Xác suất thống kê cơ bản
Chu’ ong ’ ˜’ ’ VE ´ NIE ˆ M CO’ BAN ˆ` XAC ´ SUAT ˆ´ NHUNG KHAI 1.1 ’ TUC ’ HO’ P ’ T´ICH TO ˆ ´ VE ˆ` GIAI ˆ BO ˘´c nhˆ Qui ta an Gia’ su’’ mˆo.t cˆong viˆe.c n`ao d¯o´ d¯u’o.’c chia th`anh k giai d¯oa.n C´o n1 c´ach thu.’c hiˆe.n giai d¯oa.n thu´’ nhˆa´t, n2 c´ach thu.’c hiˆe.n giai d¯oa.n thu´’ hai, ,nk c´ach thu.’c hiˆe.n giai d¯oa.n thu´’ k Khi d¯o´ ta c´o n = n1 n2 nk c´ach thu.’c hiˆe.n cˆong viˆe.c `’ kh´ac ’ d¯i qua d¯iˆe’m B C´o d¯u’ong • V´ı du Gia’ su’’ d¯ˆe’ d¯i tu`’ A d¯ˆe´n C ta ba˘´t buˆo.c phai ’ ’ `’ kh´ac d¯ˆe d¯i tu`’ B d¯ˆe´n C Vˆa.y c´o n = 3.2 c´ d¯ˆe d¯i tu`’ A d¯ˆe´n B v`a c´o d¯u’ong ach ’ ´ ` kh´ ac d¯ˆe d¯i tu’ A d¯ˆen C A 1.2 B C ’ Chinh ho.’p ’ ho.’p chˆa.p k cua ’ n phˆ ¯Di.nh nghi˜a Chinh a`n tu’’ (k ≤ n) l` a mˆo.t nh´om (bˆo.) c´o thu´’ tu.’ gˆ o`m k phˆa`n tu’’ kh´ac cho.n tu`’ n phˆ a`n tu’’ d¯a˜ cho ’ ho.’p chˆ ’ n phˆ Sˆ o´ chinh a.p k cua a`n tu’’ k´ı hiˆe.u l` a Akn ´’ t´ınh: Cˆ ong thuc Akn = n! = n(n − 1) (n − k + 1) (n − k)! `’ tham du.’ Hoi ’ c´o mˆ • V´ı du Mˆo.t buoˆ’i ho.p gˆo`m 12 ngu’oi a´y c´ach cho.n mˆo.t chu’ to.a v` a mˆo.t thu’ k´y? ’ Giai `’ 12 ngu’oi `’ tham du.’ buˆo’i ho.p l`a mˆo.t Mˆo˜i c´ach cho.n mˆo.t chu’ to.a v`a mˆo.t thu’ k´ y tu ’’ ’ ho.’p chˆa.p k cua ’ 12 phˆa`n tu chinh ˜’ ’ vˆ Chu’ong ’ Nhung kh´ niˆ e.m co’ ban e` x´ ac suˆ a´t Do d¯´o sˆo´ c´ach cho.n l`a A212 = 12.11 = 132 ´’ c´ac chu˜’ sˆo´ 0,1,2,3,4,5 c´o thˆe’ lˆa.p d¯u’o.’c bao nhiˆeu sˆ • V´ı du Voi o´ kh´ac gˆ o`m chu˜’ sˆ o´ ’ Giai ’ l`a sˆo´ gˆo`m chu˜’ sˆo´ C´ac sˆo´ ba˘´t d¯ˆa`u ba˘`ng chu˜’ sˆo´ (0123, 0234, ) khˆong phai ’ cho.n c´ac chu˜’ sˆo´ 1,2,3,4,5 Do d¯o´ c´o c´ach cho.n chu˜’ sˆo´ Chu˜’ sˆo´ d¯ˆa`u tiˆen phai d¯ˆa`u tiˆen Ba chu˜’ sˆo´ kˆe´ tiˆe´p c´o thˆe’ cho.n t` uy y ´ chu˜’ sˆo´ c`on la.i C´o A35 c´ach cho.n Vˆa.y sˆo´ c´ach cho.n l`a 5.A35 = 5.