloid, vol 22, pp 8-18, 2015 [154] C.-T Liang, H.-B Huang, C.-C Wang, Y.-R Chen, C.-F Chang, M.-S Shiao, et al., "L17A/F19A substitutions augment the α-helicity of β-amyloid peptide discordant segment," PloS one, vol 11, 2016 [155] J Huang, S Rauscher, G Nawrocki, T Ran, M Feig, B L de Groot, et al., "CHARMM36m: an improved force field for folded and intrinsically disordered proteins," Nature methods, vol 14, p 71, 2017 [156] A T Petkova, Y Ishii, J J Balbach, O N Antzutkin, R D Leapman, F Delaglio, et al., "A structural model for Alzheimer's β-amyloid fibrils based on experimental constraints from solid state NMR," Proceedings of the National Academy of Sciences, vol 99, pp 16742-16747, 2002 [157] M Rief, M Gautel, F Oesterhelt, J M Fernandez, and H E Gaub, "Reversible unfolding of individual titin immunoglobulin domains by AFM," science, vol 276, pp 1109-1112, 1997 [158] S Kumar and M S Li, "Biomolecules under mechanical force," Physics Reports, vol 486, pp 1-74, 2010 [159] Z Lv, R Roychaudhuri, M M Condron, D B Teplow, and Y L Lyubchenko, "Mechanism of amyloid β− protein dimerization determined using single− molecule AFM force spectroscopy," Scientific reports, vol 3, p 2880, 2013 [160] H A Scheidt, I Morgado, S Rothemund, and D Huster, "Dynamics of amyloid β fibrils revealed by solid-state NMR," Journal of Biological Chemistry, vol 287, pp 2017-2021, 2012 [161] B Sarkar, V S Mithu, B Chandra, A Mandal, M Chandrakesan, D Bhowmik, et al., "Significant Structural Differences between Transient Amyloid‐β Oligomers and Less‐ Toxic Fibrils in Regions Known To Harbor Familial Alzheimer′ s Mutations," Angewandte Chemie International Edition, vol 53, pp 6888-6892, 2014 [162] B Ma and R Nussinov, "Polymorphic triple β-sheet structures contribute to amide hydrogen/deuterium (H/D) exchange protection in the Alzheimer amyloid β42 peptide," Journal of Biological Chemistry, vol 286, pp 34244-34253, 2011 [163] W Zago, M Buttini, T A Comery, C Nishioka, S J Gardai, P Seubert, et al., "Neutralization of soluble, synaptotoxic amyloid β species by antibodies is epitope specific," Journal of Neuroscience, vol 32, pp 2696-2702, 2012 [164] H Li, Z Du, D H Lopes, E A Fradinger, C Wang, and G Bitan, "C-terminal tetrapeptides inhibit Aβ42-induced neurotoxicity primarily through specific interaction at the N-terminus of Aβ42," Journal of medicinal chemistry, vol 54, pp 8451-8460, 2011 150 [165] J Janssen, J Beck, T Campbell, A Dickinson, N Fox, R Harvey, et al., "Early onset familial Alzheimer’s disease: mutation frequency in 31 families," Neurology, vol 60, pp 235-239, 2003 [166] W.-T Chen, C.-J Hong, Y.-T Lin, W.-H Chang, H.-T Huang, J.-Y Liao, et al., "Amyloid-beta (Aβ) D7H mutation increases oligomeric Aβ42 and alters properties of Aβ-zinc/copper assemblies," PloS one, vol 7, 2012 [167] Y Wakutani, K Watanabe, Y Adachi, K Wada-Isoe, K Urakami, H Ninomiya, et al., "Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimer’s disease," Journal of Neurology, Neurosurgery & Psychiatry, vol 75, pp 1039-1042, 2004 [168] S K Maji, R R O Loo, M Inayathullah, S M Spring, S S Vollers, M M Condron, et al., "Amino acid position-specific contributions to amyloid β-protein oligomerization," Journal of Biological Chemistry, vol 284, pp 23580-23591, 2009 [169] L M Luheshi, G G Tartaglia, A.