1. Trang chủ
  2. » Giáo án - Bài giảng

tai lieu on thi hsg lop 7 new

3 504 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 75 KB

Nội dung

BÀI TẬP HÌNH HỌC – BDHSG 8 (Ôn tập) 1/ Cho tam giác nhọn ABC với ba đường cao AD, BE, CF. Gọi H là trực tâm của ABC∆ . CMR: . . HD HE HF DB EC FA AD BE CF DC EA FB + + = . 2/ Cho tam giác ABC có ba góc nhọn (AB< AC). Gọi BD là đường phân giác trong của tam giác ABC, dựng đường trung trực của đoạn BD cắt đường thẳng AC tại M. a) CMR: Hai tam giác MAB và MBC đồng dạng. b) Cho AD = 4cm và DC = 6cm. Tính MD. 3/ Cho ∆ ABC có 3 góc nhọn, Đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy M và N sao cho · · 0 90AMC ANB= = . CMR: a) Các tam giác ABD và ACE đồng dạng. b) b) Tam giác AMN cân. 4/ Từ điểm D trên cạnh huyền BC của tam giác vuông ABC, vẽ DE vuông góc với AB tai E và DF vuông góc với AC tại F. CMR: a) BE 2 + ED 2 + DC 2 = BD 2 + DF 2 + FC 2 . b) b) DB.DC = AE.BE + AF.CF. 5/ Gọi M, N lần lượt là trung điểm các cạnh BC và CD của tứ giác lồi ABCD. CMR: ( ) 2 1 2 ABCD S AM AN≤ + . 6/ Cho hình bình hành ABCD (AC > BD). Vẽ CE vuông góc với AB và CF vuông góc với AD. CMR: AB.AE + AD.AF = AC 2 . 7/ Cho hình vuông ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của CB lấy điểm F sao cho AE = CF. a) CMR: Tam giác DEF vuông cân. b) Gọi O là giao điểm hai đường chéo AC và BD, gọi I là trung điểm EF. CMR: O, C, I thẳng hàng. 8/ Cho hình thoi ABCD có góc B tù. Kẻ BM, BN lần lượt vuông góc các cạnh AD và CD tại M và N. Biết rằng 1 2 MN DB = , tính các góc của hình thoi ABCD. 9/ Cho tam giác ABC, đường phân giác trong của C cắt cạnh AB tại D. CMR: 2 .CD CA CB〈 . 10/ Cho hình vuông ABCD có độ dài cạnh bằng 1. Trên các cạnh AB, AD lần lượt lấy các điểm M, N sao cho chu vi của tam giác AMN bằng 2. Tính · MCN . 11/ Cho tam giác ABC cân tại A có góc ở đỉnh bằng 20 0 ; cạnh đáy là a, cạnh bên là b. CMR: a 3 + b 3 = 3ab 2 . 12/ Cho hình vuông ABCD có độ dài cạnh là a. Gọi M, N lần lượt là trung điểm của AB, BC. Các đường thẳng DN và CM cắt nhau tại I. a) C/m: tam giác CIN vuông. b) Tính diện tích tam giác CIN theo a. c) C/m: tam giác AID cân. 13/ Cho hình vuông ABCD. Trên cạnh CD lấy một điểm M bất kỳ. Các tia phân giác của các góc BAM và DAM lần lượt cắt cạnh BC tại E và CD tại F. C/m: AM vuông góc EF. 14/ Cho tam giác ABC có µ 0 30A = . Dựng bên ngoài tam giác đều BCD. C/m: AD 2 = AB 2 + AC 2 . 15/ Cho tam giác ABC (BC< AB). Từ C vẽ đường vuông góc với phân giác BE tại F và cắt AB tại K, vẽ trung tuyến BD cắt CK tại G. C/m : DF đi qua trung điểm của GE. 16/ Trong tất cả các hình chữ nhật có chiều dài đường chéo không đổi là d. Hãy tìm hình có diện tích lớn nhất? 17/ Cho a, b, c là độ dài các cạnh của một tam giác và x, y, z là độ dài các đường phân giác của tam giác đó CMR: 1 1 1 1 1 1 x y z a b c + + 〉 + + . 