Đây là bộ đề thi giải toán trên máy tính cầm tay được tổng. Đảm bảo chuẩn kiến thức và kĩ năng, Cung cấp cho quý thây, cô những cách giải hay nhất, những kiến thức bổ ích nhất về máy tính CASIO FX 570vnPus và 580 VNX. Do đây là bộ đề mới và chuẩn nên có giá 7 000đ, do đó quý thầy cô yên tâm sủ dụng, chắc chắn quý thầy cô sẽ không thấy tiếc nuối về số tiền của mình bỏ ra.
PHỊNG GD&ĐT THANH SƠN TRƯỜNG THCS THẠCH KHỐN ĐỀ THI HSG GIẢI TỐN TRÊN MÁY TÍNH CẦM TAY LỚP NĂM HỌC: 2010 – 2011 Thời gian làm bài: 150 phút Ngày thi: ĐỀ Quy định: 1) Thí sinh dùng máy tính: Casio fx-500MS; Casio fx-570MS; Casio fx500ES; Casio fx-570ES 2) Các kết tính tốn gần đúng, khơng có u cầu cụ thể qui định xác đến 10 chữ số 3) Từ đến phần a, ghi kết cuối 4) Từ phần b trở đi, trình bày lời giải Bài ( điểm): a) Tính giá trị biểu thức lấy kết với chữ số phần thập phân : N= 521973+ 491965+ 1371954+ 6041975+ 1122007 b) Tính kết (khơng sai số) tích sau : P = 11232006 x 11232007 sin 350 tg 500 -cos 40o c) Tính: Q = sin 350 :0,15cotg 550 Bài (2 điểm): 1) Cho ba số: A = 1193984; B = 157993 C = 38743 a) Tìm ước số chung lớn ba số A, B, C b) Tìm bội số chung nhỏ ba số A, B, C 2) Tìm thương số dư phép chia: 56789987654321: 3579 Bài (2 điểm): 20082009 =a+ 241 b+ c+ a)Cho d+ e+ f+ g T×m a, b, c, d, e, f, g 2 b) Tính A = 0,19981998 + 0, 019981998 + 0, 0019981998 Bài (2 điểm): Lói sut ca tiền gửi tiết kiệm số ngân hàng thời gian vừa qua liên tục thay đổi Bạn Châu gửi số tiền ban đầu triệu đồng với lãi suất 0,7% tháng chưa đầy năm, lãi suất tăng lên 1,15% tháng nửa năm bạn Châu tiếp tục gửi; sau nửa năm lãi suất giảm xuống 0,9% tháng, bạn Châu tiếp tục gửi thêm số tháng tròn nữa, rút tiền bạn Châu vốn lẫn lãi 747 478,359 đồng (chưa làm tròn) Hỏi bạn Châu gửi tiền tiết kiệm tháng ? Nêu sơ lược quy trình bấm phím máy tính để gii Bài (2 điểm): a) Cho a thc P(x)= 5x4+4x3-3x2+2x+1 Tính P(1,234) b) Cho đa thức P(x) = x5 + a.x + bx3 + cx + dx + e Biết P(1) = 3, P(2) = 9, P(3) = 19, P( 4) = 33, P(5) = 51 Tính giá trị P(6), P(7), P(8), P(9), P(10) Bµi ( ®iĨm): Tam giác ABC vng A có cạnh AB = a = 2,75 cm, góc C = α = 37o25’ Từ A vẽ đường cao AH, đường phân giác AD đường trung tuyến AM a) Tính độ dài AH, AD, AM b) Tính diện tớch tam giỏc ADM Bài ( điểm): a) Tìm ch÷ số a, b, c, d để có: a5 × bcd = 7850 b) Tìm tất số tự nhiên n cho n2 số có 12 chữ số có dạng n = 2525******89 Các dấu * vị trí khác chữ số khác Bµi ( ®iĨm): Cho ΔABC vng A đường cao AH, tia phân giác góc B cắt AC D Biết DA = 2cm; DC = 3cm a) Tính số đo góc C góc B ΔABC b) Tính độ dài đoạn thẳng AH; HB; HC Bµi ( ®iĨm): Giải phương trình: x+178408256-26614 x+1332007 + x+178381643-26612 x+1332007 = Bài 10( điểm):Cho dóy hai s un có số hạng tổng quát là: ( + 3) − ( − 3) = n n ( + 5) −( − 5) = n n ( n ∈ N n ≥ ) 4 Xét dãy số zn = 2un + 3vn ( n ∈ N n ≥ ) a) Tính giá trị xác u1 , u2 , u3 , u4 ; v1 , v2 , v3 , v4 b) Lập cơng thức truy hồi tính un + theo un +1 un ; tính + theo +1 un c) Từ công thức truy hồi trên, viết quy trình bấm phím liên tục để tính un + , + zn + theo un +1 , un , +1 , ( n = 1, 2, 3, ) Ghi lại giá trị