1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi chọn HSG thành phố toán 12 năm 2019 2020 sở GD đt hà nội

10 62 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 413,08 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI CHỌN HỌC SINH GIỎI THÀNH PHỐ HÀ NỘI LỚP 12 THPT NĂM HỌC 2019 - 2020 ĐỀ CHÍNH THỨC Mơn thi: TỐN Ngày thi: 03 tháng 10 năm 2019 Thời gian làm bài: 180 phút (đề thi gồm 01 trang) Bài I (4 điểm) 3  Cho hàm số y  x3  x  (m  4) x  m  có đồ thị  Cm  điểm M  2;   Tìm m để đường 2  thẳng y  x  cắt  Cm  ba điểm phân biệt A(1; 0) , B, C cho MBC tam giác Bài II (5 điểm) 1) Giải phương trình: x  22 x  29  x   2 x   x  y 3   y  x 3   x  x    y  y  2) Giải hệ phương trình:  4 2 8 x  y  x  y   16 xy ( x  y ) Bài III (3 điểm) Cho dãy số  un  xác định u1  u  1 , un 1  n ; n  1, 2,  un 1) Chứng minh  un  dãy số bị chặn 2) Chứng minh 1    22020 u1 u2 u2019 Bài IV (6 điểm) 1) Trong mặt phẳng tọa độ Oxy cho hình vng ABCD tâm I với M, N (1; 1) trung điểm đoạn thẳng IA, CD Biết điểm B có hồnh độ dương đường thẳng MB có phương trình x  y   , tìm tọa độ điểm C 2) Cho hình chóp S.ABC có CA  CB  , AB  , SAB tam giác đều, mp ( SAB )  mp ( ABC ) Gọi D chân đường phân giác hạ từ đỉnh C tam giác SBC a) Tính thể tích khối chóp D.ABC b) Gọi M điểm cho góc tạo mặt phẳng (MAB), (MBC), (MCA) với mặt phẳng (ABC)     Tìm giá trị nhỏ MA  MB  4MS  MC Bài V (2 điểm) Xét số thực dương a, b, c thỏa mãn a  b  c  Tìm giá trị lớn của: P  a  b3  c3  3   a b c - HẾT - NHĨM TỐN VD – VDC Đ thi h c sinh gi i l p 12 KỲ THI CHỌN HSG THÀNH PHỐ ĐỀ CHÍNH THỨC LỚP 12 THPT (Đề thi có 01 trang) NĂM HỌC 2019 - 2020 Ngày thi : 3/10/2019 MƠN: TỐN Thời gian: 180 phút Họ tên: SBD: Bài I (4 điểm) 3  Cho hàm số y  x  3x   m   x  m  có đồ thị  Cm  điểm M  2;   Tìm m để đường thẳng 2   d  : y  x  cắt  Cm  ba điểm phân biệt A  1;0  , B, C cho MBC tam giác Bài II NHĨM TỐN VD – VDC SỞ GD&ĐT HÀ NỘI (5 điểm) 1) Giải phương trình x  22 x  29  x   2 x   x  y 3   y  x 3   x  x    y  y   2) Giải hệ phương trình  8 x  y  x  y   16 xy  x  y  Bài III (3 điểm) Cho dãy số  un  xác định u1  u2 1 1 , un 1  n ; n  1, 2,3 un 1) Chứng minh  un  dãy số bị chặn 1     22020 u1 u2 u2019 Bài IV (6 điểm) 1) Trong mặt phẳng tọa độ Oxy cho hình vng ABCD tâm I với M , N (1; 1) trung điểm đoạn thẳng IA, CD Biết điểm B có hồnh độ dương đường thẳng MB có phương trình x  y   0, tìm tọa độ điểm C 2) Cho hình chóp S ABC có CA  CB  2, AB  , mặt bên ABC tam giác nằm mặt phẳng vng góc với mặt phẳng  ABC  Gọi D chân đường phân giác góc C tam giác SBC a Tính thể tích khối chóp D ABC b Gọi M điểm cho góc tạo mặt phẳng  MAB  ,  MBC  ,  MCA  với mặt phẳng  ABC  Tìm giá trị nhỏ MA  MB  MS  MC Bài V (2 điểm) Xét số thực dương a, b, c thỏa mãn a + b + c = Tìm giá