(5.4.3) = 300 1.3 ’ Chinh ho.’p l˘ a.p ’ ho.’p l˘ ’ n phˆ ¯Di.nh nghi˜a Chinh a.p chˆa.p k cua a`n tu’’ l`a mˆo.t nh´om c´o thu´’ tu.’ gˆ o`m k ’ o mˆ o˜i phˆ a`n tu’’ c´o thˆe c´o m˘ a.t 1,2, ,k lˆ a`n phˆ a`n tu’’ cho.n tu`’ n phˆa`n tu’’ d¯a˜ cho, d¯´ nh´ om ’ ho.’p l˘ ’ n phˆ Sˆ o´ chinh a.p ch˘ a.p k cua a`n tu’’ d¯u’o.’c k´ı hiˆe.u Bnk ´’ t´ınh Cˆ ong thuc Bnk = nk ’ c´ • V´ı du Xˆe´p cuˆo´n s´ach v`ao ng˘ an Hoi o bao nhiˆeu c´ach xˆe´p ? ’ Giai ’ ho.’p l˘ ’ (Mˆo˜i lˆa`n Mˆo˜i c´ach xˆe´p cuˆo´n s´ach v`ao ng˘ an l`a mˆo.t chinh a.p chˆa.p cua xˆe´p cuˆo´n s´ach v`ao ng˘ an xem nhu’ cho.n ng˘ an ng˘ an Do c´o cuˆo´n s´ach nˆen ´ ` viˆe.c cho.n ng˘ an d¯u’o.’c tiˆen h`anh lˆan) Vˆa.y sˆo´ c´ach xˆe´p l`a B35 = 35 = 243 1.4 Ho´ an vi ’ m phˆ ¯Di.nh nghi˜a Ho´an vi cua a`n tu’’ l`a mˆo.t nh´om c´o thu´’ tu.’ gˆ o`m d¯u’ m˘ a.t m phˆ a`n ’ tu’ d¯a˜ cho ’ m phˆa`n tu’’ d¯u’o.’c k´ı hiˆe.u l` Sˆ o´ ho´an vi cua a Pm ´’ t´ınh Cˆ ong thuc Pm = m! ’ c´ • V´ı du Mˆo.t b`an c´o ho.c sinh Hoi o mˆ a´y c´ach xˆe´p chˆ o˜ ngˆ o`i ? ’ Giai ’’ Do d¯´o sˆo´ ’ ho.c sinh o’’ mˆo.t b`an l`a mˆo.t ho´an vi cua ’ phˆa`n tu Mˆo˜i c´ach xˆe´p chˆo˜ cua c´ach xˆe´p l`a P4 = 4! = 24 ’ t´ıch tˆ Bˆ o’ t´ uc vˆ e` giai o’ hop ’ 1.5 Tˆ o’ ho.’p ’ n phˆ ¯Di.nh nghi˜a Tˆo’ ho.’p chˆa.p k cua a`n tu’’ (k ≤ n) l` a mˆo.t nh´om khˆong phˆan biˆe.t ´ ’ ’ ` ` ` ` thu’ tu.’, gˆom k phˆan tu’ kh´ac cho.n tu’ n phˆ an tu’ d¯a˜ cho ’ ´ ’ ` ’ n phˆan tu’ k´ı hiˆe.u l`a Cnk Sˆ o tˆo ho.’p chˆa.p k cua ´’ t´ınh Cˆ ong thuc Cnk = n! n(n − 1) (n − k + 1) = k!(n − k)! k! Ch´ uy ´ ´’ 0! = i) Qui u’oc k ii) Cn = Cnn−k k−1 k iii) Cnk = Cn−1 + Cn−1 ´’ Hoi ’ lˆ ’ cho tru’oc ’ c´o thˆe’ lˆa.p • V´ı du Mˆo˜i d¯ˆe` thi gˆo`m cˆau hoi a´y 25 cˆau hoi nˆen bao nhiˆeu d¯ˆe` thi kh´ac ? Sˆo´ d¯ˆe`thi c´o thˆe’ lˆa.p nˆen l`a C25 ’ Giai 25! 25.24.23 = = = 2.300 3!.(22)! 