Định lý 1: Trong một đường tròn , đường kính là dây lớn nhất.. Định lý 2 : Trong một đường tròn , đường kính vuông góc với dây thì đi qua trung điểm của dây ấy.. Định lý 3 : Trong một đ
Trang 1Giáo viên: Nguyễn Phước Hoài Nam Trường THCS Hữu Bằng:
Trang 2Kiểm tra bài cũ
• Phát biểu ba định lý về mối liên hệ giữa
đường kính và dây ?
Định lý 1: Trong một đường tròn , đường kính là dây lớn nhất.
Định lý 2 : Trong một đường tròn , đường kính
vuông góc với dây thì đi qua trung điểm của dây ấy.
Định lý 3 : Trong một đường tròn , đường kính đi
qua trung điểm của một dây không đi qua tâm thì
vuông góc với dây ấy.
Trang 3I
O
N
A M
B
I
O
D
A C
B
O
D
B A
C
Trang 4D
B A
C
Trang 5A
B H
R
Tiết 24 : Liên hệ giữa dây và khoảng cách
từ tâm đến dây
Cho AB và CD là hai dây ( khác đư ờng kính ) của đường tròn ( O ; R ) gọi
OH , OK theo thứ tự là các khoảng
cách từ O đến AB ,CD
CMR : OH 2 + HB 2 = OK 2 + KD 2
1/ Bài toán
O
A
D
B H
R
O
A
B
K
R
Trang 6Bài giải : áp dụng đ/l Pitago trong tam giác vuông OHB và OKD ta có :
OH 2 + HB 2 = OB 2 = R 2
OK 2 + KD 2 = OD 2 = R 2
Suy ra OH 2 + HB 2 = OK 2 + KD 2
Tiết 24 : Liên hệ giữa dây và khoảng cách
từ tâm đến dây
Bài toán:
Cho AB và CD là hai dây ( khác đư ờng kính ) của đường tròn ( O ; R ) gọi
OH , OK theo thứ tự là các khoảng
cách từ O đến AB ,CD
CMR : OH 2 + HB 2 = OK 2 + KD 2
O
A
D
B H
R
Trang 7K≡
C
D B
* Chú ý : ( SGK )
K
≡
D
B
H≡
Tiết 24 : Liên hệ giữa dây và khoảng cách
từ tâm đến dây
Bài toán
O
A
D
B H
R
Bài giải : áp dụng đ/l Pitago trong tam
giác vuông OHB và OKD ta có :
OH 2 + HB 2 = OB 2 = R 2
OK 2 + KD 2 = OD 2 = R 2
Suy ra OH 2 + HB 2 = OK 2 + KD 2
Trang 8Nếu AB = CD thì OH = OK
Nếu OH = OK thì AB = CD
2/ Liên hệ giữa dây và khoảng cách
từ tâm đến dây
Tiết 24 : Liên hệ giữa dây và khoảng cách
từ tâm đến dây
?1
Hãy sử dụng kết quả của bài toán ở mục 1 để chứng minh rằng:
Suy ra OH 2 + HB 2 = OK 2 + KD 2
O
A
D
B H
R
Trang 9Nhóm 1và 2 :
Nếu AB = CD Hãy chứng minh
OH = OK ?
Nhóm 3và 4 : Nếu OH = OK Hãy chứng minh
AB = CD ?
Tiết 24 : Liên hệ giữa dây và khoảng cách
từ tâm đến dây
Suy ra OH 2 + HB 2 = OK 2 + KD 2
Bài toán
A
O
B H
K
R
Trang 10Nhóm 1và 2 :
Nếu AB = CD Hãy chứng minh
OH = OK ?
Nhóm 3và 4 : Nếu OH = OK Hãy chứng minh
AB = CD ?
