1. Trang chủ
  2. » Khoa Học Tự Nhiên

Phần 1 :Phương trình lượng giác cơ bản

16 1,1K 4
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 289,52 KB

Nội dung

Chương 2: PHƯƠNG TRÌNH LƯ N G GIÁ C CƠ BAÛ N ⎡ u = v + k2π sin u = sin v ⇔ ⎢ ⎣ u = π − v + k2π cos u = cos v ⇔ u = ± v + k2π π ⎧ ⎪u ≠ + kπ tgu = tgv ⇔ ⎨ ⎪u = v + k ' π ⎩ ⎧u ≠ kπ cot gu = cot gv ⇔ ⎨ ⎩u = v + k ' π Đặ c biệ t : sin u = ⇔ u = kπ π + k2π ( k ∈ Z) π sin u = −1 ⇔ u = − + k2π Chú ý : sin u ≠ ⇔ cos u ≠ ±1 cos u ≠ ⇔ sin u ≠ ±1 sin u = ⇔ u = ( k, k ' ∈ Z ) cos u = ⇔ u = π + kπ cos u = ⇔ u = k2π ( k ∈ Z ) cos u = −1 ⇔ u = π + k2π Bà i 28 : (Đề thi tuyể n sinh Đạ i họ c khố i D, nă m 2002) Tìm x ∈ [ 0,14 ] nghiệ m đú ng phương trình cos 3x − cos 2x + cos x − = ( * ) Ta coù (*) : ⇔ ( cos3 x − cos x ) − ( cos2 x − 1) + cos x − = ⇔ cos3 x − cos2 x = ⇔ cos2 x ( cos x − ) = ⇔ cos x = hay cos x = ( loại cos x ≤ 1) ⇔ x= π + kπ ( k ∈ Z ) π + kπ ≤ 14 π π 14 − ≈ 3, ⇔ − ≤ kπ ≤ 14 − ⇔ −0, = − ≤ k ≤ 2 π ⎧ π 3π 5π 7π ⎫ Mà k ∈ Z nê n k ∈ {0,1, 2, 3} Do : x ∈ ⎨ , , , ⎬ ⎩2 2 ⎭ Ta coù : x ∈ [ 0,14] ⇔ ≤ Bà i 29 : (Đề thi tuyể n sinh Đạ i họ c khố i D, nă m 2004) Giả i phương trình : ( cos x − 1)( sin x + cos x ) = sin 2x − sin x ( *) Ta coù (*) ⇔ ( cos x − 1)( sin x + cos x ) = sin x ( cos x − 1) ⇔ ( cos x − 1) ⎡( sin x + cos x ) − sin x ⎤ = ⎣ ⎦ ⇔ ( cos x − 1)( sin x + cos x ) = ∨ sin x = − cos x π ⎛ π⎞ ⇔ cos x = cos ∨ tgx = −1 = tg ⎜ − ⎟ ⎝ 4⎠ π π ⇔ x = ± + k2π ∨ x = − + kπ, ( k ∈ Z ) ⇔ cos x = Bà i 30 : Giả i phương trình cos x + cos 2x + cos 3x + cos 4x = (*) Ta coù (*) ⇔ ( cos x + cos 4x ) + ( cos 2x + cos 3x ) = 5x 3x 5x x cos + cos cos = 2 2 5x ⎛ 3x x⎞ cos + cos ⎟ = ⎜ cos ⎝ 2⎠ 5x x cos cos x cos = 2 5x x = ∨ cos x = ∨ cos = cos 2 5x π π x π = + kπ ∨ x = + kπ ∨ = + kπ 2 2 π 2kπ π x= + ∨ x = + kπ ∨ x = π + 2π, ( k ∈ Z ) 5 ⇔ cos ⇔ ⇔ ⇔ ⇔ ⇔ Baø i 31: Giải phương trình sin x + sin 3x = cos2 2x + cos2 4x ( * ) 1 1 (1 − cos 2x ) + (1 − cos 6x ) = (1 + cos 4x ) + (1 + cos 8x ) 2 2 ⇔ − ( cos 2x + cos 6x ) = cos 4x + cos 8x Ta coù (*) ⇔ ⇔ −2 cos 4x cos 2x = cos 6x cos 2x ⇔ cos 2x ( cos 6x + cos 4x ) = ⇔ cos 2x cos 5x cos x = ⇔ cos 2x = ∨ cos 5x = ∨ cos x = π π π ⇔ 2x = + kπ ∨ 5x + kπ ∨ x = + kπ, k ∈ 2 π kπ π kπ π ∨x= + ∨ x = + kπ , k ∈ ⇔ x= + 10 Baø i 32 : Cho phương trình ⎛π x⎞ sin x.cos 4x − sin 2x = sin ⎜ − ⎟ − ( *) ⎝4 2⎠ Tìm cá c nghiệ m củ a phương trình thỏ a : x − < ⎡ π ⎤ (1 − cos 4x ) = ⎢1 − cos ⎛ − x ⎞ ⎥ − ⎜ ⎟ ⎝2 ⎠⎦ ⎣ 1 sin x cos 4x − + cos 4x = − − 2sin x 2 sin x cos 4x + cos 4x + + 2sin x = 1⎞ 1⎞ ⎛ ⎛ cos 4x ⎜ sin x + ⎟ + ⎜ sin x + ⎟ = 2⎠ 2⎠ ⎝ ⎝ 1⎞ ⎛ ( cos 4x + 2) ⎜ sin x + ⎟ = 2⎠ ⎝ π ⎡ ⎡cos 4x = −2 ( loaïi ) ⎢ x = − + k 2π ⎢ ⎢sin x = − = sin ⎛ − π ⎞ ⇔ ⎢ ⎢ x = 7π + 2hπ ⎜ ⎟ ⎢ ⎝ 6⎠ ⎣ ⎢ ⎣ coù : x − < ⇔ −3 < x − < ⇔ −2 < x < Ta coù : (*)⇔ sin x.cos 4x − ⇔ ⇔ ⇔ ⇔ ⇔ Ta π + k2π < π π 1 −

Ngày đăng: 24/10/2013, 00:15

TỪ KHÓA LIÊN QUAN

w