-C Brorsson, A P Pawar, I E Watson, F Chiti, et al., "Systematic in vivo analysis of the intrinsic determinants of amyloid β pathogenicity," PLoS biology, vol 5, 2007 [170] I Qahwash, K L Weiland, Y Lu, R W Sarver, R F Kletzien, and R Yan, "Identification of a mutant amyloid peptide that predominantly forms neurotoxic protofibrillar aggregates," Journal of Biological Chemistry, vol 278, pp 23187-23195, 2003 [171] S Jawhar, O Wirths, and T A Bayer, "Pyroglutamate amyloid-β (Aβ): a hatchet man in Alzheimer disease," Journal of Biological Chemistry, vol 286, pp 38825-38832, 2011 [172] G Di Fede, M Catania, M Morbin, G Rossi, S Suardi, G Mazzoleni, et al., "A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis," Science, vol 323, pp 1473-1477, 2009 [173] M Messa, L Colombo, E Del Favero, L Cantù, T Stoilova, A Cagnotto, et al., "The peculiar role of the A2V mutation in amyloid-β (Aβ) 1–42 molecular assembly," Journal of Biological Chemistry, vol 289, pp 24143-24152, 2014 [174] B De Strooper and T Voet, "Alzheimer's disease: A protective mutation," Nature, vol 488, p 38, 2012 [175] T Jonsson, J K Atwal, S Steinberg, J Snaedal, P V Jonsson, S Bjornsson, et al., "A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline," Nature, vol 488, p 96, 2012 [176] L Zhou, N Brouwers, I Benilova, A Vandersteen, M Mercken, K Van Laere, et al., "Amyloid precursor protein mutation E682K at the alternative β‐secretase cleavage β′‐site increases Aβ generation," EMBO molecular medicine, vol 3, pp 291-302, 2011 [177] S Sinha, D H Lopes, and G Bitan, "A key role for lysine residues in amyloid β-protein folding, assembly, and toxicity," ACS chemical neuroscience, vol 3, pp 473-481, 2012 [178] N D Lazo, M A Grant, M C Condron, A C Rigby, and D B Teplow, "On the nucleation of amyloid β‐protein monomer folding," Protein Science, vol 14, pp 15811596, 2005 [179] J T Jarrett, E P Berger, and P T Lansbury Jr, "The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer's disease," Biochemistry, vol 32, pp 4693-4697, 1993 [180] Y.-J Chang, N H Linh, Y H Shih, H.-M Yu, M S Li, and Y.-R Chen, "Alzheimer’s Amyloid-β Sequesters Caspase-3 in Vitro via Its C-Terminal Tail," ACS chemical neuroscience, vol 7, pp 1097-1106, 2016 151 [181] V Fonte, V Dostal, C M Roberts, P Gonzales, P Lacor, J Magrane, et al., "A glycine zipper motif mediates the formation of toxic β-amyloid oligomers in vitro and in vivo," Molecular neurodegeneration, vol 6, p 61, 2011 [182] A Harmeier, C Wozny, B R Rost, L.-M Munter, H Hua, O Georgiev, et al., "Role of amyloid-β glycine 33 in oligomerization, toxicity, and neuronal plasticity," Journal of Neuroscience, vol 29, pp 7582-7590, 2009 [183] M Decock, S Stanga, J.-N Octave, I Dewachter, S O Smith, S N Constantinescu, et al., "Glycines from the APP GXXXG/GXXXA transmembrane motifs promote formation of pathogenic Aβ oligomers in cells," Frontiers in aging neuroscience, vol 8, p 107, 2016 [184] L W Hung, G D Ciccotosto, E Giannakis, D J Tew, K Perez, C L Masters, et al., "Amyloid-β peptide (Aβ) neurotoxicity is modulated by the rate of peptide aggregation: Aβ dimers and trimers correlate with neurotoxicity," Journal of Neuroscience, vol 28, pp 11950-11958, 2008 [185] A E Estrada-Rodríguez, D Valdez-Pérez, J Ruiz-García, A Treviđo-Garza, A M Gómez-Martínez, H G Martínez-Rodríguez, et al., "Effects of Single Amino Acid Substitutions on Aggregation and Cytotoxicity Properties of Amyloid β Peptide," International Journal of Peptide Research and Therapeutics, vol 25, pp 493-509, 2019 [186] R Roychaudhuri, M Yang, A Deshpande, G M Cole, S Frautschy, A Lomakin, et al., "C-terminal turn stability determines assembly differences between Aβ40 and Aβ42," Journal of molecular biology, vol 425, pp 292-308, 2013 [187] N H Linh, T T Minh Thu, L Tu, C.