Với mục đích thay đổi hình thức của bài toán đại số thông thường thành bài toán sử dụng tọa độ hình học để giải. Phương pháp này tuy không phải là chiếc chìa khoá vạn năng để có thể giải được cho mọi bài toán về chứng minh bất đẳng thức, giải phương trình và bất phương trình đại số và chưa chắc phương pháp này đã là phương pháp thích hợp nhất nhưng nó lại có nét lý thú và độc đáo riêng của nó, giúp học sinh thấy được sự liên hệ mật thiết, qua lại giữa các phân môn của môn Toán với nhau.
1 MỤC LỤC Tiêu đề A. MỞ ĐẦU………………….…………………………………… B. NỘI DUNH SÁNG KIẾN KINH NGHIỆM…………………… I. THỰC TRẠNG……………………………………………… II. CƠ SỞ LÝ LUẬN……………………………… III. BÀI TỐN MINH HỌA…………………………………… 1. Một số bài tốn về bất đẳng thức, chứng minh… ……… 2. Một số bài tốn về phương trình………………………… 3. Một số bài tốn về bất phương trình ……… …………… 4. Một số bài tập tương tự………………… ……………… IV. KIỂM NGHIỆM…………………………………………… C. KẾT LUẬN, KIẾN NGHỊ ……………………………………… D. TÀI LIỆU THAM KHẢO……………………………………… Trang 4 6 10 14 16 17 18 19 2 A MỞ ĐẦU Hiện nay, chúng ta đang tiến hành đổi mới giáo dục phổ thơng. Mục tiêu của các cấp học đều hướng đến việc hình thành năng lực nhận thức, năng lực hành động, năng lực giải quyết vấn đề, năng lực thích ứng cho học sinh, phát huy tính tích cực, chủ động, độc lập sáng tạo trong nhận thức của người học, bồi dưỡng năng lực tự học, gắn học với hành, tác động đến tình cảm đem lại niềm vui hứng thú học tập cho học sinh Trong mơn Tốn ở trường phổ thơng các bài tốn về chứng minh bất đẳng thức, giải phương trình và bất phương trình đại số ngày càng được quan tâm đúng mức và có sức hấp dẫn mạnh mẽ nhờ vào vẻ đẹp, tính độc đáo của các phương pháp giải chúng. Bài tập về bất đẳng thức, phương trình và bất phương trình đại số rất phong phú và đa dạng cả về nội dung và phương pháp giải. Để chứng minh bất đẳng thức, giải phương trình và bất phương trình đại số có thể xuất phát từ nhiều kiến thức khác nhau và giải bằng nhiều phương pháp khác nhau, trong đó có phương pháp sử dụng tọa độ trong hình học để chứng minh bất đẳng thức, giải phương trình và bất phương trình đại số. Với mục đích thay đổi hình thức của bài tốn đại số thơng thường thành bài tốn sử dụng tọa độ hình học để giải. Phương pháp này tuy khơng phải là chiếc chìa khố vạn năng để có thể giải được cho mọi bài tốn về chứng minh bất đẳng thức, giải phương trình và bất phương trình đại số và chưa chắc phương pháp này đã là phương pháp thích hợp nhất nhưng nó lại có nét lý thú và độc đáo riêng của nó, giúp học sinh thấy được sự liên hệ mật thiết, qua lại giữa các phân mơn của mơn Tốn với nhau. Đó là nội dung mà tơi muốn đề cập đến trong phạm vi 3 của sáng kiến kinh nghiệm này: “Hướng dẫn học sinh sử dụng tọa độ trong hình học phẳng để chứng minh một số bất đẳng thức, giải một số phương trình và bất phương trình đại số nhằm nâng cao chất lượng đối với học sinh lớp 10 ở trường THPT” B. NỘI DUNG SÁNG KIẾN KINH NGHIỆM I. THỰC TRẠNG Trong năm học 20152016 tơi được phân cơng giảng dạy bộ mơn Tốn ở lớp 10A6, 10A7 