xác của: z3 , z5 , z8 , z9 , z10 PHÒNG GD&ĐT THANH SƠN TRƯỜNG THCS THẠCH KHOÁN HƯỚNG DẪN CHẤM THI HỌC SINH GIỎI CẤP HUYỆN MƠN: GIẢI TỐN TRÊN MÁY TÍNH CASIO LỚP NĂM HỌC: 2010 - 2011 ĐỀ Bài (2 điểm): a) N = 722,96 b) P = 126157970016042 sin 350 tg 500 -cos 40 ≈ 0,379408548 ≈ 0,379409 c) Q = 3 sin 35 :0,15cotg 550 Bài (2 điểm): 1) Cho ba số: A = 1193984; B = 157993 C = 38743 a) Tìm ước số chung lớn ba số A, B, C b)Tìm bội số chung nhỏ ba số A, B, C với kết xác 2) Tìm thương số dư phép chia 56789987654321 : 3579 §S: 15867557321 2462 Bài (2điểm): a) Dùng máy ấn tìm số dư viết : 20082009 = 83327 + 241 1+ 5+ 5+ 1+ 1+ Do : a = 83327; b = 1; c = 5; d = 5; e = 1; f = 1; g = b) Đặt 0,0019981998 = a Ta có: 1 A = + + ÷ 100a 10a a 2.111 A= 100a Trong : 100a = 0,19981998 = 0,(0001) 1998 = Vậy A = 1998 9999 2.111.9999 = 1111 1998 Bài (2 điểm): Gọi a số tháng gửi với lãi suất 0,7% tháng, x số tháng gửi với lãi suất 0,9% tháng, số tháng gửi tiết kiệm là: a + + x Khi đó, số tiền gửi vốn lẫn lãi là: 5000000 ×1.007 a × 1.01156 ×1.009 x = 5747478.359 Quy trình bấm phím: 5000000 × 1.007 ^ ALPHA A × 1.0115 ^ × 1.009 ^ ALPHA X − 5747478.359 ALPHA = SHIFT SOLVE Nhập giá trị A = Nhập giá trị đầu cho X = SHIFT SOLVE Cho kết X số khơng ngun Lặp lại quy trình với A nhập vào 2, 3, 4, 5, đến nhận giá trị nguyên X = A = Vậy số tháng bạn Châu gửi tiết kiệm là: + + = 15 tháng Bài (2 điểm): a) Cho đa thức P(x)= 5x4+4x3-3x2+2x+1) Tính P(1,234) ĐS; P(1,234)=18,00998479 b) Đặt Q(x) = x + Khi đ ó Q(1) =3, Q(2) = ; Q(3) = 19; Q( 4) = 33; Q( 5) = 51 Vậy R(x) = P(x) – Q(x) c ó nghi ệm 1; 2; 3; 4; V ậy P(x) = Q(x) + ( x – 1) ( x- 2) (x – 3) ( x- 4)( x- 5) = x + + ( x – 1) ( x- 2) (x – 3) ( x- 4)( x- 5) P(6) = 193 ; P(7)= 819; P(8) = 2649; P(9)= 6883 ; P(10)= 15321 Bài ( điểm): · · · Dễ thấy BAH = α ; AMB = 2α ; ADB = 45o + α Ta có : AH = ABcosα = acosα = 2,75cos37o25’ = 2,184154248 ≈ 2,18 (cm) AH acosα 2, 75cos37o 25' = = = 2, 203425437 ≈ 2, 20(cm) sin(45o + α ) sin(45o + α ) sin 82o 25' AH acosα 2, 75cos37o 25' AM = = = = 2, 26976277 ≈ 2, 26(cm) sin 2α ) sin 2α sin 74o50 ' A AD = b) S ADM = ( HM − HD ) AH HM=AH.cotg2α ; HD = AH.cotg(45o + α) C B H D M Vậy : S ADM = a 2cos 2α ( cotg2α − cotg(45o + α ) ) S ADM = 2, 752 cos 37o 25' cotg74o 50' − cotg82o 25' ( ) = 0,32901612 ≈ 0,33cm2 Bài ( điểm): a) Ta có a5 × bcd = 7850 Suy bcd = 7850 7850 = 314 Lần lượt thay giá trị a từ → ta a5 25 Vậy a = 2; b = 3; c = 1; d = b) Ta có n = 2525******89 Do : 2525 x 108 < n2 < 2526 x 108 Để n2 tận n tận Thử máy ta có n tận 67, 33, 83, 17 n2 tận 89 Vậy n nhận giá trị : 502567; 502533; 502517; 502583 Bài ( điểm): Cho ΔABC vuông A đường cao AH, tia phân giác góc B cắt AC D Biết DA = 2cm; DC = 3cm a) Tính số đo góc C góc B ΔABC b) Tính độ dài đoạn thẳng AH; HB; HC B H A D C Ta có BD phân giác góc B suy µ ≈ 410 48'37,13'' C AH=AC.sinC ≈ 3,33333(cm) HB=AH.cotgB ≈ 2,98142(cm) HC=AH.tgB ≈ 3, 72678(cm) DA BA = = = sinC từ tính DC BC µ ≈ 48011'22,87'' B Bài ( 2điểm): Giải phương trình: x+178408256-26614 x+1332007 + x+178381643-26612 x+1332007 = X1 = 175744242 X2 = 175717629 VËy: 175717629 < x