1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Bài giải phần giải mạch P13

63 157 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 63
Dung lượng 2,42 MB

Nội dung

Chapter 13, Solution 1. For coil 1, L 1 – M 12 + M 13 = 6 – 4 + 2 = 4 For coil 2, L 2 – M 21 – M 23 = 8 – 4 – 5 = – 1 For coil 3, L 3 + M 31 – M 32 = 10 + 2 – 5 = 7 L T = 4 – 1 + 7 = 10H or L T = L 1 + L 2 + L 3 – 2M 12 – 2M 23 + 2M 12 L T = 6 + 8 + 10 = 10H Chapter 13, Solution 2. L = L 1 + L 2 + L 3 + 2M 12 – 2M 23 2M 31 = 10 + 12 +8 + 2x6 – 2x6 –2x4 = 22H Chapter 13, Solution 3. L 1 + L 2 + 2M = 250 mH (1) L 1 + L 2 – 2M = 150 mH (2) Adding (1) and (2), 2L 1 + 2L 2 = 400 mH But, L 1 = 3L 2, , or 8L 2 + 400, and L 2 = 50 mH L 1 = 3L 2 = 150 mH From (2), 150 + 50 – 2M = 150 leads to M = 25 mH k = M/ 150x50/5.2LL 21 = = 0.2887 Chapter 13, Solution 4. (a) For the series connection shown in Figure (a), the current I enters each coil from its dotted terminal. Therefore, the mutually induced voltages have the same sign as the self-induced voltages. Thus, L eq = L 1 + L 2 + 2M L 2 L 1 L 2 L 1 I 1 I 2 I s V s + – L eq (a) (b) (b) For the parallel coil, consider Figure (b). I s = I 1 + I 2 and Z eq = V s /I s Applying KVL to each branch gives, V s = jωL 1 I 1 + jωMI 2 (1) V s = jωMI 1 + jω L 2 I 2 (2) or              ωω ωω =      2 1 2 1 s s I I LjMj MjLj V V ∆ = –ω 2 L 1 L 2 + ω 2 M 2 , ∆ 1 = jωV s (L 2 – M), ∆ 2 = jωV s (L 1 – M) I 1 = ∆ 1 /∆, and I 2 = ∆ 2 /∆ I s = I 1 + I 2 = (∆ 1 + ∆ 2 )/∆ = jω(L 1 + L 2 – 2M)V s /( –ω 2 (L 1 L 2 – M)) Z eq = V s /I s = jω(L 1 L 2 – M)/[jω(L 1 + L 2 – 2M)] = jωL eq i.e., L eq = (L 1 L 2 – M)/(L 1 + L 2 – 2M) Chapter 13, Solution 5. (a) If the coils are connected in series, =++=++= 60x25)5.0(26025M2LLL 21 123.7 mH (b) If they are connected in parallel, = −+ − = −+ − = mH 36.19x26025 36.1960x25 M2LL MLL L 2 21 2 21 24.31 mH Chapter 13, Solution 6. V 1 = (R 1 + jωL 1 )I 1 – jωMI 2 V 2 = –jωMI 1 + (R 2 + jωL 2 )I 2 Chapter 13, Solution 7. Applying KVL to the loop, 20∠30 ° = I(–j6 + j8 + j12 + 10 – j4x2) = I(10 + j6) where I is the loop current. I = 20∠30°/(10 + j6) V o = I(j12 + 10 – j4) = I(10 + j8) = 20∠30°(10 + j8)/(10 + j6) = 22∠37.66° V Chapter 13, Solution 8. Consider the current as shown below. j 6 j 4 1 Ω -j3 j2 10 + – I 2 I 1 4 Ω + V o – For mesh 1, 10 = (1 + j6)I 1 + j2I 2 (1) For mesh 2, 0 = (4 + j4 – j3)I 2 + j2I 1 0 = j2I 1 +(4 + j)I 2 (2) In matrix form,             + + =       2 1 I I j42j 2j6j1 0 10 ∆ = 2 + j25, and ∆ 2 = –j20 I 2 = ∆ 2 /∆ = –j20/(2 + j25) V o = –j3I 2 = –60/(2 + j25) = 2.392∠94.57° Chapter 13, Solution 9. Consider the circuit below. 2 Ω -j1 2 Ω For loop 1, -j2V + – j 4 j 4 8∠30 o + – I 2 I 1 8∠30° = (2 + j4)I 1 – jI 2 (1) For loop 2, ((j4 + 2 – j)I 2 – jI 1 + (–j2) = 0 or I 1 = (3 – j2)i 2 – 2 (2) Substituting (2) into (1), 8∠30° + (2 + j4)2 = (14 + j7)I 2 I 2 = (10.928 + j12)/(14 + j7) = 1.037∠21.12° V x = 2I 2 = 2.074∠21.12° Chapter 13, Solution 10. Consider the circuit below. I o j ω L j ω L 1/j ω C I 2 I 1 j ω M I in ∠0 o 2 21 LLLkM == = L, I 1 = I in ∠0°, I 2 = I o I o (jωL + R + 1/(jωC)) – jωLI in – (1/(jωC))I in = 0 I o = j I in ( ω L – 1/( ω C)) /(R + j ω L + 1/(j ω C)) Chapter 13, Solution 11. Consider the circuit below. I 1 j ω L 1 R 1 R 2 j ω L 2 1/j ω C j ω M V 2 + – V 1 + – I 3 I 2 For mesh 1, V 1 = I 1 (R 1 + 1/(j ω C)) – I 2 (1/j ω C)) –R 1 I 3 For mesh 2, 0 = –I 1 (1/(j ω C)) + (j ω L 1 + j ω L 2 + (1/(j ω C)) – j2 