trường THPT Nơng Cống 3. Tơi nhận thấy: Hầu hết học sinh rất ngại khi gặp các bài tốn chứng minh bất đẳng thức, giải phương trình hoặc bất phương trình đại số. Có rất ít học sinh có khả năng giải quyết được các bài tốn này, đa số các em khơng thể tự nhìn ra hướng giải quyết bài tốn. Qua kết khảo sát lớp 10A6, 10A7 trường THPT Nông cống 3, thu được kết quả như sau: Lớp 10A6 10A7 Điểm Giỏi SL 1/45 1/47 Điểm Khá tỷ lệ 2,2% 2,1% ĐiểmT Điểm B Yếu SL tỷ lệ 4/45 8,9% 6/47 12,8% Điểm Kém SL 14/45 18/47 tỷ lệ 31,1% 38,3% SL 19/45 17/47 tỷ lệ 42,2% 36,2% SL 7/45 5/47 tỷ lệ 15,6% 10,6% Với mong muốn góp phần nâng cao chất lượng dạy học mơn Tốn ở nhà trường THPT và giúp học sinh đạt kết quả cao trong các kì thi tơi chọn đề tài: “Hướng dẫn học sinh sử dụng tọa độ trong hình học phẳng để chứng minh 4 một số bất đẳng thức, giải một số phương trình và bất phương trình đại số nhằm nâng cao chất lượng đối với học sinh lớp 10 ở trường THPT” Nhằm đơn giản các bài tốn đại số, khắc sâu kiến thức cơ bản về hình học và hình thành kỹ năng giải bài tốn về chứng minh bất đẳng thức, giải phương trình và bất phương trình II. CƠ SỞ LÝ LUẬN 1. Kiến thức cơ bản Khi sử dụng phương pháp tọa độ trong hình học phẳng để chứng minh một số bất đẳng thức và giải một số phương trình và bất phương trình đại số các em học sinh cần ơn lại các kiến thức về khoảng cách giữa hai điểm, bất đẳng thức tam giác, bất đẳng thức véc tơ (SGK hình học 10 và sách giáo viên hình học 10) để có thể nhanh chóng nhận dạng và tiếp cận đượ c với phươ ng pháp này. Bất đẳng thức tam giác: Cho tam giác ABC có độ dài các cạnh BC, CA, AB tương ứng là a, b, c. Ta ln có: + |b – c| 0. Chứng minh: Giải. Xét 2 véc tơ Khi đó: Mà (đpcm) Dấu “=” xảy ra khi cùng hướng Hoặc: Áp dụng bất đẳng thức Bunhiacôpxki (Bất đẳng thức (*) ) cho 4 số , ta có: (đpcm) Bài tốn 3. Chứng minh bất đẳng thức sau: Giải. Biến đổi bất đẳng thức Xét tọa độ 3 điểm A(x; 0), B(2; 3), C(3; 1). Ta có: Ta ln có: Dấu “=” xảy ra khi ngược hướng, tức là (2 – x).1 = (3 – x).(–3) Bài tốn 4. Chứng minh rằng với mọi x ta có: Giải. Biến đổi bất đẳng thức: 7 Xét các điểm Ta có: Sử dụng bất đẳng thức suy ra: Dấu “=” xảy ra khi cùng phương, tức là (vơ lí) Do đó dấu “=” khơng xảy ra. Vậy (đpcm) Bài tốn 5. Chứng minh ta ln có: Giải. Tập xác định Xét hai véc tơ: Khi đó: Mà Dấu “=” trong xảy ra khi ngược hướng, Dấu “=” trong xảy ra khi cùng hướng cùng phương, tức là (khơng xảy ra) Hay Do đó dấu “=” khơng xảy ra. Vậy (đpcm) 2. Một số bài tốn về phương trình: Bài tốn 1.Giải phương trình: Giải. Tập xác định Biến đổi phương trình về dạng: Xét 3 điểm 8 Khi đó: Ta ln có: Dấu “=” xảy ra khi ngược hướng, tức là Từ đó suy ra, phương trình có nghiệm Bài tốn 2. Giải phương trình: Giải. Tập xác định Phương trình biến đổi về dạng: Xét 3 điểm . Khi đó: Ta ln có: Dấu “=” xảy ra khi cùng hướng, tức là Từ đó suy ra, phương trình có nghiệm Bài tốn 3. Giải phương trình: Giải. Tập xác định Biến đổi phương trình Xét các véc tơ: Khi đó: Mặt khác: Dấu “=” xảy ra khi cùng hướng, tức là Từ đó suy ra, phương trình có nghiệm Bài tốn 4. Giải phương trình: 9 Giải. Tập xác định Biến đổi phương trình Xét các véc tơ: Khi đó: Mặt khác: Dấu “=” xảy ra khi cùng hướng, tức là Từ đó suy ra, phương trình có nghiệm Bài tốn 5. Giải phương trình: Giải. Tập xác định Biến đổi phương trình Xét các véc tơ: Khi đó: Mặt khác, Dấu “=” xảy ra khi cùng hướng, tức là Từ đó suy ra, phương trình có nghiệm Bài tốn 6. Tìm tập nghiệm của phương trình: Giải. Tập xác định Biến đổi phương trình Xét các véc tơ: Khi đó: Mặt khác: 10 Dấu “=” xảy ra khi cùng hướng, tức là: (*) Từ đó, suy ra điều kiện là: Suy ra: (*) Vậy tập nghiệm của phương trình là những cặp (x; y) thỏa mãn với Phương pháp này có thể sử dụng để biến đổi một phương trình trong hệ phương trình đại số vể dạng đơn giản (như bài tốn 6 trên) để kết hợp với phương trình cịn lại và giải 3. Một số bài tốn về bất phương trình: Bài tốn 1. Giải bất phương trình (1) Giải. Tập xác định Bất phương trình (1) Xét các véc tơ: Khi đó, ta ln có: Suy ra: Vậy bất phương trình (1) có nghiệm với Bài tốn 2. Giải bất phương trình (1) Giải. Điều kiện: Bất phương trình (1) Xét các véc tơ: Ta ln có : Mà Từ (2) và (3) suy ra, bất phương trình (1) có nghiệm khi bất đẳng thức (3) xảy ra dấu “=” hay hai véc tơ cùng hướng, tức là Vậy bất phương trình (1) có nghiệm x = 5 11 Bài tốn 3. Giải bất phương trình: (1) Giải. Tập xác định Biến đổi bất phương trình thành: (2) Xét các véc tơ: Khi đó: Mặt khác: (3) Từ (2) và (3) suy ra bất phương trình (1) có nghiệm khi dấu “=” ở (3) xảy ra Dấu “=” xảy ra khi cùng hướng, tức là Vậy bất phương trình có nghiệm 4. Một số bài tập tương tự Bài 1. Chứng minh bất đẳng thức sau: Bài 2. Giải phương trình Bài 3. Giải phương trình Bài 4. Giải bất phương trình IV. KIỂM NGHIỆM * Khảo sát tại hai lớp học trong cùng thời điểm khi chưa vận dụng nội dung sáng kiến kinh nghiệm: Lớp 10A6 10A7 Điểm Giỏi SL 1/45 1/47 Điểm Khá tỷ lệ 2,2% 2,1% ĐiểmT Điểm B Yếu SL tỷ lệ 4/45 8,9% 6/47 12,8% Điểm Kém SL 14/45 18/47 tỷ lệ 31,1% 38,3% SL 19/45 17/47 tỷ lệ 42,2% 36,2% SL 7/45 5/47 tỷ lệ 15,6% 10,6% 12 * Qua thực tế giảng dạy tôi đã vận dụng cho các em học sinh lớp 10A6 tiếp xúc với phương pháp trên, tôi nhận thấy kết quả được nâng lên rõ rệt. Cụ thể sau khi cho học sinh tiếp cận phương pháp này tôi tiến hành khảo sát, kiểm tra tại hai lớp học trong cùng thời điểm khi vận dụng nội dung sáng kiến kinh nghiệm cho lớp 10A6 và thu được kết quả như sau: Điểm Điểm ĐiểmT Điểm Điểm Kém Gi ỏ i Khá B Y ế u Lớp SL tỷ lệ SL tỷ lệ SL tỷ lệ SL tỷ lệ SL tỷ lệ 10A6 6/45 13,3% 14/45 31,1% 20/45 44,4% 5/45 11,2% 0/45 0% 10A7 1/47 2,1% 8/47 17,0% 19/47 40,4% 17/47 36,2% 2/47 4,3% C. KẾT LUẬN, KIẾN NGHỊ Thơng qua một số bài tốn trên có thể thấy được vai trị của ứng dụng tọa độ trong hình học phẳng vào việc giải các bài tốn về chứng minh, bất đẳng thức, phương trình và hệ phương trình đại số. Tuy nhiên, khi sử dụng phương pháp này giáo viên cần phải cung cấp cho học sinh một số vốn kiến thức nhất định và kỹ năng nhận dạng bài tập. Phương pháp này cũng như mọi phương 13 pháp khác khơng thể áp dụng được cho tất cả các bài tốn về chứng minh, bất đẳng thức, phương trình và hệ phương trình đại số và chưa hẳn đây đã là một phương pháp tối ưu. Do vậy học sinh cần căn cứ vào đặc điểm của từng bài tốn, khai thác giả thiết đã cho và nhận dạng bài tập để lựa chọn phương pháp giải cho thích hợp, từ đó sẽ có cách nhìn linh hoạt, uyển chuyển và có sự nhuần nhuyễn về kỹ năng khi giải các bài tập về chứng minh, bất đẳng thức, phương trình và hệ phương trình đại số Qua thực tế giảng dạy tơi đã mạnh dạn vận dụng cho các em học sinh tiếp xúc với phương pháp trên tơi nhận thấy kết quả được nâng lên rõ rệt. Cụ thể đã được kiểm nghiệm tại lớp 10A6 năm học 2015 – 2016. Tơi thiết nghĩ, phương pháp này có thể mở rộng áp dụng vào giải một số hệ phương trình đại số Với những kinh nghiệm của bản thân, tơi mong rằng có thể giúp các đồng nghiệp làm tài liệu tham khảo và hy vọng các bạn đồng nghiệp có thể vận dụng một cách linh hoạt, sáng tạo để đem lại hiệu quả trong giảng dạy. Rất mong nhận được sự chia sẽ, đóng góp ý kiến để đề tài được hồn thiện hơn Đề tài trên chỉ là một kinh nghiệm nhỏ, kết quả của sự tìm tịi và nghiên cứu cá nhân, thơng qua một số tài liệu tham khảo nên khơng tránh khỏi những hạn chế, khiếm khuyết. Vậy rất mong được Hội đồng khoa học ngành, đồng nghiệp trong và ngồi nhà trường góp ý để nội dung của sang kiến kinh nghiệm này được hồn thiện và ứng dụng rộng rãi Tơi xin trân trọng cảm ơn ! Thanh Hóa, ngày 06 tháng 05 năm 2016 XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Tơi xin cam đoan đây là SKKN của mình viết, khơng sao chép nội dung của người khác 14 Nguyễn Thị Hiền TÀI LIỆU THAM KHẢO Bộ Giáo dục – Đào tạo, Sách giáo khoa Hình học 10,Hình học 10 nâng cao Nxb Giáo dục, 2006 Bộ Giáo dục – Đào tạo, Sách Hình học 10 (sách giáo viên), Hình học 10 nâng cao (sách giáo viên) Nxb Giáo dục, 2006 Bộ Giáo dục – Đào tạo, Tài liệu bồi dưỡng giáo viên mơn Tốn lớp 10; Nguyễn Trọng Tuấn, Rèn luyện giải tốn hình học 10, Nxb Giáo dục, 2008 Lê Văn Đồn, Chun đề phương trình, bất phương trình Đại số 15 ... của sáng kiến kinh nghiệm này: ? ?Hướng? ?dẫn? ?học? ?sinh? ?sử ? ?dụng? ?tọa? ?độ ? ?trong hình? ?học? ?phẳng? ?để? ?chứng? ?minh? ?một? ?số? ?bất? ?đẳng? ?thức,? ?giải? ?một? ?số? ?phương trình? ?và? ? ? ?bất? ?phương? ?trình? ?đại? ?số ? ?nhằm? ?nâng? ?cao? ?chất? ?lượng? ?đối? ?với? ?học. .. phương? ?pháp? ?giải? ?chúng. Bài tập về? ?bất? ?đẳng? ?thức,? ?phương? ?trình? ?và? ?? ?bất? ?phương? ? trình? ?đại? ?số? ?rất phong phú? ?và? ?đa dạng cả về nội dung? ?và? ?phương? ?pháp? ?giải. Để? ?chứng? ?minh? ?bất? ?đẳng? ?thức,? ?giải? ?phương? ?trình? ?và? ?? ?bất? ?phương? ?trình? ?đại? ?... thành kỹ năng? ?giải? ?bài tốn về? ?chứng? ?minh? ?bất? ?đẳng? ?thức,? ?giải? ?phương? ?trình? ?và? ? bất? ?phương? ?trình II. CƠ SỞ LÝ LUẬN 1. Kiến thức cơ bản Khi? ?sử ? ?dụng? ?phương? ?pháp? ?tọa? ?độ ? ?trong ? ?hình? ?học? ?phẳng? ?để ? ?chứng? ?minh? ? một? ?số ? ?bất? ?đẳng? ?thức? ?và? ?giải? ?một? ?số