1. Trang chủ
  2. » Giáo án - Bài giảng

Khoảng Cách 11-CB

9 309 2
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 1,02 MB

Nội dung

NhiÖt liÖt chµo mõng c¸c thÇy c« gi¸o vÒ dù giê líp 11B4 Tr­êng THPT HËu Léc 4 Kiểm tra bài cũ: Câu hỏi: ở THCS người ta định nghĩa khoảng cách từ một điểm tới một đường thẳng như thế nào? d M H H H là điểm bất kỳ trên đường thẳng d em hãy so sánh độ dài MH với khoảng cách từ M tới đường thẳng d? Khoảng cách giữa hai đối tượng hình học bất kỳ cũng được định nghĩa thông qua khái niệm khoảng cách của hai điểm, và nó ngắn nhất trong tất cả các khoảng cách giữa hai điểm của hai đối tư ợng hình học đó. Cho điểm O và ng th ng a. Trong mặt phẳng ()(O,a). Tìm điểm H nằm trên a sao cho OH ngắn nhất? HĐ1: Cho điểm O và đt a. CMR d(O,a) là bé nhất so với các khoảng cách từ O tới một điểm bất kỳ của mp(). O H Với nguyên tắc chung về khái niệm khoảng cách của hai đối tượng hình học em hãy định nghĩa khoảng cách từ một điểm tới một đư ờng thẳng theo cách hiểu của mình. Tương tự hãy nêu khoảng cách từ một điểm tới một mặt phẳng? Định nghĩa: (SGK) Tiết 38 Đ 5 Khoảng cách 1.Khoảng cách từ một điểm n một đường thẳng Gọi H là hình chiếu của O lên a. Khi đó OH ngắn nhất. Lấy M bất kỳ thuộc a. Ta có tam giác OHM vuông tại H nên OM OH. a M Ký hiệu: d(O,a) Nhận xét: +)Oa d(O,a) = 0 +)OHOM với M a (?) Oa thì d(O,a) = ? Định nghĩa: Cho điểm O và đường thẳng a. Trong mặt phẳng (O,a) gọi H là hình chiếu của vuông góc của O lên a. Khi đó khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến đường thẳng a. O H M 1.Khoảng cách từ một điểm đến một đư ờng thẳng 2.Khoảng cách từ một điểm đến một mặt phẳng Tiết 38 Khoảng cách Ký hiệu: d(O, ()) Nhận xét: +) O() d(O,()) = 0 +) OM > OM HM>HM +) OH OM với M() (?) O() thì d(O,()) = ? (?) HĐ2: Cho điểm O và m t phẳng ().CMR d(O, ()) là bé nhất so với các khoảng cách từ O tới một điểm bất kỳ thuộc ()? Lấy M bất kỳ thuộc (). Ta có tam giác OHM vuông tại H nên OH OM. Định nghĩa (Sgk) (?) M, M() và OM > OM. Hãy so sánh HM và HM? Định nghĩa: Cho điểm O và mp(). Gọi H là hình chiếu của vuông góc của O lên (). Khi đó khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến mp(). M (?) Cho đthẳng a//mp() và điểm A nằm trên đư ờng thẳng a.Tìmđiểm H nằm trên mặt phẳng (P) sao cho AH ngắn nhất? Độ dài AH có phụ thuộc vào việc chọn điểm A hay không? a A H A H (?) Hãy định nghĩa khoảng cách giữa đường thẳng và mặt phẳng song song? 3. Khoảng cách giữa đường thẳng và mặt phẳng song song. Định nghĩa: Cho đường thẳng a song song với mp(). Khoảng cách giữa đường thẳng a và mp() là khoảng cách từ một điểm bất kỳ của a đến mp(). Tiết 38 Khoảng cách Ký hiệu: d(a, ()) Gọi H là hình chiếu của A lên (). Khi đó AH ngắn nhất. Lấy M bất kỳ thuộc (). Ta có tam giác AHM vuông tại H nên AM AH. Định nghĩa: (SGK) HĐ3: CMR d(A,() AM, với M bất kỳ thuộc (). M Nhận xét: +) a() hoặc a cắt () thì d(a,()) = 0 1.Khoảng cách từ một điểm đến một đư ờng thẳng 2.Khoảng cách từ một điểm đến một mặt phẳng +) d(a,())AM với M() 4. Khoảng cách giữa hai mặt phẳng song song Cho hai mặt phẳng (P) và (Q) song song, hãy tìm điểm A nằm trên (P), điểm B nằm trên (Q) sao cho khoảng cách AB nhỏ nhất? Kết quả trên có phụ thuộc vào việc chọn điểm A hay không? A B B Em hãy nêu định nghĩa khoảng cách giữa hai mặt phẳng song song. Định nghĩa: (SGK) Tiết 38 Khoảng cách Ký hiệu: d((),()) d((),()) = d(A,()) với A() =d(B,()) với B() Định nghĩa: Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kỳ của của mặt phẳng này đến mặt phẳng kia. A 1. Khoảng cách từ một điểm đến một đường thẳng 2. Khoảng cách từ một điểm đến một mặt phẳng 3. Khoảng cách giữa đường thẳng và mặt phẳng song song. B i t p :à ậ Cho h×nh l p ph ng ABCD.A B C D c¹nh a.ậ ươ ’ ’ ’ ’ TÝnh: a) d(A,D’C ’ ) b) d(A, (BDD’B’)) c) d(AA’,(BDD’B’)) d) d((A’B’C’D’), (ABCD)) a) d(A,D’C ’ ) = V× D ’ C ’ ┴ (ADD ’ A ’ ) nªn AD ’ D┴ ’ C ’ AD ’ = 2a b) d(A,(BDD'B') = AO = 2 2 a Vì AC ┴ (BDD'B') tại O c) d(AA' ,(BDD’B’)) = H­íng dÉn d(A ,(BDD’B’)) = 2 2 a d) d((A’B’C’D’), (ABCD)) = d(A ’ , (ABCD)) = AA’ = a B i t p 2 Cho hình hộp chữ nhật ABCD.A B C D có AB = a, BC = b, CC = c. Hãy tính khoảng cách Từ B đến mp(ACCA). A B D C A' B' C' D' H a b c Giải: Trong (ABCD) kẻ BH AC tại H thì HB(ACCA). Khi đó BH là khoảng cách từ B tới (ACCA) Xét tam giác vuông ABC ta có: 2 2 2 2 2 2 2 2 2 1 1 1 1 1 BH AB BC a b a b a b = + + = + = 2 2 ab BH a b = + . khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến đường thẳng a. O H M 1 .Khoảng cách từ một điểm đến một đư ờng thẳng 2 .Khoảng cách. thẳng theo cách hiểu của mình. Tương tự hãy nêu khoảng cách từ một điểm tới một mặt phẳng? Định nghĩa: (SGK) Tiết 38 Đ 5 Khoảng cách 1 .Khoảng cách từ một

Ngày đăng: 19/10/2013, 14:11

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w