-K Hu, and M S Li, "Impact of Mutations at CTerminus on Structures and Dynamics of Aβ40 and Aβ42: A Molecular Simulation Study," The Journal of Physical Chemistry B, vol 121, pp 4341-4354, 2017 [188] W Kim and M H Hecht, "Sequence determinants of enhanced amyloidogenicity of Alzheimer Aβ42 peptide relative to Aβ40," Journal of Biological Chemistry, vol 280, pp 35069-35076, 2005 [189] H K L Võ Văn Hoàng, Nguyễn Trung Hải, Nguyễn Hà Hùng Chương,, Mô vật lý: Nhà xuất ĐHQG-TPHCM, 2016 [190] S J Weiner, P A Kollman, D A Case, U C Singh, C Ghio, G Alagona, et al., "A new force field for molecular mechanical simulation of nucleic acids and proteins," Journal of the American Chemical Society, vol 106, pp 765-784, 1984 [191] B R Brooks, R E Bruccoleri, B D Olafson, D J States, S a Swaminathan, and M Karplus, "CHARMM: a program for macromolecular energy, minimization, and dynamics calculations," Journal of computational chemistry, vol 4, pp 187-217, 1983 [192] C Oostenbrink, A Villa, A E Mark, and W F Van Gunsteren, "A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force‐field parameter sets 53A5 and 53A6," Journal of computational chemistry, vol 25, pp 16561676, 2004 [193] W L Jorgensen, "Quantum and statistical mechanical studies of liquids 10 Transferable intermolecular potential functions for water, alcohols, and ethers Application to liquid water," Journal of the American Chemical Society, vol 103, pp 335-340, 1981 [194] P H Nguyen, M S Li, and P Derreumaux, "Effects of all-atom force fields on amyloid oligomerization: Replica exchange molecular dynamics simulations of the Aβ 16–22 dimer and trimer," Physical Chemistry Chemical Physics, vol 13, pp 9778-9788, 2011 [195] M D Smith, J S Rao, E Segelken, and L Cruz, "Force-Field Induced Bias in the Structure of A beta(21-30): A Comparison of OPLS, AMBER, CHARMM, and 152 [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] GROMOS Force Fields," Journal of Chemical Information and Modeling, vol 55, pp 2587-2595, Dec 2015 M P Allen and D J Tildesley, Computer simulation of liquids: Oxford university press, 2017 L D Landau and E M Lifshitz, "Fluid mechanics," Fluid Mechanics Second Edition 1987 Pergamon, Oxford, 1987 L Verlet, "Computer" experiments" on classical fluids I Thermodynamical properties of Lennard-Jones molecules," Physical review, vol 159, p 98, 1967 W C Swope, H C Andersen, P H Berens, and K R Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of Chemical Physics, vol 76, pp 637-649, 1982 W F Van Gunsteren and H J Berendsen, "A leap-frog algorithm for stochastic dynamics," Molecular Simulation, vol 1, pp 173-185, 1988 H J Berendsen, J v Postma, W F van Gunsteren, A DiNola, and J Haak, "Molecular dynamics with coupling to an external bath," The Journal of chemical physics, vol 81, pp 3684-3690, 1984 G Bussi, D Donadio, and M Parrinello, "Canonical sampling through velocity rescaling," The Journal of chemical physics, vol 126, p 014101, 2007 W G Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical review A, vol 31, p 1695, 1985 M Parrinello and A Rahman, "Polymorphic transitions in single crystals: A new molecular dynamics method," Journal of Applied physics, vol 52, pp 7182-7190, 1981 J.