1. Trang chủ
  2. » Giáo Dục - Đào Tạo

SKKN rèn luyện kỹ năng giải bài toán tính khoảng cách hình học không gian 11

25 41 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 1,44 MB

Nội dung

PHẦN MỞ ĐẦU 1.1 Lý chọn đề tài Hình học khơng gian phần kiến thức quan trọng chương trình mơn tốn THPT nói chung chương trình mơn tốn lớp 11 nói riêng Trong kì thi tuyển sinh vào Đại học, Cao đẳng năm ln có mặt tốn hình học khơng gian Đặc biệt tốn quan hệ vng góc ln chủ đề quen thuộc khơng thể thiếu tốn hình học khơng gian có mặt kì thi tuyển sinh vào Đại học, Cao đẳng (hiện THPT Quốc Gia) kì thi chọn học sinh giỏi Đối với học sinh đa số em thường gặp nhiều khó khăn giải tốn hình học khơng gian Các em thường chưa có kĩ giải chưa hình thành phương pháp giải tốn hình học khơng gian Hiện bối cảnh mơn tốn thi hình thức trắc nghiệm tốn tính khoảng cách lại xuất nhiều Làm để nâng cao kĩ giải tốn hình học khơng gian đặc biệt tốn tính khoảng cách cho học sinh ? Với suy nghĩ tơi ln cố gắng dạy cho em học sinh biết nắm vững phương pháp chứng minh quan hệ vng góc (đường thẳng vng góc với đường thẳng, đường thẳng vng góc với mặt phẳng, hai mặt phẳng vng góc) từ hình thành nên phương pháp tìm khoảng cách (khoảng cách điểm với đường thẳng, khoảng cách điểm với mặt phẳng, khoảng cách đường thẳng mặt phẳng song song, khoảng cách hai mặt phẳng song song, khoảng cách hai đường thẳng chéo nhau) 1.2 Mục đích nghiên cứu Với mong muốn giúp em học sinh có nhìn tổng qt tốn tính khoảng cách Tạo cho em tự tin tốn tính tốn hình học khơng gian Đây tài liệu để đồng nghiệp tham khảo Đặc biệt với cách kiểm tra thi tốn tính tốn xuất chủ yếu kì thi trường, sở Năm thi Trung Học Phổ Thơng Quốc Gia có thêm chương trình lớp 11 đề thi Vì tài liệu giúp ích cho em phần Tính khoảng cách tốt cịn giúp em giải tốt tốn tính thể tích, dạng tốn chủ yếu xuất chương trình hình học lớp 12 1.2 Đối tượng nghiên cứu Đối tượng nghiên cứu đề tài hình thành rèn luyện kĩ tính khoảng cách cho học sinh Cụ thể: +Khoảng cách từ điểm tới đường thẳng +Khoảng cách từ điểm tới mặt phẳng +Khoảng cách hai đường thẳng chéo 1.4 Các phương pháp nghiên cứu đề tài: +Phương pháp nghiên cứu, xây dựng sở lý thuyết +Phương pháp điều tra thực tế +Phương pháp thống kê, thu thập số liệu PHẦN NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lí luận Trong nhà trường trung học phổ thông nhiệm vụ trọng tâm hoạt động dạy thầy hoạt động học trò Đối với người thầy việc giúp học sinh nắm vững kiến thức phổ thơng nói chung kiến thức mơn tốn nói riêng việc làm cần thiết Người giáo viên cần phải dạy cho em nắm vững phương pháp kĩ cần thiết để giải tốt toán đặt Đối với hoạt động học trị muốn học tốt mơn tốn học sinh cần phải nắm vững tri thức khoa học mơn tốn cách có hệ thống, phải biết vận dụng lí thuyết cách linh hoạt vào tốn cụ thể Điều thể việc học đơi với hành, địi hỏi học sinh phải có tư logic, suy nghĩ linh hoạt Vì trình dạy học giáo viên cần giúp học sinh cách học biết sử dụng kiến thức học