ω M)I 2 – j ω L 1 I 3 + j ω MI 3 For mesh 3, –V 2 = –R 1 I 1 – jω(L 1 – M)I 2 + (R 1 + R 2 + jωL 1 )I 3 or V 2 = R 1 I 1 + j ω (L 1 – M)I 2 – (R 1 + R 2 + j ω L 1 )I 3 Chapter 13, Solution 12. Let .1= ω j4 j2 • + j6 j8 j10 1V - I 1 I 2 • Applying KVL to the loops, 21 481 IjIj += (1) 21 1840 IjIj += (2) Solving (1) and (2) gives I 1 = -j0.1406. Thus H 111.7 11 11 ==→== jI LjL I Z eqeq We can also use the equivalent T-section for the transform to find the equivalent inductance. Chapter 13, Solution 13. We replace the coupled inductance with an equivalent T-section and use series and parallel combinations to calculate Z. Assuming that ,1= ω 10,101020,81018 21 ===−=−==−=−= MLMLLMLL cba The equivalent circuit is shown below: 12 Ω j8 Ω j10 Ω 2 Ω j10 Ω -j6 Ω Z j4 Ω Z =12 +j8 + j14//(2 + j4) = 13.195 + j11.244Ω Chapter 13, Solution 14. To obtain V Th , convert the current source to a voltage source as shown below. 5 Ω -j3 Ω + – 8 V + V Th – 2 Ω j8 Ω a b j10 V + – j6 Ω I j2 Note that the two coils are connected series aiding. ωL = ωL 1 + ωL 2 – 2ωM jωL = j6 + j8 – j4 = j10 Thus, –j10 + (5 + j10 – j3 + 2)I + 8 = 0 I = (– 8 + j10)/ (7 + j7) But, –j10 + (5 + j6)I – j2I + V Th = 0 V Th = j10 – (5 + j4)I = j10 – (5 + j4)(–8 + j10)/(7 + j7) V Th = 5.349∠34.11° To obtain Z Th , we set all the sources to zero and insert a 1-A current source at the terminals a–b as shown below. I 2 I 1 1 A 5 Ω j6 Ω j8 Ω -j3 Ω a j2 2 Ω + V o – b Clearly, we now have only a super mesh to analyze. (5 + j6)I 1 – j2I 2 + (2 + j8 – j3)I 2 – j2I 1 = 0 (5 + j4)I 1 + (2 + j3)I 2 = 0 (1) But, I 2 – I 1 = 1 or I 2 = I 1 – 1 (2) Substituting (2) into (1), (5 + j4)I 1 +(2 + j3)(1 + I 1 ) = 0 I 1 = –(2 + j3)/(7 + j7) Now, ((5 + j6)I 1 – j2I 1 + V o = 0 V o = –(5 + j4)I 1 = (5 + j4)(2 + j3)/(7 + j7) = (–2 + j23)/(7 + j7) = 2.332∠50° Z Th = V o /1 = 2.332∠50° ohms Chapter 13, Solution 15. To obtain I N , short-circuit a–b as shown in Figure (a). I 1 I 2 I 1 20 Ω j10 Ω j20 Ω a j5 1 + – 20 Ω j10 Ω j20 Ω a j5 I N 60∠30 o + – I 2 b b (a) (b) For mesh 1, 60 ∠ 30 ° = (20 + j10)I 1 + j5I 2 – j10I 2 or 12 ∠ 30 ° = (4 + j2)I 1 – jI 2 (1) For mesh 2, 0 = (j20 + j10)I 2 – j5I 1 – j10I 1 or I 1 = 2I 2 (2) Substituting (2) into (1), 12 ∠ 30 ° = (8 + j3)I 2 I N = I 2 = 12 ∠ 30 ° /(8 + j3) = 1.404 ∠ 9.44 ° A To find Z N , we set all the sources to zero and insert a 1-volt voltage source at terminals a– b as shown in Figure (b). For mesh 1, 1 = I 1 (j10 + j20 – j5x2) + j5I 2 1 = j20I 1 + j5I 2 (3) For mesh 2, 0 = (20 + j10)I 2 + j5I 1 – j10I 1 = (4 + j2)I 2 – jI 1 or I 2 = jI 1 /(4 + j2) (4) Substituting (4) into (3), 1 = j20I 1 + j(j5)I 1 /(4 + j2) = (–1 + j20.5)I 1 I 1 = 1/(–1 + j20.5) Z N = 1/I 1 = (–1 + j20.5) ohms Chapter 13, Solution 16. To find I N , we short-circuit a-b. j Ω 8 Ω -j2 Ω a •• + j4 Ω j6 Ω I 2 I N 80 V I o 0 ∠ 1 - b 80)28(0)428(80 2121 =−+→=−+−+− jIIjjIIjj (1) 2112 606 IIjIIj =→=− (2) Solving (1) and (2) leads to A 91.126246.1362.0584.1 1148 80 2 o N j j II −∠=−= + == To find Z N , insert a 1-A current source at terminals a-b. Transforming the current source to voltage source gives the circuit below. j Ω 8 Ω -j2 Ω 2 Ω a •• + j4 Ω j6 Ω I 2 2V I 1 - b 28 )28(0 2 121 j jI IjIIj + =→−+= (3) 0)62(2 12 =−++ jIIj (4) Solving (3) and (4) leads to I 2 = -0.1055 +j0.2975, V ab =-j6 I 2 = 1.7853 +0.6332 Ω∠== o ab N 53.19894.1 1 V Z

Ngày đăng: 19/10/2013, 18:15

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN