1. Trang chủ
  2. » Giáo án - Bài giảng

Tài liệu ôn thi HSG Tin học 7

8 952 15
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 172 KB

Nội dung

Tài liệu 11 Chuyên Tin Hà Tây Phần 3 Cây - CÂy khung ngắn nhất I / Định nghĩa : Cây là đồ thị hữu hạn , vô hớng , liên thông , không có chu trình , có ít nhất 2 đỉnh . II / Tính chất : 1 - Định lý 1 : Nếu H là cây có N đỉnh thì H có các tính chất sau đây : a) Thêm vào H một cạnh nối 2 đỉnh bất kỳ không kề nhau , H sẽ xuất hiện chu trình . b) Bớt đi 1 cạnh trong H thì H không liên thông c) Giữa 2 đỉnh bất kỳ của H luôn tồn tại 1 đờng đi duy nhất ( vậy H là đồ thị đơn) d) H có N-1 cạnh 2 - Định lý 2 : Nêú đồ thị G liên thông có N đỉnh và N-1 cạnh thì G là cây . Vậy cây là đồ thị liên thông có chu số bằng 0 ( suy từ công thức Ơle ) 3 - Ghi chú : Từ 1 đồ thị có thể hình thành nhiều cây khác nhau ( gọi là các cây khung của đồ thị ) . Trong số các cây khung của đồ thị , có 1 cây đợc tạo ra một cách đơn giản nh sau : nối 1 đỉnh với n-1 đỉnh còn lại ! Số cây khung của 1 đồ thị đầy đủ là N n-2 ( N số đỉnh ) Số cây khung của một đồ thị có hữu hạn đỉnh là một số hữu hạn ,nên luôn tìm đợc ít nhất 1 cây khung có tổng độ dài nhỏ nhất ( nguyên lý biên ). Ta gọi cây khung này là cây khung ngắn nhất . Bài toán tìm cây khung ngắn nhất là một bài toán gặp trong thực tế : Thí dụ : Xây dựng mạng dây điện thoại nối N thành phố sao cho 2 thành phố bất kỳ liên lạc đợc với nhau và tổng đờng dây điện ngắn nhất .Đó là bài toán tìm cây khung ngắn nhất . Ngợc lại : Xây dựng mạng dây điện thoại nối N thành phố sao cho 2 thành phố bất kỳ liên lạc đợc với nhau và tổng độ tin cậy trên các đờng dây điện là lớn nhất .Đó là bài toán tìm cây khung dài nhất . III / Thuật toán Prim tìm cây khung nhỏ nhất : B ớc 1 : Khởi trị - Lấy 1 đỉnh i tuỳ ý đa vào tập đỉnh của cây . Khi đó tập đỉnh của cây là Đ = {i }. Tập cạnh của cây là C = ( Tập rỗng ) B ớc 2 : Gán nhãn - Với mỗi đỉnh k không thuộc Đ , ta gán cho nó nhãn k(i ,d ) trong đó i là tên đỉnh thuộc Đ ,kề với k , gần k nhất , còn d là khoảng cách giữa i và k . Nếu trong Đ không tìm đợc đỉnh i kề với k thì gán cho k nhãn k( 0 , ) . _____________________________ Phần 3 : Cây - Cây khung ngắn nhất TDH 9/2/2013 9/2/2013 58 Tài liệu 11 Chuyên Tin Hà Tây B ớc 3 : Kết nap - Chọn đỉnh k không thuộc tập Đ , có nhãn d nhỏ nhất , kết nạp k vào Đ .Vậy Đ = Đ + { k } . Nhãn của k là k( i ,d ) thì kết nạp cạnh ( i , k ) vào tập cạnh C . Vậy C = C + { cạnh ( i , k ) } . Gọi đỉnh k vừa kết nạp là i 0 . Nếu số đỉnh của Đ bằng N thì kết thúc , còn không chuyển sang bớc 4 B ớc 4 : Sửa nhãn - Với mọi đỉnh k cha thuộc Đ có nhãn là k( i, d ) mà k kề với i 0 - là đỉnh vừa đợc kết nạp vào tập đỉnh ở bớc 3 - ta sửa lại nhãn của k theo nguyên tắc sau : Gọi độ dài cung (i 0 ,k ) là e Nếu d > e thì đỉnh k có nhãn mới là k( i 0 , e ) Procedure Prim(w,n,s) {v(i)=1 nếu đỉnh i đợc nạp vào cây , v(i)=0 nếu đỉnh i cha đợc nạp vào mst } begin for i:=1 to n do v(i) := 0 v(s) := 1 { đánh dấu đã nạp đỉnh s vào mst } E := { ban đầu tập cạnh của mst là rỗng } for i:=1 to n-1 do { lần lợt đặt n-1 cạnh vào mst } begin min := for j := 1 to n do if v(j) =1 then { j là đỉnh thuộc mst } for k:= 1 to n do if v(k)=0 and w(j,k)<min then _____________________________ Phần 3 : Cây - Cây khung ngắn nhất TDH 9/2/2013 9/2/2013 i e=15 i 0 Nhãn mới k (i 0 ,15) +) i 0 : vừa kết nạp vào Đ , k : không thuộc Đ 59 i 0 (i 0 ,10) k (i,23) Tµi liÖu 11 Chuyªn Tin Hµ T©y begin luuk := k e := (j,k) min := w(j,k) end v(luuk) := 1 E := E U {e} end return(E) end ThÝ dô : File d÷ liÖu vµo : PRIM.INT 6 0 16 3 12 0 0 16 0 12 0 7 0 3 12 0 13 16 10 12 0 13 0 0 5 0 7 16 0 0 16 0 0 10 5 16 0 File d÷ liÖu ra : PRIM.OUT ( 1, 3)= 3 ( 3, 6)= 10 ( 6, 4)= 5 ( 3, 2)= 12 ( 2, 5)= 7 Tong gia tri cay khung ngan nhat la 37 Uses Crt; Const Fi = 'prim.txt'; Fo = 'prim.out'; Max = 200; Var A : Array[1 Max,1 Max] of Byte; D : Array[1 Max] of Boolean; C : Array[0 Max] of record x1,x2 : Byte; end; Nh : Array[1 Max] of record truoc,giatri : Byte; end; N,dd,socanh : Byte; {canh : Integer;} {--------------------------------} Procedure DocF; Var f : Text; i,j : Byte; _____________________________ PhÇn 3 : C©y - C©y khung ng¾n nhÊt TDH 9/2/2013 9/2/2013 12 16 3 13 5 12 10 16 7 16 60 1 4 3 2 5 6 Tµi liÖu 11 Chuyªn Tin Hµ T©y Begin Assign(f,fi); Reset(f); Readln(f,n); For i:=1 to n do Begin For j:=1 to n do read(f,a[i,j]); Readln(f); End; Close(f); End; {--------------------------------} Procedure Napdinh1; Begin Fillchar(d,sizeof(d),False); d[1] := True; dd := 1; End; {--------------------------------} Function Min(xj : Byte): Byte; Var xi,p,i : Byte; Begin xi := 0; p := 255; For i:=1 to N do If d[i] then If (p>a[i,xj]) and (a[i,xj]>0) then Begin xi := i; p := a[i,xj]; End; Min := xi; End; {--------------------------------} Procedure Gannhan; Var xi,xj : Byte; Begin For xj:=1 to N do If not d[xj] then Begin xi := Min(xj); If (xi>0) and (A[xi,xj]>0) then Begin nh[xj].truoc := xi; nh[xj].giatri:= A[xi,xj]; End Else If xi=0 then Begin nh[xj].truoc := 0; nh[xj].giatri:= 255; _____________________________ PhÇn 3 : C©y - C©y khung ng¾n nhÊt TDH 9/2/2013 9/2/2013 61 Tµi liÖu 11 Chuyªn Tin Hµ T©y End; End; End; {--------------------------------} Procedure Ketnapthem; Var p,j,xj : Byte; Begin p := 255; For j:=1 to n do If not d[j] then Begin If (nh[j].giatri<p) then Begin xj := j; p := nh[j].giatri; End; End; d[xj] := True; Inc(socanh); c[socanh].x1 := nh[xj].truoc; c[socanh].x2 := xj; dd := xj; End; {--------------------------------} Procedure Suanhan; Var xj : Byte; Begin For xj:=1 to N do If (not D[xj]) and (A[xj,dd]>0) then Begin If Nh[xj].giatri>A[xj,dd] then Begin Nh[xj].truoc := dd; Nh[xj].giatri:= A[xj,dd]; End; End; End; {--------------------------------} Procedure Hiencanh; Var i,p : Byte;f : Text; Begin Assign(f,fo); Rewrite(f);p:=0; For i:=1 to n-1 do Begin p := A[c[i].x1,c[i].x2]+p; Write(f,'(',c[i].x1:2,',',c[i].x2:2,')=',A[c[i].x1,c[i].x2]:3,' ':3); End; Writeln(f); _____________________________ PhÇn 3 : C©y - C©y khung ng¾n nhÊt TDH 9/2/2013 9/2/2013 62 Tµi liÖu 11 Chuyªn Tin Hµ T©y Writeln(f,'Tong gia tri cay khung ngan nhat la ',p); Close(f); End; {--------------------------------} Procedure TT_Prim; Var Ok : Boolean; Begin SoCanh := 0; Fillchar(nh,sizeof(nh),0); Napdinh1; Gannhan; Ok := False; Repeat Ketnapthem; If Socanh=N-1 then Ok:= True Else Suanhan; Until Ok; Hiencanh; End; {--------------------------------} BEGIN Clrscr; DocF; TT_Prim END. Ch¬ng tr×nh viÕt thu gän : uses crt; const max = 100; fi = 'prim.inp'; fo = 'prim.out'; type m1 = array[1 max,1 max] of integer; m2 = array[1 max] of 0 1; cung = record i,j : byte end; th = array[1 max] of cung; var w : m1; d : m2; e : th; n,s : byte; procedure docf; var f : text; i,j : byte; begin assign(f,fi); reset(f); read(f,n,s); for i:=1 to n do for j:=1 to n do w[i,j] := 1000; while not eof(f) do _____________________________ PhÇn 3 : C©y - C©y khung ng¾n nhÊt TDH 9/2/2013 9/2/2013 63 Tµi liÖu 11 Chuyªn Tin Hµ T©y begin read(f,i,j,w[i,j]); w[j,i] := w[i,j]; end; close(f); end; procedure hienf; var i,j : byte; begin for i:=1 to n do begin for j:=1 to n do write(w[i,j]:5); writeln; end; end; procedure prim; var i,j,k,lk : byte; c : cung; min : integer; begin for i:=1 to n do d[i] := 0; d[s] := 1; fillchar(e,sizeof(e),0); for i := 1 to n-1 do begin min := maxint; for j:=1 to n do if d[j] = 1 then for k:=1 to n do if (d[k]=0) and (w[j,k]<min) then begin lk := k; min := w[j,k]; c.i := j; c.j := k; end; e[i] := c; d[lk] := 1; end; end; procedure hiencay; var i : byte; begin for i:=1 to n-1 do write(e[i].i,'-',e[i].j,' '); end; BEGIN docf; clrscr; prim; _____________________________ PhÇn 3 : C©y - C©y khung ng¾n nhÊt TDH 9/2/2013 9/2/2013 64 Tµi liÖu 11 Chuyªn Tin Hµ T©y hiencay; END. _____________________________ PhÇn 3 : C©y - C©y khung ng¾n nhÊt TDH 9/2/2013 9/2/2013 65 . Tài liệu 11 Chuyên Tin Hà Tây Phần 3 Cây - CÂy khung ngắn nhất I / Định nghĩa : Cây là đồ thị hữu hạn , vô hớng , liên thông , không có chu. 2 đỉnh bất kỳ không kề nhau , H sẽ xuất hiện chu trình . b) Bớt đi 1 cạnh trong H thì H không liên thông c) Giữa 2 đỉnh bất kỳ của H luôn tồn tại 1 đờng

Ngày đăng: 02/09/2013, 23:10

TỪ KHÓA LIÊN QUAN

w