vào tốn cụ thể Mục đích giúp học sinh đứng trước toán em cần biết phân tích nhận dạng, biết áp dụng phương pháp học để giải toán biết cách chuyển toán dạng quen thuộc để từ có phương pháp giải thích hợp Đối với tốn quan hệ vng góc hình học khơng gian ngồi việc phải cung cấp cho em kiến thức cần thiết phương pháp giải dạng toán cụ thể cần dạy cho em cách phân tích tốn, xét mối quan hệ qua lại đối tượng: Điểm, đường thẳng, mặt phẳng… Để từ em đưa cách giải toán phương pháp phù hợp 2.2 Thực trạng vấn đề Xuất phát từ việc dạy phân mơn hình học lớp 11 nâng cao, cụ thể tốn tính khoảng cách Đối với dạng toán mục tiêu học sinh biết cách tìm khoảng cách từ điểm đến đường thẳng, khoảng cách từ điểm tới mặt phẳng, khoảng cách hai đường thẳng chéo nhau, khoảng cách đường thẳng mặt phẳng song song, khoảng cách hai mặt phẳng song song Đây tốn thường gặp kì thi tuyển sinh Đại học, Cao đẳng (trung học phổ thông quốc gia) gần Vì dạy dạng tốn giáo viên cần hình thành cho học sinh kĩ phương pháp tìm khoảng cách 2.3 Giải pháp cách thức thực Trước giải tốn tính khoảng cách em học sinh cần phải nắm vững định nghĩa, định lí, hệ định lí, tính chất Tiếp đến em cần nắm vững số phương pháp chứng minh dạng tốn thường gặp Sau em phải rèn luyện kĩ vận dụng phần lí thuyết nắm vững vào tốn cụ thể Vì người giáo viên q trình dạy học cần hệ thống lí thuyết, đưa số dạng toán thường gặp cách giải dạng tốn 2.3.1 Cơ sở lí thuyết: Khoảng cách từ điểm đến mặt phẳng, đến đường thẳng Định nghĩa 1: Khoảng cách từ điểm M đến mặt phẳng (P ) (hoặc đến đường thẳng d) khoảng cách hai điểm M H , H hình chiếu vng góc M lên mặt phẳng (P ) (hoặc lên đường thẳng d) Khoảng cách đường thẳng mặt phẳng song song, khoảng cách hai mặt phẳng song song Định nghĩa 2: Khoảng cách đường thẳng a mặt phẳng (P ) song song với a khoảng cách từ điểm từ a tới P Định nghĩa 3: Khoảng cách hai mặt phẳng song song khoảng cách từ điểm mặt phẳng đến mặt phẳng Khoảng cách hai đường thẳng chéo Định nghĩa 4: Khoảng cách hai đường thẳng chéo độ dài đoạn vng góc chung hai đường thẳng 2.3.2 Các dạng tốn thường gặp: Dạng 1: Tìm khoảng cách từ điểm đến mặt phẳng (hoặc đến đường thẳng) Phương pháp giải: Xác định chân đường vng góc điểm lên mặt phẳng (hoặc đường thẳng) Sử dụng hệ thức lượng tam giác vng lượng giác để tính khoảng cách cần tìm Lưu ý: Để tính khoảng cách từ điểm A đến mặt phẳng (P ) ta xác định mặt phẳng (Q) chứa điểm A vuông góc với (P ) sau xác định giao tuyến (P ) (Q) (Q) dựng đường thẳng qua A vng góc với giao tuyến cắt giao tuyến H Khi đó, khoảng cách từ A đến (P ) đoạn AH Dạng 2: Tính khoảng cách đường thẳng mặt phẳng song song, hai mặt phẳng song song Phương pháp giải: Để tính khoảng cách đường thẳng mặt phẳng song song ta tính khoảng cách từ điểm thuộc đường thẳng đến mặt phẳng, khoảng cách cần tìm Để tính khoảng cách hai mặt phẳng song song ta tính khoảng cách từ điểm thuộc mặt phẳng tới mặt phẳng khoảng cách cần tìm Nhận xét: Thực tế toán dạng tính khoảng cách từ điểm tới mặt phẳng việc quan trọng phải xác định điểm cho thuận lợi để tính khoảng cách từ điểm tới mặt phẳng Dạng 3: Tính khoảng cách hai đường thẳng chéo Phương pháp giải: Để tính khoảng cách hai đường thẳng a b ta dùng cách giải sau: Cách 1: Xác định đường vng góc chung a b tính độ dài đoạn vng góc chung Cách 2: Dựng mặt phẳng (P ) chứa a song song với b, khoảng cách a b khoảng cách (P ) b Cách 3: Dựng mặt phẳng (P ) chứa a mặt phẳng (Q) chứa b cho (P ) song song với (Q) , khoảng cách a b khoảng cách (P ) (Q) 2.3.3 Một số ví dụ 2.3.3.1 Khoảng cách từ điểm tới đường thẳng Bài 1: Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a , SA vng góc với mặt phẳng (ABCD) SA a Gọi E trung điểm cạnh CD Tính theo a khoảng cách từ điểm S đến đường thẳng BE Lời giải S Gọi F trung điểm BC , gọi H giao điểm FA BE Ta chứng minh AF BE Lại có BE SA BE (AFS) BE SH Tính AF a5 A ; D AH.AF AB SH SA d S ; BE AH HA 3a H 2a a 5 E B F C 5 Bài 2: Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a , tâm O , SA (ABCD) , SA a Gọi I trung điểm SC M trung điểm AB Tính khoảng cách từ điểm I đến đường thẳng CM Lời giải Kẻ đường thẳng qua A vng góc với CM H , cắt BC N Ta có: NB.NC NH.NA (NA HA).NA NA2 AH.AN NB.(NB BC ) NA AM.AB AM.AB NB.BC NA2 NB2 AB AB 2 NB AB NB AB S Vì SA CH AN CH (SAN ) CH SH d(S ,CM ) SH Tính SH AH AN AM AB AH I a 5 D A H M N SH 2 a 30 B SA AH Mà SC 2IC d(S ,CM ) 2d(I ,CM ) d(I ;CM ) Bài 3: Cho hình chóp · A , BC 2a, ABC 60 C K a 30 10 tam giác vuông điểm cạnh BC S.AB có đáy ABC C Gọi M trung SA SC SM a Tính khoảng cách từ S đến cạnh AB Lời giải S Vì SA SC SM nên hình chiếu H S lên mặt phẳng ABC tâm đường tròn ngoại tiếp tam giác ACM Từ H kẻ đường thẳng vuông góc AB taị K Vì AC PHK MH PBK nên HK AC a B M C H A Vì SH BK HK BK SHK AB SK d S , AB SK · · Vì K AH AMBC AMH BAM 60AHM SH SA AH 2a SK SH KH 2.3.3.2 Khoảng cách từ điểm tới mặt phẳng Bài 4: a 19 a d S ; AB · Cho hình chóp S ABCD đáy hình thang, ABC a 19 · BAD 90 , BA BC a, AD 2a Cạnh bên SA vng góc với đáy SA a Gọi H hình chiếu A lên SB Tính (theo a ) khoảng cách từ H đến mặt phẳng SCD Lời giải Gọi M giao điểm CD AB Ta có AD 2a, AC CD a AC DC Laị có SA CD CD SAC với d d A , SCD d MB MA BC SA AC S H d a Vì A d a AD d B , SCD 2 D B C M Từ SH.SB SA SH 2a ;HS d H , SCD 2d B , SCD a BS 3 Bài 5: Cho hình chóp S.ABC có đáy ABC tam giác vuông A , AB AC a, I trung điểm SC , hình chiếu vng góc S lên mặt phẳng ABC trung điểm H BC , mặt phẳng SAB tạo với đáy góc 60 Tính khoảng cách từ điểm I đến mặt phẳng SAB theo a Lời giải S Gọi M trung điểm AB K hình chếu H lên SM Ta xác định nên từ MH · SAB , ABC AC a 2 Ta có: HI PSB SAB d I , SAB d H , SAB SMH HK · 60 MH a K B H C M HK A Bài 6: Cho hình chóp S ABC có đáy ABC tam giác vuông A AB 2a, AC 2a Hình chiếu vng góc S mặt phẳng ABC trung điểm H cạnh AB Góc hai mặt phẳng SBC ABC 30 Tính khoảng cách từ trung điểm M cạnh BC đến mặt phẳng SAC Lời giải S Ta có: d A , BC AB.AC a3 AB2 AC Dựng HK BC Khi a3 d H , BC HK d A , BC 2 K M HK BC BC SHK Do CH E SH BC A , ABC SKH SBC 30 · · Suy SH HK tan30 a Dựng HE SA Khi đó: HE SAC SH.SA HE Do HM PAC d M , SACdH a5 SA HA có đáy ABCD hình thoi cạnh a , ABCD điểm H Bài 7: Cho hình chóp S ABCD · BAC 90 Hình chiếu vng góc S mặt phẳng thuộc đoạn BD cho HD 2HB Đường thẳng SO tạo với mặt phẳng ABCD góc 60 với O giao điểm AC BD Tính khoảng cách từ B đến mặt phẳng SCD theo a Lời giải Dễ thấy tam giác ABC H trọng tâm a3 tam giác ABC Khi OB a3 OH Mặt khác · SOH 60 a SH OH.tan 60 Do BD C H O E A d B ; SCD 2d H ; SCD CD,HF Vậy d B ; SCD B BH Dựng HE F SE HE 3 2HE D a3 · HD sin BDC HD.sin30 HE.SH 2 HE SH 14 Bài 8: Cho hình chóp S ABCD có đáy hình chữ nhật tâm I , có AB a, BC a Gọi H trung điểm AI Biết SH vng góc với mặt phẳng đáy tam giác SAC vng S Tính khoảng cách từ C đến mặt phẳng SBD Lời giải Ta có ACAB BC 2a Khi đó: HA a ; HC SH a3 SH a 2 HA.HC S 3a F Do CI 2HI d C ; SBD 2d H ; SBD Dựng HE BD , HF SE Khi đó: A D H E I B C d C ; SBD 2d H ; SBD 2HF Mặt khác HE d H , BD 1d A , BD Do đó: d C ; SBD a 15 SH.HE SH2 HE2 a a 2 Bài 9: Cho hình chóp S ABCD có đáy ABCD hình chữ nhật có AB a, Hình chiếu S lên mặt phẳng đáy trọng tâm H tam BC 2a giác ABC Góc đường thẳng SB mặt phẳng ABCD 600 Tính khoảng cách từ điểm A đến mặt phẳng SBC Lời giải Ta có BD HB BD 2 AB BC 3a suy a Do SH ABCD · · 60 SB; ABCD SBH SH HB tan 600 a Dựng HE BC , HF SE Do AD/ / BC d A , SBCd D , SBC 3d H , SBC Mặt khác HE CD a d A , SBC 3 Bài 10: Cho hình chóp S ABC có AB HE.SH HE2 SH2 AC , BC a 3HF 3a 21 14 Gọi · , BAC 120 I trung điểm cạnh AB Hình chiếu vng góc đỉnh S mặt phẳng đáy trung điểm H CI , góc đường thẳng SA mặt phẳng đáy 600 Tính khoảng cách từ điểm A đến mặt phẳng SBC Lời giải Đặt AB AC x BC AB AC 2AB AC cos1200 x Mà BC a x a Dựng HE BC , HF SE Khi d HI , SBC HF Mặt khác d A , SBC 2d I , SBC 4d H , SBC4HF HE 4d A , BC AB sin30 a 8 Mặt khác CIAI AC 2AI AC cos1200 AI AC2 Do đó: AH IC a3 2 Do d A , SBC4HE a7 AH HE.SH a SH 3a 37 2 HE SH 37 Bài 11: Cho hình chóp S ABCD có đáy ABCD hình thang vng A B Hình chiếu vng góc S lên ABCD trùng với giao điểm I AC BD Mặt bên SAB hợp với đáy góc 600 Biết AB BC a , AD 3a Tính khoảng cách từ D đến mặt phẳng SAB theo a Dựng HE AB , HF SE IC IB Theo Talet ta có: IA ID Khi đó: IE IB IE AD BD Ta có: d I , SABHF IE sinE Lại có d D , SAB 4d Lời giải BC AD a 3a I, SAB 3a Bài 12:(HSG Vĩnh Phúc 2018) Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O , AC , BD 2a; hai mặt phẳng SAC SBD vng góc với mặt phẳng ABCD Biết khoảng cách từ điểm C đến mặt phẳng SAB a Tính khoảng cách từ S tới mặt phẳng ABCD Lời giải Ta có diện tích hình thoi ABCD là: S2 3a2 S3a2 ABCD ABC Theo giả thiết: SO ABCD d S ; ABCD SO Trong ABCD kẻ OK AB , SOK kẻ OH SK AB SOH AB OH OH SAB kẻ OH SK AB SOH AB OH OH SAB d C , SAB a 2d O , SAB Khi ta có: OK a d S ; ABCD OA OB d O , SAB OH 3a OS 2 OH a OK 2 a SO a Bài 13:(HSG Sơn La 2017-2018) Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a , cạnh bên SA vng góc với mặt phẳng đáy, góc mặt phẳng