18/ Cho hình chữ nhật ABCD, kẻ BH vuông góc với AC tại H. Gọi M và K lần lượt là trung điểm của AH và CD. C/m: BM vuông góc MK. 19/ CMR: Trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất. 20/ Cho tam giác ABC vuông tại A. Từ một điểm M trong tam giác ta kẻ , ,MI BC MJ CA MK AB⊥ ⊥ ⊥ .Tìm vị trí của M sao cho tổng MI 2 + MJ 2 + MK 2 nhỏ nhất. 21/ Cho hình bình hành ABCD. Gọi E và F là trung điểm của BC và CD. Đường chéo BD cắt AE và AF tại M và N. Tính S BNFC theo diện tích của hình bình hành đã cho.(S ABCD = a 2 ). 22/ Cho tam giác ABC. Về phía ngoài tam giác dựng các hình vuông ABDE và ACFG. Gọi H, I, K theo thứ tự là trung điểm của EB, BC, CG. C/m rằng: Tam giác IHK vuông. 23/ Trên các cạnh kéo dài của tam giác ABC ta lấy các đoạn AA’ = AB, BB’ = BC, CC’ = CA. CMR: Các tam giác ABC và A’B’C’có trọng tâm trùng nhau. 24/ Cho tam giác ABC. Một đường thẳng đi qua trọng tâm G của tam giác cắt cạnh BC kéo dài về phía C và các cạnh CA, AB theo thứ tự A 1 , B 1 , C 1 . C/m rằng: 1 1 1 1 1 1 GA GB GC + = . 25/ Cho hình thang ABCD (AB // CD), điểm M nằm trong tứ giác ABCD, vẽ các hình bình hành MDPA, MCQB. C/m rằng PQ // CD. ĐỀ THI HỌC SINH GIỎI TOÁN Bài 1 (4 đ) Cho phương trình: a) Định m để pt có hai nghiệm đều âm. b) Định m để đạt giá trị nhỏ nhất. Bài 2: (4 đ) a) Cho . Chứng minh rằng: b) Cho . Chứng minh rằng: Bài 3: ( 4 đ) Giải các phương trình sau: a) b) c) Câu 4: (2 đ) Chứng minh rằng với mọi số tự nhiên n thì không chia hết cho 9. Câu 5: ( 4đ) Cho tam giác ABC nội tiếp đường tròn (O; R), H là trực tâm của tam giác ABC. a) Xác định M trên cung BC không chứa A sao cho BHCM là hình bình hành. b) Lấy M bất kì trên cung BC không chứa A. Lấy N, E lần lượt là điểm đối xứng của M qua AB, AC. Chứng minh N, H, E thẳng hàng. Câu 6: ( 2đ) Cho tứ giác ABCD có giao điểm hai đường chéo là O. Cho biết . Tính giá trị nhỏ nhất của diện tích tứ giác ABCD. Tìm các số nguyên x sao cho chia hết cho Chứng minh rằng trong các số tự nhiên thế nào cũng có số k sao cho chia hết cho chia hết cho 44 Chứng minh: chia hết cho 7 Tìm số dư của phép chia cho 21. . trung điểm của GE. 16/ Trong tất cả các hình chữ nhật có chiều dài đường chéo không đổi là d. Hãy tìm hình có diện tích lớn nhất? 17/ Cho a, b, c là độ dài. hình thang ABCD (AB // CD), điểm M nằm trong tứ giác ABCD, vẽ các hình bình hành MDPA, MCQB. C/m rằng PQ // CD. ĐỀ THI HỌC SINH GIỎI TOÁN Bài 1 (4 đ) Cho

Ngày đăng: 28/10/2013, 23:11

TỪ KHÓA LIÊN QUAN

w