-P Ryckaert, G Ciccotti, and H J Berendsen, "Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes," Journal of computational physics, vol 23, pp 327-341, 1977 B Hess, H Bekker, H J Berendsen, and J G Fraaije, "LINCS: a linear constraint solver for molecular simulations," Journal of computational chemistry, vol 18, pp 1463-1472, 1997 D Hess and E Lindahl, "GROMACS USER MANUAL Version 4.5 6, Department of Biophysical Chemistry," University of Groningen &, vol 2010, pp 1991-2000, 2001 D J Adams, E M Adams, and G J Hills, "The computer simulation of polar liquids," Molecular Physics, vol 38, pp 387-400, 1979 H Bekker, E Dijkstra, M Renardus, and H Berendsen, "An efficient, box shape independent non-bonded force and virial algorithm for molecular dynamics," Molecular Simulation, vol 14, pp 137-151, 1995 F H Stillinger and A Rahman, "Improved simulation of liquid water by molecular dynamics," The Journal of Chemical Physics, vol 60, pp 1545-1557, 1974 H J Berendsen, J P Postma, W F van Gunsteren, and J Hermans, "Interaction models for water in relation to protein hydration," in Intermolecular forces, ed: Springer, 1981, pp 331-342 W L Jorgensen, J Chandrasekhar, J D Madura, R W Impey, and M L Klein, "Comparison of simple potential functions for simulating liquid water," The Journal of chemical physics, vol 79, pp 926-935, 1983 D Qiu, P S Shenkin, F P Hollinger, and W C Still, "The GB/SA continuum model for solvation A fast analytical method for the calculation of approximate Born radii," The Journal of Physical Chemistry A, vol 101, pp 3005-3014, 1997 153 [214] G D Hawkins, C J Cramer, and D G Truhlar, "Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium," The Journal of Physical Chemistry, vol 100, pp 19824-19839, 1996 [215] A Onufriev, D Bashford, and D A Case, "Exploring protein native states and large‐ scale conformational changes with a modified generalized born model," Proteins: Structure, Function, and Bioinformatics, vol 55, pp 383-394, 2004 [216] D Sitkoff, K A Sharp, and B Honig, "Accurate calculation of hydration free energies using macroscopic solvent models," The Journal of Physical Chemistry, vol 98, pp 1978-1988, 1994 [217] Y Sugita and Y Okamoto, "Replica-exchange molecular dynamics method for protein folding," Chemical physics letters, vol 314, pp 141-151, 1999 [218] R Qi, G Wei, B Ma, and R Nussinov, "Replica Exchange Molecular Dynamics: A Practical Application Protocol with Solutions to Common Problems and a Peptide Aggregation and Self-Assembly Example," in Peptide Self-Assembly, ed: Springer, 2018, pp 101-119 [219] R H Swendsen and J.-S Wang, "Replica Monte Carlo simulation of spin-glasses," Physical review letters, vol 57, p 2607, 1986 [220] A Patriksson and D van der Spoel, "A temperature predictor for parallel tempering simulations," Physical Chemistry Chemical Physics, vol 10, pp 2073-2077, 2008 [221] K Murakami, K Irie, A Morimoto, H Ohigashi, M Shindo, M Nagao, et al., "Neurotoxicity and physicochemical properties of Aβ mutant peptides from cerebral amyloid angiopathy implication for the pathogenesis of cerebral amyloid angiopathy and alzheimer's disease," Journal of Biological Chemistry, vol 278, pp 46179-46187, 2003 [222] C Nilsberth, A Westlind-Danielsson, C B Eckman, M M Condron, K Axelman, C Forsell, et al., "The'Arctic'APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation," Nature neuroscience, vol 4, p 887, 2001 [223] J Nasica-Labouze, P H Nguyen, F Sterpone, O Berthoumieu, N.