O
A
B H
K
R
Bài giải
Ta có OH AB => AH = HB = AB
OK CD => CK = KD = CD
( Theo đ/l mối quan hệ đường kính và dây )
Mặt khác AB = CD ( gt )
Suy ra HB = KD => HB 2 = KD 2
Mà OH 2 + HB 2 = OK 2 + KD 2
Nên OH 2 = OK 2 => OH=OK
2
1
2
Ta có OH AB => AH = HB = AB
OK CD => CK = KD = CD ( Theo đ/l mối quan hệ đường kính và dây ) Mặt khác OH = OK ( gt) => OH 2 = OK 2
Mà OH 2 + HB 2 = OK 2 + KD 2
Nên HB 2 = KD 2 => HB =KD => AB=CD
2
1
2 1
Tiết 24 : Liên hệ giữa dây và khoảng cách
từ tâm đến dây
Hoạt động nhóm
Trang 11Định lí 1 :
Trong một đường tròn :
AB = CD <=> OH = OK
Tiết 24 : Liên hệ giữa dây và khoảng cách
từ tâm đến dây
O
A
B H
K
Trang 12Tiết 24 : Liên hệ giữa dây và khoảng cách
từ tâm đến dây
Suy ra OH 2 + HB 2 = OK 2 + KD 2
Bài toán
O
A
D
B H
R
?2
Hãy sử dụng kết quả của bài toán ở mục 1 để so sánh các độ dài:
a ) OH và OK , nếu biết AB > CD
b )AB và CD, nếu biết OH < OK
Bài giải:
a) Nếu AB > CD thì AB > CD => HB > KD
( vì HB = AB; KD = CD)
2
1
2 1
2
1 2
1
HB 2 > KD 2
Mà OH 2 + HB 2 = OK 2 + KD 2 => OH 2 < OK 2 mà OH ; OK > O
b) Tương tự chứng minh ngược lại.
Trang 13Trong hai dây của một đường tròn : a/ Dây nào lớn hơn thì dây đó gần tâm hơn
b/ Dây nào gần tâm hơn thì dây đó lớn hơn.
Tiết 24 : Liên hệ giữa dây và khoảng cách
từ tâm đến dây
C
K
O
A
D
B
H
AB > CD <=> OH < OK
Định lí 2 :
Trang 14Muốn so sánh độ dài hai dây của một đư
ờng tròn
ta làm thế nào ?
Tiết 24 : Liên hệ giữa dây và khoảng cách
từ tâm đến dây
Trang 15a/ Vì OE = OF ( gt ) => BC = AC ( đ/l 1)
b/ Vì OD> OE( gt )màOE = OF=> OD> OF nên AB <AC (đ/l 2)
D
O E
F
C A
B
Cho tam giác ABC , O là giao điểm của các đường trung trực của tam giác ; D , E ,F theo thứ tự
> OE ; OE = O F
?3
Tiết 24 : Liên hệ giữa dây và khoảng cách
từ tâm đến dây
Trang 16Các khẳng định Đáp án
thì bằng nhau
nhỏ hơn thì dây đó gần tâmhơn.
từ tâm đến mỗi dây của chúng bằng nhau.
gần tâm hơn thì lớn hơn.
Trong các câu sau câu nào đúng , sai ?
?
?
?
?
Trang 17Các khẳng định Đáp án
thì bằng nhau
nhỏ hơn thì dây đó gần tâm hơn.
từ tâm đến mỗi dây của chúng bằng nhau.
gần tâm hơn thì lớn hơn.
Trong các câu sau câu nào đúng , sai ?
Đúng Sai Sai
Đúng
Trang 18BTVN : Học thuộc các định lý Làm bài 12,13 ,14( SGK )
O
5
I H
D
C
K
4
a/ Tính OH ? a/ Tính OH ?
Dựa vào tam giác vuông OHB
b/ Chứng minh : AB = CD ?
Ta chứng minh OH = OK
Tiết 24 : Liên hệ giữa dây và khoảng cách
từ tâm đến dây
GợI ý: bài 12