trị lớn biểu thức: P = a + b3 + c3 − 3 − − a b c - HẾT - https://www.facebook.com/groups/toanvd.vdc Trang NHĨM TỐN VD – VDC 2) Chứng minh NHĨM TỐN VD – VDC SỞ GD&ĐT HÀ NỘI Đ thi h c sinh gi i l p 12 HƯỚNG DẪN GIẢI ĐỀ CHÍNH THỨC (4 điểm) 3  Cho hàm số y  x  3x   m   x  m  có đồ thị  Cm  điểm M  2;   Tìm m để đường thẳng 2   d  : y  x  cắt  Cm  ba điểm phân biệt A  1;  , B, C cho MBC tam giác Lời giải Phương trình hồnh độ giao điểm: x3  3x   m   x  m   x   x3  3x   m   x  m  (1) NHĨM TỐN VD – VDC Bài I   x  1  x  x  m    x  1   x  2x  m  2 +)  d  cắt  Cm  ba điểm phân biệt    có hai nghiệm phân biệt, khác 1     m    m  * 1  m  +) Gọi A  1;0  , B  x1; x1   , C  x2 ; x2   tọa độ ba giao điểm  d   Cm   x1 , x2 hai nghiệm phương trình   NHĨM TOÁN VD – VDC  x12  x1   m  x1  x2  2 Theo Viet, có    x2  x2   m  x1.x2  m x x  Cách 1: Gọi I trung điểm BC  I  ; x1  x2    I  1;    3  Ta có MI   3;  ; BC   x2  x1 ;  x2  x1   2   MI BC  hay MBC tam giác cân M Do MBC tam giác  MI  MB  MI  3MB 2  7    45   x1     x1     x12  x1     x12  x1        m (Thỏa mãn (*)) https://www.facebook.com/groups/toanvd.vdc Trang NHĨM TỐN VD – VDC Đ thi h c sinh gi i l p 12 Vậy m  NHĨM TỐN VD – VDC 2  MB  MC Cách 2: MBC tam giác  MB  MC  BC   2  MB  BC 2  7 7 2   x   x   x   x           2 2     7 2    x1     x1     x2  x1    x2  x1   5  x12  x22   10  x1  x2   5  x1  x2  x1  x2        65 4 x2  x1 x2  x1  13    x12  x1 x2  x22  5 x1  10 x1    x1  x2    ld   (vì x1  x2 ) x  x  x  x  x x  13      2 2   4m  16  8m  13   m  (thỏa mãn (*)) Vậy m  Bài II (5 điểm) Điều kiện : x   x  22 x  29  x   2 x  Lời giải NHĨM TỐN VD – VDC 1) Giải phương trình Khi phương trình *  x  22 x  29  x  x    x   x    x  3   x  3   x   x    x    Đặt t  x   t    3t   x   t   x   2 t  x  0   x2 t    x  2  x  2   x  1 (thỏa mãn điều Với t  x   x   x     2 2 x   x  x  x  2x   kiện) Với t  x    x  2 x2  x  2  2x   x      (Thỏa x  14 x  23  9  x    x  x  x      mãn điều kiện) https://www.facebook.com/groups/toanvd.vdc Trang NHĨM TỐN VD – VDC  Đ thi h c sinh gi i l p 12  Vậy tập nghiệm phương trình S  1;  NHĨM TỐN VD – VDC  x  y 3   y  x 3   x  x    y  y   2) Giải hệ phương trình  8 x  y  x  y   16 xy  x  y  Lời giải  x  y  a Đặt  thay vào phương trình hệ thu  y  x  b 1  a3  b3   a  b      x  x y  y  y  xy  x     a  b    a  b   a  ab  b    a  b    2 a  b   a  b   TH1  ab a  b   x  y    x  y  Vậy ta có nghiệm Với x  y  y  x       x  y  1 1  3 3   ;   ;  2 2  2  NHĨM TỐN VD – VDC 39   a  ab  b  ab  69   TH2    a  2ab  b    ( loại) a  b  a  b    1 1  3 3  Vậy hệ phương trình cho có nghiệm  ;   ;  2 2  2  Bài III (3 điểm) Cho dãy số  un  xác định u1  u2 1 1 , un 1  n ; n  1, 2,3 un 1) Chứng minh  un  dãy số bị chặn 2) Chứng minh 1     22020 u1 u2 u2019 Lời