-V Buchete, S b Coté, et al., "Amyloid β protein and Alzheimer’s disease: When computer simulations complement experimental studies," Chemical reviews, vol 115, pp 3518-3563, 2015 [224] M Källberg, G Margaryan, S Wang, J Ma, and J Xu, Protein Structure Prediction Methods in Molecular Biology (Methods and Protocols) vol 1137: Humana Press, 2014 [225] M D Beachy, D Chasman, R B Murphy, T A Halgren, and R A Friesner, "Accurate ab initio quantum chemical determination of the relative energetics of peptide conformations and assessment of empirical force fields," Journal of the American Chemical Society, vol 119, pp 5908-5920, 1997 [226] G A Kaminski, R A Friesner, J Tirado-Rives, and W L Jorgensen, "Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides," The Journal of Physical Chemistry B, vol 105, pp 6474-6487, 2001/07/01 2001 [227] H L Nguyen, T Thi Minh Thu, P M Truong, P D Lan, V H Man, P H Nguyen, et al., "Aβ41 Aggregates More Like Aβ40 than Like Aβ42: In Silico and in Vitro Study," The Journal of Physical Chemistry B, vol 120, pp 7371-7379, 2016 [228] H Lei, C Wu, H Liu, and Y Duan, "Folding free-energy landscape of villin headpiece subdomain from molecular dynamics simulations," Proceedings of the National Academy of Sciences, vol 104, pp 4925-4930, 2007 [229] D Fincham, "Leapfrog rotational algorithms," Molecular Simulation, vol 8, pp 165-178, 1992 154 [230] S E DeBolt and P A Kollman, "AMBERCUBE MD, parallelization of Amber's molecular dynamics module for distributed‐memory hypercube computers," Journal of Computational Chemistry, vol 14, pp 312-329, 1993 [231] D Frishman and P Argos, "Knowledge‐based protein secondary structure assignment," Proteins: Structure, Function, and Bioinformatics, vol 23, pp 566-579, 1995 [232] Y Mu, P H Nguyen, and G Stock, "Energy landscape of a small peptide revealed by dihedral angle principal component analysis," Proteins: Structure, Function, and Bioinformatics, vol 58, pp 45-52, 2005 [233] J A Hartigan and M A Wong, "Algorithm AS 136: A k-means clustering algorithm," Journal of the Royal Statistical Society Series C (Applied Statistics), vol 28, pp 100108, 1979 [234] A Lobley, L Whitmore, and B Wallace, "DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra," Bioinformatics, vol 18, pp 211-212, 2002 [235] L Whitmore and B Wallace, "DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data," Nucleic acids research, vol 32, pp W668-W673, 2004 [236] S Zhang, K Iwata, M Lachenmann, J Peng, S Li, E Stimson, et al., "The Alzheimer's peptide Aβ adopts a collapsed coil structure in water," Journal of structural biology, vol 130, pp 130-141, 2000 [237] J Danielsson, J Jarvet, P Damberg, and A Gräslund, "The Alzheimer β‐peptide shows temperature‐dependent transitions between left‐handed 31‐helix, β‐strand and random coil secondary structures," The FEBS journal, vol 272, pp 3938-3949, 2005 [238] M D Kirkitadze, M M Condron, and D B Teplow, "Identification and characterization of key kinetic intermediates in amyloid β-protein fibrillogenesis," Journal of molecular biology, vol 312, pp 1103-1119, 2001 [239] K Ono, M M Condron, and D B Teplow, "Structure–neurotoxicity relationships of amyloid β-protein oligomers," Proceedings of the National Academy of Sciences, vol 106, pp 14745-14750, 2009 [240] M H Viet and M S Li, "Amyloid peptide Aβ40 inhibits aggregation of Aβ42: evidence from molecular dynamics simulations," The Journal of chemical physics, vol 136, p 06B620, 2012 [241] D J Rosenman, C R Connors, W Chen, C Wang, and A E García, "Aβ monomers transiently sample oligomer and fibril-like configurations: Ensemble characterization using a combined MD/NMR approach," Journal of molecular biology, vol 425, pp 33383359, 2013 [242] D Meral and B Urbanc, "Discrete molecular dynamics study of oligomer formation by N-terminally truncated amyloid β-protein," Journal of molecular biology, vol 425, pp 2260-2275, 2013 [243] S W Snyder, U S Ladror, W S Wade, G T Wang, L W Barrett, E D Matayoshi, et al., "Amyloid-beta aggregation - selective-inhibition of aggregation in mixtures of amyloid with different chain lengths," Biophysical Journal, vol 67, pp 1216-1228, Sep 1994 [244] K A Ball, A H Phillips, D E Wemmer, and T Head-Gordon, "Differences in β-strand populations of monomeric Aβ40 and Aβ42," Biophysical journal, vol 104, pp 27142724, 2013 155 [245] M Han and U H Hansmann, "Replica exchange molecular dynamics of the thermodynamics of fibril growth of Alzheimer's Aβ42 peptide," The Journal of chemical physics, vol 135, p 08B609, 2011 [246] A Lam, D Teplow, H Stanley, and B Urbanc, "Effects of the Arctic (E22→ G) mutation on amyloid β-protein folding: discrete molecular dynamics study," Journal of the American Chemical Society, vol 130, pp 17413-17422, 2008 [247] C Velez-Vega and F A Escobedo, "Characterizing the structural behavior of selected Aβ-42 monomers with different solubilities," The Journal of Physical Chemistry B, vol 115, pp 4900-4910, 2011 [248] A Irbäck and S Mohanty, "Folding thermodynamics of peptides," Biophysical journal, vol 88, pp 1560-1569, 2005 [249] N G Sgourakis, M Merced-Serrano, C Boutsidis, P Drineas, Z Du, C Wang, et al., "Atomic-level characterization of the ensemble of the Aβ (1–42) monomer in water using unbiased molecular dynamics simulations and spectral algorithms," Journal of molecular biology, vol 405, pp 570-583, 2011 [250] G Bitan, M D Kirkitadze, A Lomakin, S S Vollers, G B Benedek, and D B Teplow, "Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways," Proceedings of the National Academy of Sciences, vol 100, pp 330-335, 2003 [251] D B Teplow, N D Lazo, G Bitan, S Bernstein, T Wyttenbach, M T Bowers, et al., "Elucidating amyloid β-protein folding and assembly: a multidisciplinary approach," Accounts of chemical research, vol 39, pp 635-645, 2006 [252] M S Li, N T Co, G Reddy, C K Hu, J E Straub, and D Thirumalai, "Factors Governing Fibrillogenesis of Polypeptide Chains Revealed by Lattice Models," Physical Review Letters, vol 105, Nov 2010 [253] M S Shell, R Ritterson, and K A Dill, "A test on peptide stability of AMBER force fields with implicit solvation," Journal of Physical Chemistry B, vol 112, pp 6878-6886, Jun 2008 [254] M K Robinson, J I Monroe, and M S Shell, "Are AMBER Force Fields and Implicit Solvation Models Additive? A Folding Study with a Balanced Peptide Test Set," Journal of Chemical Theory and Computation, vol 12, pp 5631-5642, Nov 2016 [255] I Maffucci and A Contini, "An Updated Test of AMBER Force Fields and Implicit Solvent Models in Predicting the Secondary Structure of Helical, beta-Hairpin, and Intrinsically Disordered Peptides," Journal of Chemical Theory and Computation, vol 12, pp 714-727, Feb 2016 [256] P A Kollman, "Advances and continuing challenges in achieving realistic and predictive simulations of the properties of organic and biological molecules," Accounts of Chemical Research, vol 29, pp 461-469, Oct 1996 [257] S Kim, T.