SBD mặt phẳng đáy 60o Tính khoảng cách từ điểm D đến mặt phẳng SBC Lời giải Gọi I giao điểm AC BD AI BD SIA· 60o Suy SI BD SA AI tanSIA AD / / SBC · a Ta có d D , SBC d A , SBC Gọi H hình chiếu A lên SB AH SB AH SBC AH BC AH d A , SBC Trong tam giác vng SAB có 1 AH Vậy d D , SBCd A , SBC AH Bài 14: (HSG Cần Thơ 2017-2018) AH 2 SA AB a 15 3a 3a2 5 · o Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a, BAD 60 , a SA SB a Gọi G trọng tâm tam giác ABD, biết SG Gọi E điểm thuộc cạnh SD cho SE 2a Tính khoảng cách từ điểm A đến mặt phẳng SCD Lời giải 10 Tam giác ABD có AB AD a, BAD 60o nên tam giác ABD tam giác Suy a3 a Xét tam giác SGA có GA GB 3 2 2 nên tam giác SGA vuông SG GA a SA G Tương tự tam giác SGB vuông G GA SG SG GAB hay SG ABCD Xét hai tam giác vuông Vậy GB SG SGA SGD có cạnh SG chung GA GD nên chúng Suy SD SA a 2a2 Trong tam giác vng SGD , có E thuộc cạnh SD AE SD SG2 AB/ / CD CD GD GE SD (1) Mặt khác GD AB Mà CD SG CD SGD CD GE (2) Từ (1) (2) suy GE SCD d A , SCD C A d A , SCD d G , SCD Ta có d G , SCD C E 2 d A, SCD d A , SCD GSGD GE GS2 GD a a 3 2 a6 a3 3 a 2 a2 2.3.3.3 Khoảng cách hai đường thẳng chéo Bài 15: Cho hình chóp S ABCD có đáy ABCD hình vng, gọi M trung điểm AB Tam giác SAB cân S nằm mặt phẳng vng góc với đáy ABCD , biết SD 2a , SC tạo với mặt đáy ABCD góc 600 Tính theo a khoảng cách hai đường thẳng DM SA Lời giải 11 BC Đặt AB CD Ta có: SM tan 600 DA MC SCM 600 BC BM Cạnh CM SM x 15 · ABCD SM 2x x5 Cạnh MD AD AM x Từ SD2 SM MD2 15x 5x 20a2 x a DM / / SAN Dựng hình bình hành ADMN hình vẽ d DM , SA d M , SAN h Tứ diện MSAN tứ diện vuông 1 1 1 60 15 h a 79 2a 79 h2 MS MA MN 15a 5a a2 ABC.ABC có mặt bên hình vng cạnh a Gọi Bài 16: Cho lăng trụ D,E,F trung điểm cạnh BC ,AC , Tính theo a khoảng BC 1 1 1 cách hai đường thẳng DE A1F Lời giải BB1 A1B1 BB A BC Kẻ Ta có BB BC EP / /AF 1 11 P BC 1 AF // DE P d A1F ; DE d F ; DEP h Mặt khác DF //BB DF // A BC PEF P , kẻ FH DP H h FH 1 1 h Ta có h DF FP a a a 17 Bài 17: Cho lăng trụ đứng ABC A ' B 'C ' có đáy ABC tam giác vuông B , AB a, AA ' 2a, A 'C 3a Gọi M trung điểm đoạn thẳng A 'C ', I giao điểm AM A 'C Tính theo a khoảng cách từ điểm A đến mặt phẳng IBC Lời giải 12 Lăng trụ đứng ABC A ' B 'C ' AA ' Ta có: d d A ; IBC d A ; A ' BC 1 1 d2 AB A'A2 a2 ABC AP 1d d AP 2a 4a2 Bài 18: Cho hình chóp S ABCD có tam giác SAB cạnh a , tam giác ABC cân C Hình chiếu S mặt phẳng ABC trung điểm cạnh AB , góc SC đường thẳng SA với mặt phẳng đáy 300 Tính khoảng cách hai Lời giải BC theo a Gọi H trung điểm cạnh AB SH SH · ABC SCH 30 a Nên CH SH : tan300 a Vẽ hình bình hành ABCD Khi đó: AD / /BC BC / / SAD d SA , BC d BC , SAD d B , SAD 2d H , SAD Kẻ HE AD Vì AD HE,AD SH AD SHEAD HF HF SE d H , SAD HF 1 Ta có: HF HS 3a 1 1 4 52 HE HS HA HD2 3a a2 9a 9a2 a HF 13 d SA , BC 13 Bài 19: Cho hình chóp S ABCD có đáy ABCD hình thang cân, hai đáy BC AD Biết SA a , AD 2a , AB BC CD a Hình chiếu vng góc S lên ABCD trung điểm H đoạn AD Tính khoảng cách hai đường thẳng SB AD theo a Lời giải 13 Vì SH ABCD SH AD mà AD// SBC S d SB , AD d AD , SBC d H , SBC K Gọi M trung điểm BC , suy HM BC , mà BC SH BC SHM SBC SHM Kẻ HK SM HK SBC d H , A H D SBC HK Ta có : HM HB HK MB HM HS a2 a2 3a a2 a3 B M C 2 a 21 hay d SB , AD 7 HK 3a2 21a Bài 20: (HSG Bình Phước 2017-2018) Cho hình chóp S ABCD có đáy ABCD hình thang với AB AD a, CD 2a Biết hai mặt phẳng SAC SBD vng góc với mặt phẳng đáy, góc SBC mặt đáy 450 Tính theo a thể tích khối chóp S ABCD khoảng cách hai đường thẳng SD BC Lời giải Gọi O giao điểm AC BD Khi SO SAC SBD Mặt khác, hai mặt phẳng SAC , SBD vng góc với mặt đáy nên SO ABCD Gọi E trung điểm CD ABED hình vng cạnh a Mặt khác BE CD , BE 1CD BCD S H D C E vuông cân B Do đó, BC OB BC SOB BC SB SBC , ABCD SB,OB Ta có: BD AD AB AB PCD OB AB OD CD Ta có SO OB.tan 450 SBO a2 OB a Gọi F điểm đối xứng với B qua A · BC PDF ;FDB DBC · O F A · 45 a2 BD ;OD B 2a BCDF hình bình hành 900 14 Do d BC , SD d B , SDF Trong mặt phẳng SOD 2d O , SDF dựng OH SD Khi ta có: OH SDF d O , SDF OH Ta có OH SD OH FD 1 OH SO 2 2a 2a 10 3 2a 2 15 a2 a SO.DO OH SO2 DO2 d BC , SD a 10 Chú ý: Kẻ BI DO2 SD BI đoạn vuông góc chung SD BC BI a 2.a a 10 Xét SBD ta có BI SD SO.BD a 10 Bài 21: (HSG Đà Nẵng 2017-2018) Cho hình chóp S ABC có đáy tam giác cạnh 4a , cạnh bên SA vng góc với đáy có độ dài a Gọi M , N trung điểm AB BC Tìm số đo góc tính khoảng cách hai đường thẳng SM AN Lời giải Đặt AS s , AB b, AC c Suy sb sc ; bc 8a2 Tìm góc SM ; AN , ta có: uuur uuur uuur SM AM AS uuur AN uuur uuur AB AC 2 r r b 2s uuur uuur r r bc cos uuSMur ANuuur SM AN r2 rr rr rr b bc 2sb 2sc 2a 4a 2a 45 SM , FN Tìm khoảng cách d hai đường thẳng SM AN : gọi E EF ES SA AF xSM yAN AS r x y uuur r yr 1x s Suy EF b c 2 EF đoạn vng góc chung SM AN uuur 1r 1r EF SM 3x 3y x uuur uuur EF AN x 2y Suy d EF r s y r b EF 1r 2 c s b 1r c a6 a 6 3 Bài 22: (HSG Đồng Nai 2017-2018) Cho hình chóp tứ giác S ABCD có mặt đáy ABCD hình chữ nhật Mặt bên SAB tam giác cân S mặt phẳng SAB vuông góc với mặt phẳng ABCD Biết AB 2a, BC a góc tạo cạnh bên SC mặt đáy ABCD 45 Tính khoảng cách hai đường thẳng SA , BD Lời giải S Gọi H trung điểm AB SH ABCD Trong ABCD qua A kẻ d song song với BD BD SA , d Gọi E hình chiếu H lên d F SHE SA ,d Gọi F hình chiếu H lên SE HF SA , d Vậy d BD , SA d B , SA ,d C B E H O A D 2d H , SA , d 2HF a ,OA OB O tâm hình chữ nhật ta có: HA a, OH · HC a Do 45 nên HE HA Mà EAH , HBO đồng dạng nên: O OB H OH.HA a a HE a a 5 Xét SHE vng H ta có: OB Gọi SCH HF a SHC vuông cân H SH HC a 1 11 HF SH HE 2a a2 2a2 a Vậy d SA , BD 11 , 2a 22 11 16 Bài 23: (HSG Hà nam 2016-2017) · Cho hình hộp ABCD A ' B 'C ' D ' có đáy ABCD hình thoi cạnh a, BAD 600 , Tính theo A ' A A ' B A ' D Cạnh bên AA' hợp với mặt phẳng (ABCD ) góc 600 a thể tích khối hộp ABCD A ' B 'C ' D ' khoảng cách hai đường thẳng BC , AD ' Lời giải B' Gọi G trọng tâm ABD G tâm đường tròn ngoại tiếp (vì ABD đều) Theo giả thiết A'A A'B A'D A'G (ABCD) A' ABD D' C' · · AA',(ABCD) A'AG 