1.2.3 `’ d¯iˆe’m bˆ • V´ı du Mˆo.t m´ay t´ınh c´o 16 cˆ o’ng Gia’ su’’ ta.i mˆ o˜i thoi a´t k`y mˆ o˜i cˆ o’ng ho˘ a.c su’’ du.ng ho˘ a.c khˆong su’’ du.ng nhung o.ng ho˘ a.c khˆong thˆe’ hoa.t ’ c´o thˆe’ hoa.t d¯ˆ ’ ´ ’ c´o bao nhiˆeu cˆau h`ınh (c´ach cho.n) d¯´ d¯ˆ o.ng Hoi o 10 cˆ ong su’’ du.ng, khˆong su’’ du.ng nhung o.ng v` a khˆ ong hoa.t d¯ˆ o.ng? ’ c´o thˆe’ hoa.t d¯ˆ ’ Giai ’ ´’ ¯Dˆe x´ac d¯.inh sˆo´ c´ach cho.n ta qua bu’oc: 10 ´’ 1: Cho.n 10 cˆo’ng su’’ du.ng: c´o C16 Bu’ oc = 8008 c´ach ´’ 2: Cho.n cˆo’ng khˆong su’’ du.ng nhung Bu’ oc ’ c´o thˆe’ hoa.t d¯oˆ ng cˆo’ng c`on la.i: c´o C64 = 15 c´ach ´’ 3: Cho.n cˆo’ng khˆong thˆe’ hoa.t d¯ˆo.ng: c´o C22 = c´ach Bu’ oc 10 C64 C22 = (8008).(15).(1) = 120.120 c´ach Theo qui ta˘´c nhˆan, ta c´o C16 1.6 ´’ Newton Nhi thuc ´’ d¯´ang nho´’ O’’ phˆo’ thˆong ta d¯a˜ biˆe´t c´ac ha˘`ng d¯a˘’ ng thuc a + b = a + b1 (a + b)2 = a2 + 2a1 b1 + b2 (a + b)3 = a3 + 3a2 b1 + 3a1 b2 + b3 ´’ trˆen c´o thˆe’ x´ac d¯.inh tu `’ tam gi´ac Pascal C´ac hˆe sˆo´ c´ac ha˘`ng d¯a˘’ ng thuc ˜’ ’ vˆ Chu’ong ’ Nhung kh´ niˆ e.m co’ ban e` x´ ac suˆ a´t 1 1 Cn0 Cn1 Cn2 Cn3 Cn4 Cnn−1 Cnn ´’ minh d¯u’o.’c cˆong thuc ´’ tˆo’ng qu´at sau (Nhi thuc ´’ Newton): Newton d¯a˜ chung (a + b)n = n X Cnk an−k bk k=o = Cn0 an + Cn1 an−1 b + Cn2 an−2 b2 + + Cnk an−k bk + + Cnn−1 abn−1 + Cnn bn (a,b l`a c´ac sˆo´ thu.’c; n l`a sˆo´ tu.’ nhiˆen) ˆ´ CO ˆ´ VA ` QUAN HE ˆ GIUA ´ BIEN ˆ´ CO ˆ´ ˜’ CAC BIEN 2.1 ’’ v` Ph´ ep thu a biˆ e´n cˆ o´ ’ d¯ˆe’ quan s´at mˆo.t hiˆe.n tu’o.’ng n`ao d¯o´ Viˆe.c thu.’c hiˆe.n mˆo.t nh´om c´ac d¯iˆe`u kiˆe.n co’ ban ’’ C´ac kˆe´t qua’ c´o thˆe’ xay ’ cua ’ ph´ep thu’’ d¯u’o.’c go.i l`a biˆe´n cˆo´ (su.’ d¯u’o.’c go.i mˆo.t ph´ep thu kiˆe.n) • V´ı du ’’ ¯Dˆ ’’ l`a mˆo.t i) Tung d¯ˆo`ng tiˆe`n lˆen l`a mˆo.t ph´ep thu o`ng tiˆe`n lˆa.t m˘ a.t n`ao d¯´ o (xˆ a´p, ngua) biˆe´n cˆ o´ ’’ Viˆe.c viˆen d¯a.n tr´ ii) Ba˘´n mˆo.t ph´at s´ ung v`ao mˆo.t c´ai bia l`a mˆo.t ph´ep thu ung (trˆa.t) ´ ´ bia l` a mˆ o.t biˆen cˆo 2.2 ˜’ c´ C´ ac biˆ e´n cˆ o´ v` a quan hˆ e giua ac biˆ e´n cˆ o´ i) Quan hˆ e k´ eo theo ’ th`ı B xay ’ Biˆe´n cˆo´ A d¯u’o.’c go.i l`a k´eo theo biˆe´n cˆo´ B, k´ı hiˆe.u A ⊂ B, nˆe´u A xay ii) Quan hˆ e tu’ ong d ¯u’ ong ’ ’ ´’ nˆe´u A ⊂ B v`a B ⊂ A, k´ı hiˆe.u Hai biˆe´n cˆo´ A v`a B d¯u’o.’c go.i l`a tu’ong ’ d¯u’ong ’ voi A = B iii) Biˆ e´n cˆ o´ so’ cˆ a´p ˜’ d¯u’o.’c nua Biˆe´n cˆo´ so’ cˆa´p l`a biˆe´n cˆo´ khˆong thˆe’ phˆan t´ıch d¯u’o.’c nua ’ ˘´c cha ˘´n iv) Biˆ e´n cˆ o´ cha ’’ K´ı hiˆe.u Ω ’ thu.’c hiˆe.n ph´ep thu L`a biˆe´n cˆo´ nhˆa´t d¯.inh s˜ e xay ˜’ c´ Biˆ e´n cˆ o´ v` a quan hˆ e giua ac biˆ e´n cˆ o´ • V´ı du Tung mˆo.t x´ uc xa˘´c Biˆe´n cˆ o´ m˘ a.t x´ uc xa˘´c c´o sˆ o´ chˆ a´m b´e hon ’ l`a ´ ´ ´ ´ biˆen coˆ cha˘c cha˘n v) Biˆ e´n cˆ o´ khˆ ong thˆ e’ ’’ K´ı hiˆe.u ∅ ’ thu.’c hiˆe.n ph´ep thu L`a biˆe´n cˆo´ nhˆa´t d¯.inh khˆong xay ⊕ Nhˆ a.n x´ et Biˆe´n cˆo´ khˆong thˆe’ ∅ khˆong bao h`am mˆo.t biˆe´n cˆo´ so’ cˆa´p n`ao, nghi˜a l`a khˆong c´o biˆe´n cˆo´ so’ cˆa´p n`ao thuˆa.n lo.’i cho biˆen cˆo´ khˆong thˆe’ vi) Biˆ e´n cˆ o´ ngˆ a˜u nhiˆ en ’’ Ph´ep thu’’ m`a ’ ho˘ ’ thu.’c hiˆe.n ph´ep thu L`a biˆe´n cˆo´ c´o thˆe’ xay a.c khˆong xay ’ n´o l`a c´ac biˆe´n cˆo´ ngˆa˜u nhiˆen d¯u’o.’c go.i l`a ph´ep thu’’ ngˆa˜u nhiˆen c´ac kˆe´t qua’ cua vii) Biˆ e´n cˆ o´ tˆ o’ng ’ hai biˆe´n cˆo´ A v`a B, k´ı hiˆe.u C = A + B, nˆe´u C xay ’ Biˆe´n cˆo´ C d¯u’o.’c go.i l`a tˆo’ng cua ’ ra v`a chi’ ´ıt nhˆa´t mˆo.t hai biˆe´n cˆo´ A v`a B xay `’ tho.’ s˘ `’ • V´ı du 10 Hai ngu’oi an c` ung ba˘´n v`ao mˆo.t th´ u Nˆe´u go.i A l`a biˆe´n cˆ o´ ngu’oi ´ ´ ´ ´ ´ ´ ´ `’ thu’ hai ba˘n tr´ ung th´ u th`ı C = A+B ung th´ u v`a B l`a biˆen cˆ o ngu’oi thu’ nhaˆt ba˘n tr´ ´ ´ ´ ˘ l` a biˆen cˆo th´ u bi ban tr´ ung