-J Jeon, A Oberai, D Yang, J J Schmidt, and J U Bowie, "Transmembrane glycine zippers: physiological and pathological roles in membrane proteins," Proceedings of the National Academy of Sciences, vol 102, pp 14278-14283, 2005 [258] C N Pace and J M Scholtz, "A helix propensity scale based on experimental studies of peptides and proteins," Biophysical journal, vol 75, pp 422-427, 1998 [259] M Källberg, G Margaryan, S Wang, J Ma, and J Xu, RaptorX server: A Resource for Template-Based Protein Structure Modeling vol 1137, 2014 [260] H L Chiang, C J Chen, H Okumura, and C K Hu, "Transformation between α‐helix and β‐sheet structures of one and two polyglutamine peptides in explicit water molecules 156 [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] by replica‐exchange molecular dynamics simulations," Journal of computational chemistry, vol 35, pp 1430-1437, 2014 Y Tachi, Y Okamoto, and H Okumura, "Conformational change of amyloid-β 40 in association with binding to GM1-glycan cluster," Scientific reports, vol 9, pp 1-11, 2019 R Tycko, "Molecular structure of aggregated amyloid-β: insights from solid-state nuclear magnetic resonance," Cold Spring Harbor perspectives in medicine, vol 6, p a024083, 2016 Y.-R Chen, H.-b Huang, C.-J Lo, C.-C Wang, L.-K Ho, H.-T Liu, et al., "Effect of Alanine Replacement of L17 and F19 on the Aggregation and Neurotoxicity of ArcticType Aβ40," PloS one, vol 8, p e61874, 2013 Y.-C Chen, "Impact of a discordant helix on β-amyloid structure, aggregation ability and toxicity," European Biophysics Journal, vol 46, pp 681-687, 2017 A Päiviö, E Nordling, Y Kallberg, J Thyberg, and J Johansson, "Stabilization of discordant helices in amyloid fibril‐forming proteins," Protein science, vol 13, pp 12511259, 2004 F Chiti and C M Dobson, "Protein misfolding, functional amyloid, and human disease," Annu Rev Biochem., vol 75, pp 333-366, 2006 S H Chong and S Ham, "Interaction with the surrounding water plays a key role in determining the aggregation propensity of proteins," Angewandte Chemie, vol 126, pp 4042-4045, 2014 W Kim and M H Hecht, "Generic hydrophobic residues are sufficient to promote aggregation of the Alzheimer's A beta 42 peptide," Proceedings of the National Academy of Sciences of the United States of America, vol 103, pp 15824-15829, Oct 2006 M A Wälti, F Ravotti, H Arai, C G Glabe, J S Wall, A Böckmann, et al., "Atomicresolution structure of a disease-relevant Aβ(1–42) amyloid fibril," Proceedings of the National Academy of Sciences, vol 113, pp E4976-E4984, 2016 A G Street and S L Mayo, "Intrinsic β-sheet propensities result from van der Waals interactions between side chains and the local backbone," Proceedings of the national academy of sciences, vol 96, pp 9074-9076, 1999 V Muñoz and L Serrano, "Elucidating the folding problem of helical peptides using empirical parameters," Nature structural biology, vol 1, pp 399-409, 1994 157 PHỤ LỤC 158 ...ĐẠI HỌC QUỐC GIA TP HCM TRƯỜNG ĐẠI HỌC BÁCH KHOA NGHIÊN CỨU ẢNH HƯỞNG CỦA ĐỘT BIẾN LÊN CẤU TRÚC VÀ ĐỘNG HỌC CỦA CHUỖI PEPTID AMYLOID BETA: HƯỚNG ĐẾN ỨC CHẾ BỆNH ALZHEIMER Chuyên... biết ảnh hưởng đột biến lên cấu trúc động học tích tụ lên chuỗi peptid Aβ để từ khảo sát độc tố loại đột biến lên bệnh Alzheimer, tiến hành nghiên cứu đột biến chuỗi phương pháp mô động lực học. .. quan bệnh Alzheimer bao gồm kiến thức protein, bệnh Alzheimer giả thuyết gây bệnh; cấu trúc Aβ dạng đột biến; yếu tố ảnh hưởng đến trình tạo sợi phương pháp ức chế AD thông qua nghiên cứu đột biến

Ngày đăng: 26/01/2021, 00:02

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w