60 ABD cạnh a H B O C AO a AG 60 G A N D 3 AO a A'AG vuông G BC PAD · A 'G AG tan A ' AG a Ta có AD ADD ' A' BC P ADD ' A' AD ' ADD ' A ' d BC , AD ' d BC ,(ADD 'A') d B ,(ADD 'A') Gọi BG AD N (N trung điểm AD) BG ADD'A' N Vì BN d B ,(ADD ' A ') 3d G ,(ADD ' A') GN Ta có AD GN AD (A 'GN ), AD ADD ' A ' A 'GN ADD ' A' AD A'G A'GN ADD'A' A'N Trong mp A 'GN dựng GH A ' N suy GH ADD ' A' d G , ADD ' A ' GH Có A 'G a,GN a GH a 13 d BC , AD ' a 117 13 13 Bài 24: (HSG Hà Nam 2017-2018) Cho hình chóp S ABCD có đáy ABCD hình thang vng A B Biết AB SD 3a , AD SB 4a, đường chéo AC vng góc với mặt phẳng SBD Tính theo a thể tích khối chóp S ABCD khoảng cách hai đường thẳng BD SA 17 Lời giải Ta có: AC (SBD ) (SBD ) (ABCD) (SBD) (ABCD) BD Kẻ SH BD HSH (ABCD) BD AB AD 5a Tam giác SBD vuông S nên: 12 Gọi K giao điểm SH SB.S D a BD AC BD AB.AD 12 a Ta có AK BD AB AD AK BD 2 15 AK AC AB AC AB a AK Kẻ đường thẳng d qua A song song với BD Kẻ HE / / KA , E d (SHE) (SA,d); (SHE ) (SA , d) SE Kẻ HF vng góc với SE F HF vng góc với SA , d BD/ / SA ,d nên d BD ; SA d BD ; SA ,d d H ; SA ,d HF Trong tam giác SHF ta có HF HF SH 2a HE 25 25 144a 144a 25 72a2 2a d(BD , SA) 2.3.3.4 Bài tập tự luyện Một số tốn trắc nghiệm khoảng cách hình vng cạnh a , Bài 25: Cho hình chóp SABCD có đáy ABCD lên ABCD trung điểm H SD a 17 , hình chiếu vng góc S đoạn AB Gọi K trung điểm đoạn AD Tính khoảng cách hai đường thẳng HK SD theo a A a B a C a D a 25 45 15 Đáp án : đáp án D a 70 Bài 26: Cho hình chóp SABC có SC , đáy ABC vng A , AB 2a , AC a hình chiếu vng góc S lên ABC trung điểm H đoạn AB Tính khoảng cách hai đường thẳng BC SA theo a A B C a D a a a 5 5 Đáp án : đáp án B 18 Bài 27: Cho hình chóp SABCD có đáy ABCD hình thang vng A B , với AB BC a, AD 2a a Các mặt bên SAC SBD vng góc với đáy Góc SAB ABCD 600 Tính khoảng cách CD SB A 2a B 2a 15 Đáp án : đáp án A Bài 28: Cho hình chóp SABCD C a 15 có đáy ABCD D 3a hình thoi cạnh a , · ABC 600 , SD a Hình chiếu vng góc S lên mặt phẳng ABCD điểm H thuộc đoạn BD thỏa mãn HD 3HB Gọi M trung điểm cạnh SD Tính khoảng cách CM SB A a B a 30 C a D a 40 8 Đáp án : đáp án B Bài 29: Cho hình lăng trụ tam giác ABC A B C có độ dài cạnh đáy 2a ,góc mặt phẳng A BC mặt phẳng đáy 600 Gọi M , N trung điểm cạnh BC CC Tính khoảng cách hai đường thẳng A M AN theo a A 6a 97 B 3a 15 C 4a 95 D 3a 45 97 95 Đáp án : đáp án A Bài 30: Cho hình chóp S ABCD có đáy ABCD hình chữ nhật tâm O , AB a , BC a Tam giác ASO cân S , SAD ABCD , góc SD ABCD 60 Tính khoảng cách hai đường thẳng SB AC A a B C a D a a 2 Đáp án : đáp án D 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường Đối với học sinh: Trong q trình dạy học tơi nhắc nhở em phải nắm định nghĩa, phải biết cách sử dụng có hiệu định lí Khi giải tốn khoảng cách cần trọng đến khâu vẽ hình, cần quan tâm đến toán đặc biệt để từ có nhìn tổng thể tốn tính khoảng cách Do em biết tính khoảng cách từ điểm tới mặt, khoảng cách từ điểm tới đường thẳng, khoảng cách hai đường thẳng chéo 19 toán Các em học sinh có học lực giải tốn khó Trong kiểm tra chương III - Hình học 11 Nâng Cao năm học 20162017, lớp 11A2 có 93 % em đạt kết trung bình có 80% đạt kết giỏi, lớp 11A8 có 90 % em đạt kết trung bình có 78% đạt kết giỏi Trong kiểm tra chương III - Hình học 11 Nâng Cao năm học 2017-2018, lớp 11A6 có 95% em đạt kết trung bình có 82% đạt kết giỏi Bên cạnh kì thi học sinh giỏi cấp trường kì thi bồi dưỡng phần đa em tính tốn khoảng cách từ có kết cao kì thi - Đối với thân: Đã có tích lũy kiến thức phương pháp dạy học Tùy đối tượng học sinh, đối tượng có phương pháp khác Qua có phương pháp giảng dạy đạt hiệu rõ rệt - Đối với đồng nghiệp: Đề tài nguồn tham khảo hữu ích, nội dung, ý tưởng số ý kiến phân tích, lập luận tác giả q trình trình bày ví dụ để hoàn thiện ý tưởng, giáo án giảng dạy PHẦN KẾT LUẬN VÀ ĐỀ XUẤT Kết luận: Hình học khơng gian vấn đề quan trọng thiếu đề thi đại học, cao đẳng, trung học chuyên nghiệp Đặc biệt đề thi ln có phần quan hệ vng góc ứng dụng để giải tốn liên quan Vì giúp học sinh có kĩ giải tốn hình học khơng gian nhiệm vụ quan trọng Các em học sinh muốn có kĩ giải tốt tốn quan hệ vng góc em phải nắm vững lí thuyết, dạng tốn phương pháp giải dạng tốn Trên số kinh nghiệm thân tơi rút q trình dạy học tốn tính khoảng cách Bài tập hình học khơng gian tương đối khó phức tạp Thơng qua dạng tốn, phương pháp giải ví dụ hi vọng phần giúp em học sinh có kĩ giải tốn tính khoảng cách tiền đề để sau em giải tốt toán tính thể tích Kiến nghị: Nhằm giúp học sinh học tốt phần quan hệ vng góc khơng gian tơi kiến nghị: -Trong phân phối chương trình lớp 11 số tiết học đặc biệt số tiết luyện tập tơi kiến nghị tăng số tiết cho chương học - Trong trình dạy học phần đề nghị giáo viên nêu dạng toán phương giải dạng toán đó, đặc biệt phải rèn luyện kĩ dựng hình cho học sinh Trong khn khổ hạn hẹp đề tài, với lực có hạn thân khơng tránh khỏi thiếu sót, mong góp ý, chia sẻ đồng nghiệp học sinh 20 Tôi xin cam đoan với Hội đồng khoa học nhà trường THPT Hậu Lộc 1, Hội đồng khoa học Sở GD&ĐT Thanh Hóa, Sáng kiến kinh nghiệm tơi viết từ kinh nghiệm giảng dạy thân, không chép từ tài liệu Tơi xin chịu hồn tồn trách nhiệm với lời cam đoan Trân trọng cảm ơn! XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh Hóa, ngày 20 2018 tháng năm Phạm Tiến Hùng 21 ... tổng thể tốn tính khoảng cách Do em biết tính khoảng cách từ điểm tới mặt, khoảng cách từ điểm tới đường thẳng, khoảng cách hai đường thẳng chéo 19 toán Các em học sinh có học lực giải tốn khó... trình dạy học tốn tính khoảng cách Bài tập hình học khơng gian tương đối khó phức tạp Thơng qua dạng tốn, phương pháp giải ví dụ hi vọng phần giúp em học sinh có kĩ giải tốn tính khoảng cách tiền... đưa cách giải toán phương pháp phù hợp 2.2 Thực trạng vấn đề Xuất phát từ việc dạy phân mơn hình học lớp 11 nâng cao, cụ thể tốn tính khoảng cách Đối với dạng toán mục tiêu học sinh biết cách

Ngày đăng: 20/07/2020, 07:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w