giải un21   un 1   0; n  2,3,  un  bị chặn 1) Ta có u1    u1  , un  un1 un 1   https://www.facebook.com/groups/toanvd.vdc Trang NHÓM TỐN VD – VDC Lại có un21    un 1  un    tan , u2  tan  tan un 1 u n 1 1 1  1; n  1,  un  bị chặn suy 1 1 cos   Ta chứng minh quy nạp un  tan  3.2n  cos tan 1    sin    2sin 2sin  12  12 cos   tan  un  bị chặn NHĨM TỐN VD – VDC 2) u1  Đ thi h c sinh gi i l p 12  12 12 , n  1, Dễ thấy mệnh đề với n  Giả sử mệnh đề với n  k  tức uk  tan  3.2k ta chứng minh mệnh đề với n  k  Thậ uk2   uk 1   uk tan  3.2 tan n 1 1   3.2 cos n 1  3.2 tan n  3.2n  cos   3.2n  tan   3.2n1 sin n 3.2   Lại có bất đẳng thức tan x  x, x   0;   2 hay 1    , x   0;  Áp dụng ta tan x x  2 1 1 1 3           22  22019    22019  1  22020   u1 u2 u2019 tan   tan tan 2019  3.2 3.2 3.2 Bài IV (6 điểm) 1) Trong mặt phẳng tọa độ Oxy cho hình vng ABCD tâm I với M , N (1; 1) trung điểm đoạn thẳng IA, CD Biết điểm B có hồnh độ dương đường thẳng MB có phương trình x  y   0, tìm tọa độ điểm C Lời giải https://www.facebook.com/groups/toanvd.vdc Trang NHÓM TOÁN VD – VDC     Thật vậy: xét hàm số f  x   tan x  x liên tục 0;  có f   x     0, x   0;  nên hàm cos x  2  2     số đồng biến 0;  Do x   0;  suy f  x   f    tan x  x  2  2 NHĨM TỐN VD – VDC Đ thi h c sinh gi i l p 12 NHĨM TỐN VD – VDC +) Gọi hình vng ABCD có cạnh 5 Khi ta có BN  ; BM  BI  MI  ; MN  MC  CN  2CM CN co s 45o  8  BN  BM  MN  BMN vuông M +) Đường thẳng MN qua N (1; 1) vng góc với đường thẳng BM : x  y   có phương trình x  y   x  3y   x    M (0; 2) Tọa độ điểm M nghiệm hệ phương trình  3 x  y   y  +) Gọi B (3 y o  6; y o ), y o   yo  (tm) Khi MB  MN  (3 yo  6)  (yo  2)2  10    yo  (ktm) Với yo   xo   B (3;3) NHĨM TỐN VD – VDC Cách Ta có BN  20  BC  phương trình đường thẳng BN : x  y   Gọi (C1 ) đường tròn đường kính BN : (x  2)  (y  1)2  (C2 ) đường tròn tâm B bán kính BC : (x  3)  (y  3)  16 (x  2)  (y  1)2  Tọa độ C nghiệm hệ phương trình  2 (x  3)  (y  3)  16   y  1   y  C  3; 1 x  1 y        1  2 C ; (1  y  2)  (y  1)   x    5   1  x   Mà C M nằm phía BN , nên tọa độ cần tìm C  3; 1 Cách Gọi J giao điểm BN CM, J trọng tâm tam giác BCD, BJ  https://www.facebook.com/groups/toanvd.vdc BN Trang NHÓM TOÁN VD – VDC Đ thi h c sinh gi i l p 12 2 Lại có CJ  CI  CM  CM  C (3; 1) 3 2) Cho hình chóp S ABC có CA  CB  2, AB  , mặt bên ABC tam giác nằm mặt phẳng vng góc với mặt phẳng  ABC  Gọi D chân đường phân giác góc C tam giác SBC a Tính thể tích khối chóp D ABC b Gọi M điểm cho góc tạo mặt phẳng  MAB  ,  MBC  ,  MCA  với mặt phẳng  ABC  NHĨM TỐN VD – VDC   xJ   (1  3) 5 1  J ;  3 3  y   (1  3) J  Tìm giá trị nhỏ MA  MB  MS  MC Lời giải NHĨM TỐN VD – VDC Gọi H trung điểm AB Ta có điều sau: + SH   ABC  + Tam giác CAB vuông cân C + Tam giác SCA, SCB cân S + CH  1, SH  +  SCH  mặt phẳng đối xứng hình chóp S ABC a Ta có VD ABC DB VD ABC DB CB     VS ABC SB VS ABC  VD ABC DS CS 2 2 11 VS ABC     22 2 3 2 3  b Gọi N hình chiếu M  ABC  Do tính đối xứng hình chóp S ABC qua  SCH  Tức VD ABC    nên M   SCH  , tức N  CH https://www.facebook.com/groups/toanvd.vdc Trang NHÓM TOÁN VD – VDC Đ thi h c sinh gi i l p 12 Do góc tạo  MAB  ,  MBC  ,  MCA  với  ABC  nên khoảng cách từ N đến MA  MB  MS  MC  MH  2CS  MF Dựng hình chữ nhật NN ' FG với N ', G thuộc MN , CH Ta thấy MF nhỏ MF  NG   CN   1  x   3 2 1 64 1 Tóm lại, giá trị nhỏ MA  MB  MS  MC NHĨM TỐN VD – VDC cạnh tam giác ABC nhau, gọi khoảng cách x ta  x  x Tìm x 1 Gọi E đối xứng C qua S , dựng hình bình hành CHFE ta Bài V (2 điểm) Xét số thực dương a, b, c thỏa mãn a + b + c = Tìm giá trị lớn biểu thức: P = a + b3 + c3 − 3 − − a b c Lời giải + Do vai trò a, b, c nên ta giả sử a  b  c a  b  c   a  , b  c   a  mà b  c  bc  bc  + Xét P = f (a, b, c) = a + b + c − 3 − − ta chứng minh: f (a, b, c) ≤ a b c  b + c b + c   f a, ,  2  3 3 b + c  4b + 4c − (b + c ) 12bc − (b + c ) 3 12 3   − ⇔ b + c − − ≤  ⇔ + ≤0    b c b +c bc (b + c ) ⇔ ( ⇔ ) (b + c ) b − bc + c − (b + c ) (b + c )(b − c ) − (b − c ) bc (b + c ) ≤0 −   (b + c ) ≤0 ≤ ⇔ (b − c )  −  bc (b + c ) bc (b + c )     (b − c )  2  ⇔ (b − c ) bc (b + c ) − 4 ≤ ⇔ bc (b + c ) − ≤ (đúng b  c  2; bc  )   + Đặt t = b +c ⇒ b + c = 2t ⇒ a = − 2t  b + c b + c  3  = g (t ) = (3 − 2t ) + 2t − ⇒ f a, , − ,  t 1 2  − 2t t  https://www.facebook.com/groups/toanvd.vdc Trang NHĨM TỐN VD – VDC b + c  b + c  3 3 6  +   − − ⇔ a + b + c − − − ≤ a +  −  a b c a b +c b +c     NHĨM TỐN VD – VDC Đ thi h c sinh gi i l p 12 ⇒ g ′ (t ) = −6 (3 − 2t ) + 6t − 2 (3 − 2t ) (t − 1) (−2t + 1)(t − 3)(−2t ⇒ g ′ (t ) = t (3 − 2t ) 2 NHĨM TỐN VD – VDC      2  + = − (3 − 2t ) + t  1 − 2    t t (3 − 2t )    ) + 3t + 2  − (3 − 2t ) + t =  1 ⇒ g ′ (t ) = ⇔  ⇔t = =0 1 − 2  t − t ( )  BBT:  max g  t     0;1 21 21  P  f  a; b; c   g  t    4 Dấu xảy a  2; b  c  21 hoán vị  max P  max f  a; b; c    - HẾT - NHĨM TỐN VD – VDC https://www.facebook.com/groups/toanvd.vdc Trang ...NHĨM TỐN VD – VDC Đ thi h c sinh gi i l p 12 KỲ THI CHỌN HSG THÀNH PHỐ ĐỀ CHÍNH THỨC LỚP 12 THPT (Đề thi có 01 trang) NĂM HỌC 2019 - 2020 Ngày thi : 3/10 /2019 MƠN: TỐN Thời gian: 180... tan  3.2n  cos tan 1    sin    2sin 2sin  12  12 cos   tan  un  bị chặn NHĨM TỐN VD – VDC 2) u1  Đ thi h c sinh gi i l p 12  12 12 , n  1, Dễ thấy mệnh đề với n  Giả sử mệnh... 0;  Áp dụng ta tan x x  2 1 1 1 3           22  22019    22019  1  22020   u1 u2 u2019 tan   tan tan 2019  3.2 3.2 3.2 Bài IV (6 điểm) 1) Trong mặt phẳng tọa độ Oxy

Ngày đăng: 03/07/2020, 22:16

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN