1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn sư phạm Một số kết quả về tích hai hàm suy rộng theo nghĩa Mikusinski

30 28 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ ❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ❍⑨ ◆❐■ ✷ ❑❍❖❆ ❚❖⑩◆ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯ P❍Ị◆● ❚❍➚ ❚❍❯ ▼❐❚ ❑➌❚ ◗❯❷ ❱➋ ❚➑❈❍ ❍❆■ ❍⑨▼ ❙❯❨ ❘❐◆● ❚❍❊❖ ◆●❍➒❆ ▼■❑❯❙■◆❙❑■ ❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P ✣❸■ ❍❖❈ ữớ ữợ ❚✳❙ ❚❸ ◆●➴❈ ❚❘➑ ❍⑨ ◆❐■ ✲ ✷✵✶✸ ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ ✶ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ ▲❮■ ❈❷▼ ❒◆ ❚r♦♥❣ q✉→ tr➻♥❤ ❤♦➔♥ t❤➔♥❤ ❦❤â❛ ❧✉➟♥✱ tỉ✐ ✤➣ ♥❤➟♥ ✤÷đ❝ sü ❝❤➾ ❜↔♦ ✈➔ ❣✐ó♣ ✤ï t➟♥ t➻♥❤ ❝õ❛ t❤➛② ❣✐→♦✿ ❚✳❙ ❚❸ ◆●➴❈ ❚❘➑✱ ✤÷đ❝ ❝→❝ t❤➛② ❝ỉ tr♦♥❣ ❦❤♦❛ ❚♦→♥✲ ❚r÷í♥❣ ✣↕✐ ❤å❝ s÷ ♣❤↕♠ ❍➔ ◆ë✐ ✷ ❣✐ó♣ ✤ï ♥❤✐➺t t➻♥❤ tr♦♥❣ q✉→ tr➻♥❤ t➻♠ ✈➔ t❤✉ t❤➟♣ t➔✐ ❧✐➺✉ ♥❣❤✐➯♥ ❝ù✉✳ ❇➯♥ ❝↕♥❤ ✤â✱ tỉ✐ ❝á♥ ♥❤➟♥ ✤÷đ❝ sü q✉❛♥ t➙♠ ✤ë♥❣ ✈✐➯♥ tø ♣❤➼❛ ❣✐❛ ✤➻♥❤✱ ❜↕♥ ❜➧✳ ❊♠ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ s➙✉ s➢❝ tợ ữớ t t ❜↔♦✱ ❣✐ó♣ ✤ï ✤➸ ❡♠ ❤♦➔♥ t❤➔♥❤ ❦❤â❛ ❧✉➟♥ ❝õ❛ ♠➻♥❤✳ ❈❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❣✐❛ ✤➻♥❤✱ ❜↕♥ ❜➧✱ ♥❤ú♥❣ ♥❣÷í✐ ✤➣ ❧✉ỉ♥ ð ❜➯♥✱ õ♥❣ ❤ë✱ ✤ë♥❣ ✈✐➯♥ tỉ✐ tr♦♥❣ s✉èt t❤í✐ ❣✐❛♥ ❤å❝ t➟♣✦ ❍➔ ♥ë✐✱ t❤→♥❣ ✵✺ ♥➠♠ ✷✵✶✸ ❙✐♥❤ ✈✐➯♥ P❤ò♥❣ ❚❤à ❚❤✉ ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ ✷ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❈❤✉②➯♥ t ữợ sỹ ữợ ❝õ❛ ❚❙✳ ❚❸ ◆●➴❈ ❚❘➑✱ ❝ị♥❣ ✈ỵ✐ sü ❝è ❣➢♥❣ ♥é ❧ü❝ ❝õ❛ ❜↔♥ t❤➙♥✱ tæ✐ ✤➣ ❤♦➔♥ t❤➔♥❤ ❜➔✐ ❑❤â❛ ❧✉➟♥ ❝õ❛ ♠➻♥❤✳ ❚r♦♥❣ q✉→ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉✱ tæ✐ ❝â t❤✉ t❤➟♣ ✈➔ t❤❛♠ ❦❤↔♦ ♠ët sè t➔✐ ❧✐➺✉ ✤➣ ♥➯✉ tr♦♥❣ ♠ư❝ t➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦✳ ❚ỉ✐ ①✐♥ ❝❛♠ ✤♦❛♥ ♥❤ú♥❣ ❦➳t q✉↔ tr♦♥❣ ❑❤â❛ ❧✉➟♥ ❧➔ ❦➳t q✉↔ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ tỉ✐✱ ❦❤ỉ♥❣ trị♥❣ ✈ỵ✐ ❦➳t q✉↔ ❝õ❛ t→❝ ❣✐↔ ❦❤→❝✳ ◆➳✉ s❛✐✱ tæ✐ ①✐♥ ❝❤à✉ ❤♦➔♥ t♦➔♥ tr→❝❤ ♥❤✐➺♠✳ ❍➔ ◆ë✐✱ t❤→♥❣ ✵✺ ♥➠♠ ✷✵✶✸ ❙✐♥❤ ✈✐➯♥ P❤ò♥❣ ❚❤à ❚❤✉ ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ ✸ ❑✸✺●✲ ❙P ❚♦→♥ ▼ö❝ ❧ö❝ ✶ ❑❍➷◆● ●■❆◆ ❍⑨▼ ❚❍Û ✶✳✶ ▼ët ✈➔✐ ❦➼ ❤✐➺✉ ✈➔ ❦❤→✐ ♥✐➺♠✳ ✶✳✶✳✶ ▼ët ✈➔✐ ❦➼ ❤✐➺✉✳ ✳ ✳ ✳ ✳ ✶✳✶✳✷ ▼ët ✈➔✐ ❦❤→✐ ♥✐➺♠✳ ✳ ✳ ✶✳✷ ❑❤æ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ t❤û✳ ✳ ✳ ✳ ✷ ✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❑❍➷◆● ●■❆◆ ❍⑨▼ ❙❯❨ ❘❐◆● ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼ ✼ ✽ ✾ ✶✸ ✷✳✶ ❑❤æ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ s✉② rë♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸ ✷✳✷ ✣↕♦ ❤➔♠ ❝õ❛ ❤➔♠ s✉② rë♥❣✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻ ✷✳✸ ❑❤æ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ ❣✐↔♠ ♥❤❛♥❤ ✈➔ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ s✉② rë♥❣ t➠♥❣ ❝❤➟♠✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✾ ✸ ❚➑❈❍ ❈❍❾P ❈Õ❆ ❍❆■ ❍⑨▼ ❙❯❨ ❘❐◆● ❚❍❊❖ ◆●❍➒❆ ▼■❑❯❙■◆✲ ❙❑■ ✷✶ ✸✳✶ ❚➼❝❤ ❝❤➟♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✶ ✸✳✷ ❚➼❝❤ ❝❤➟♣ ▼✐❦✉s✐♥s❦✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✹ ✹ ❑❤â❛ ❧✉➟♥ tèt t ỵ ❞♦ ❝❤å♥ ✤➲ t➔✐✳ ❑➸ tø ❦❤✐ r❛ ✤í✐ ✈➔♦ t❤➳ ❦➾ ❳❳✱ ❤➔♠ s✉② rë♥❣ ✤➣ ❣â♣ ♣❤➛♥ q✉❛♥ trå♥❣ tr♦♥❣ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ✈➲ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ t✉②➳♥ t➼♥❤✳ ❉♦ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ ♥â✐ ❝❤✉♥❣✱ ✈➔ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r t t õ r tữớ ổ tỗ t t ❝ö❝✱ ♥➯♥ ♥❤✉ ❝➛✉ ♠ð rë♥❣ ❦❤→✐ ♥✐➺♠ ♥❣❤✐➺♠ ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ ♥❣➔② ❝➔♥❣ trð ♥➯♥ ❝➜♣ t❤✐➳t✳ ❱ỵ✐ ♥❤ú♥❣ ♥❣❤✐➯♥ ❝ù✉ ✈➔ ✤â♥❣ ❣â♣ ❝õ❛ ❏✳▼✐❦✉s✐♥s❦✐ ✈➲ ❝→❝❤ t➼♥❤ t➼❝❤ ❝õ❛ ❤❛✐ ❤➔♠ s✉② rë♥❣✱ ✤➣ qt ữủ ỳ ỵ t❤✉②➳t ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ t✉②➳♥ t➼♥❤✳ ❚ỉ✐ ♠♦♥❣ ♠✉è♥ ✤÷đ❝ t➻♠ ❤✐➸✉ ✈➲ ❦➳t q✉↔ ♠➔ ❏✳▼✐❦✉s✐♥s❦✐ ✤➣ ✤↕t ✤÷đ❝ ✈➲ t➼❝❤ ❝õ❛ ❤❛✐ ❤➔♠ s✉② rë♥❣✳ ❱➻ ✈➟② tæ✐ ✤➣ ❝❤å♥ ✤➲ t➔✐✿ ✧▼❐❚ ❑➌❚ ◗❯❷ ❱➋ ❚➑❈❍ ❈Õ❆ ❍❆■ ❍⑨▼ ❙❯❨ ❘❐◆● ❚❍❊❖ ◆●❍➒❆ ▼■❑❯❙■◆❙❑■✧ ✷✳ ự ữợ q ợ ♥❣❤✐➯♥ ❝ù✉ ❦❤♦❛ ❤å❝✳ ❚ø ✤â ❤➻♥❤ t❤➔♥❤ t÷ ❞✉② ❧♦❣✐❝ ✤➦❝ t❤ị ❝õ❛ ❜ë ♠ỉ♥ ✈➔ t➻♠ ❤✐➸✉ ✈➲ t➼❝❤ ❤❛✐ ❤➔♠ s✉② rë♥❣ t❤❡♦ q✉❛♥ ✤✐➸♠ ❝õ❛ ❏✳▼✐❦✉s✐♥s❦✐✳ ✸✳ ◆❤✐➺♠ ✈ư ♥❣❤✐➯♥ ❝ù✉ ✲ ◆❣❤✐➯♥ ❝ù✉ ✈➲ ❦❤ỉ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ s✉② rë♥❣✳ ✲ ◆❣❤✐➯♥ ❝ù✉ ✈➲ t➼❝❤ ❝❤➟♣ ✈➔ t➼❝❤ ❝❤➟♣ ❝õ❛ ❤❛✐ ❤➔♠ s✉② rë♥❣ t❤❡♦ ♥❣❤➽❛ ▼✐❦✉s✐♥s❦✐✳ ✹✳ P❤÷ì♥❣ ♣❤→♣ ♥❣❤✐➯♥ ❝ù✉ ✲ P❤÷ì♥❣ ♣❤→♣ ♣❤➙♥ t➼❝❤✱ tê♥❣ ❤ñ♣✳ ✲ ✣å❝ ✈➔ tr❛ ❝ù✉ t➔✐ ❧✐➺✉✳ ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ ✺ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ ✺✳ ❈➜✉ tró❝ õ õ ỗ ữỡ ữỡ ổ tỷ ữỡ ợ t❤✐➺✉ ♠ët sè ❦➼ ❤✐➺✉ ✈➔ ❦❤→✐ ♥✐➺♠ ❝â tr♦♥❣ ♥ë✐ ❞✉♥❣ ❦❤â❛ ❧✉➟♥✳ ✲ ◆➯✉ ✤à♥❤ ♥❣❤➽❛ ✈➔ ❝→❝ t➼♥❤ ❝❤➜t ❝õ❛ ❦❤ỉ♥❣ ❣✐❛♥ ❤➔♠ t❤û D (Ω)✳ ❈❤÷ì♥❣ ✷✿ ❑❤æ♥❣ ❣✐❛♥ ❤➔♠ s✉② rë♥❣ ✲ ◆➯✉ ✤à♥❤ ♥❣❤➽❛✱ t➼♥❤ ❝❤➜t ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ ❤➔♠ s✉② rë♥❣✳ ✲ ◆➯✉ ✤à♥❤ ♥❣❤➽❛ ✈➲ ✤↕♦ ❤➔♠ ❝õ❛ ❤➔♠ s✉② rë♥❣✳ ✲ ◆➯✉ ✤à♥❤ ♥❣❤➽❛ ✈➔ t➼♥❤ ❝❤➜t ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ ❣✐↔♠ ♥❤❛♥❤ ✈➔ ❝→❝ ❤➔♠ t➠♥❣ ❝❤➟♠✳ ❈❤÷ì♥❣ ✸✿ ❚➼❝❤ ❝❤➟♣ ❝õ❛ ❤❛✐ ❤➔♠ s✉② rë♥❣ t❤❡♦ ♥❣❤➽❛ ▼✐❦✉s✐♥s❦✐ ✲ ◆➯✉ ✤à♥❤ ♥❣❤➽❛ ✈➔ t➼♥❤ ❝❤➜t ❝õ❛ ♣❤➨♣ t♦→♥ t➼❝❤ ❝❤➟♣ ❣✐ú❛ ❝→❝ ❤➔♠ ❝ì ❜↔♥ ✈ỵ✐ ❤➔♠ s✉② rë♥❣ ✈➔ ❣✐ú❛ ❝→❝ ❤➔♠ s✉② rë♥❣✳ ✲ ◆➯✉ ✤à♥❤ ♥❣❤➽❛ ✈➲ t➼❝❤ ❤❛✐ ❤➔♠ s✉② rë♥❣ ❝õ❛ ❏✳▼✐❦✉s✐♥s❦✐✳ ❙✈✿ P❤ị♥❣ ❚❤à ❚❤✉ ✻ ❑✸✺●✲ ❙P ❚♦→♥ ❈❤÷ì♥❣ ✶ ❑❍➷◆● ●■❆◆ ❍⑨▼ ❚❍Û ✶✳✶ ✶✳✶✳✶ ▼ët ✈➔✐ ❦➼ ❤✐➺✉ ✈➔ ❦❤→✐ ♥✐➺♠✳ ▼ët ✈➔✐ ❦➼ ❤✐➺✉✳ Zn+ := {x = (x1 , x2 , , xn ), xi ∈ Z+ , i = 1, 2, , n}✳ Rn := {x = (x1 , x2 , , xn ), xi ∈ R, i = 1, 2, , n}✳ C(Ω)✿ t➟♣ ❝→❝ ❤➔♠ ❧✐➯♥ tö❝ tr➯♥ Ω✳ C k (Ω)✿ t➟♣ ❝→❝ ❤➔♠ ❦❤↔ ✈✐ ❧✐➯♥ tư❝ tỵ✐ ❝➜♣ ❦ tr➯♥ Ω✳ C ∞ (Ω)✿ t➟♣ ❝→❝ ❤➔♠ ❦❤↔ ✈✐ ✈æ ❤↕♥✱ ❧✐➯♥ tö❝ tr➯♥ Ω✳ LP (Ω)✿ t➟♣ ❝→❝ ❤➔♠ ❢ ✤♦ ✤÷đ❝ t❤❡♦ ♥❣❤➽❛ ▲❡❜❡s❣✉❡ tr♦♥❣ Ω s❛♦ ❝❤♦✿ f = Ω |f (x)| p p s t❤➻ E ⊂ tV ✳ ◆➳✉ ❣è❝ θ ❝è ♠ët ❧➙♥ ❝➟♥ ❜à ❝❤➦♥ t❤➻ ❦❤ỉ♥❣ ❣✐❛♥ ❳ ✤÷đ❝ ❣å✐ ❧➔ ❜à ❝❤➦♥ ✤à❛ ♣❤÷ì♥❣✳ ▼ët t➟♣ ❤đ♣ E ⊂ X ❝õ❛ ❦❤ỉ♥❣ ❣✐❛♥ ✈❡❝tì tỉ♣ỉ ❳ ✤÷đ❝ ❣å✐ ❧➔ t➟♣ ❤ót ♥➳✉ ∀x ∈ X, ∃t = t(x) = s❛♦ ❝❤♦ x ∈ tE ✳ ◆➳✉ ∀α ∈ C ♠➔ |α| < 1✱ t❛ ❝â αE ⊂ E t❤➻ ❊ ✤÷đ❝ ❣å✐ ❧➔ t➟♣ ❝♦♥ ❝➙♥ ✤è✐ ❝õ❛ ❳✳ ▼ët ❦❤ỉ♥❣ ❣✐❛♥ ✈❡❝tì tỉ♣ỉ ❳ ❣å✐ ❧➔ ❦❤ỉ♥❣ ỗ ữỡ õ ởt ỡ s ố ỗ t ỳ t ỗ ởt ổ ỗ ữỡ ữủ ổ ❣✐❛♥ F rechet ♥➳✉ ♥â ❧➔ ❦❤æ♥❣ ❣✐❛♥ ♠❡tr✐❝ ✤õ ✈ỵ✐ ♠❡tr✐❝ ❝↔♠ s✐♥❤ d t❤ä❛ ♠➣♥ d(x + z, y + z) = d(x, y)✭d ❜➜t ❜✐➳♥ ✈ỵ✐ ♣❤➨♣ tà♥❤ t✐➳♥✮✳ ▼ët ❦❤ỉ♥❣ ❣✐❛♥ ✈❡❝tì tỉ♣ỉ ❳ ❣å✐ ❧➔ ❝â t➼♥❤ ❝❤➜t Heine − borel✱ ♥➳✉ ♠å✐ t➟♣ ❝♦♥ ✤â♥❣ ✈➔ ❜à ❝❤➦♥ ❝õ❛ ❳ ✤➲✉ ❧➔ t➟♣ ❝♦♠♣❛❝t✳ ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ ✽ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✶✳✷ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ ❑❤æ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ t❤û✳ ❈❤♦ ❑ ❧➔ t➟♣ ❝♦♠♣❛❝t tr♦♥❣ R✱ DK ❦➼ ❤✐➺✉ ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❝õ❛ t➜t ❝↔ ❝→❝ ❤➔♠ f ∈ C ∞ (Rn ) s❛♦ ❝❤♦ suppf ⊆ K ✳ ◆➳✉ K ⊂ Ω t❤➻ DK = {f ∈ C ∞ (Ω) : suppf ⊆ K} ✣➸ ①➙② ❞ü♥❣ tæ♣æ τ tr➯♥ C ∞(Ω) s❛♦ ❝❤♦ C ∞(Ω) trð t❤➔♥❤ ♠ët ❦❤æ♥❣ ❣✐❛♥ F rechet ❝â t➼♥❤ ❝❤➜t Heine − borel✱ ✈➔ DK ❧➔ ♠ët t➟♣ ❝♦♥ ✤â♥❣ ❝õ❛ C ∞(Ω) ♠é✐ ❦❤✐ K ⊂ Ω✳ ❈❤ó♥❣ t❛ ❝❤å♥ ❝→❝ t➟♣ ❝♦♠♣❛❝t Kj (j = 1, 2, ) s❛♦ ❝❤♦ Kj ⊂ intKj+1 ✈➔ Ω = ∪j Kj ✈➔ ✤à♥❤ ♥❣❤➽❛ ♠ët ❤å ♥û❛ ❝❤✉➞♥ pN tr➯♥ C ∞(Ω)✱ N = 1, 2, ♥❤÷ s❛✉✿ pN = max {|Dα f (x)| : x ∈ KN , |α| ≤ N } ❑❤✐ ✤â✱ pN ①→❝ ✤à♥❤ ♠ët tổổ ỗ ữỡ tr tr C () ợ ♠é✐ x ∈ Ω✱ ❤➔♠ sè x → f (x) ❧➔ ❧✐➯♥ tư❝ t❤❡♦ tỉ♣ỉ ♥➔②✳ ❱➻ DK ❧➔ ❣✐❛♦ ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ ❦❤→❝ ✵ t↕✐ x ♥➯♥ DK ❧➔ ✤â♥❣ tr♦♥❣ C ∞(Ω)✳ ▼ët ❝ì sð ✤à❛ ♣❤÷ì♥❣ ❝õ❛ ❦❤ỉ♥❣ ❣✐❛♥ ♥➔② ✤÷đ❝ ❝❤♦ ❜ð✐ ❝→❝ t➟♣ ❤ñ♣✿ VN = f ∈ C ∞ (Ω) : pN (f ) < N , N = 1, 2, ◆➳✉ {fi} ❧➔ ❞➣② ❈❛✉❝❤② tr➯♥ C ∞(Ω)✱ ◆ ❝è ✤à♥❤ t❤➻ fi − fj ∈ VN ✈ỵ✐ i, j ✤õ ❧ỵ♥✳ ❉♦ ✤â✱ |Dαfi − Dαfj | < N1 tr➯♥ KN ♥➳✉ |α| ≤ N ✳ ✣✐➲✉ ♥➔② ❝❤ù♥❣ tä Dαfi ❤ë✐ tö tr➯♥ ❝→❝ t➟♣ ❝♦♠♣❛❝t ❝õ❛ Ω tỵ✐ gα✱ ✤➦❝ ❜✐➺t fi(x) → g0(x)✳ ❍✐➸♥ ♥❤✐➯♥ g0 ∈ C ∞(Ω) s❛♦ ❝❤♦ gα = Dα g0 ✈➔ fi → g0 t❤❡♦ tæ♣æ ❝õ❛ C ∞ (Ω)✳ ❉♦ ✤â✱ C ∞ (Ω) ❧➔ ❦❤æ♥❣ ❣✐❛♥ F rechet✳ ✣✐➲✉ ♥➔② ❝ơ♥❣ ✤ó♥❣ ✈ỵ✐ ♠é✐ ❦❤ỉ♥❣ ❣✐❛♥ ❝♦♥ ✤â♥❣ DK ✳ ●✐↔ sû E ∈ C ∞(Ω) ❧➔ t➟♣ õ tỗ t↕✐ MN < ∞ s❛♦ ❝❤♦ pN (f ) < MN ✱ N = 1, 2, ✈ỵ✐ ♠å✐ f ∈ E ✳ ❇➜t ✤➥♥❣ t❤ù❝ |Dαf | ≤ MN ✤ó♥❣ tr➯♥ KN ❦❤✐ |α| ≤ N ✱ ❧➔ ❧✐➯♥ tử ỗ D f : f E tr➯♥ KN −1 ♥➳✉ |β| ≤ N − 1✳ ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ ✾ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt t ỵ ascoli ỵ cantor t tr ự ♠ët ❞➣② ❝♦♥ {fi } s❛♦ ❝❤♦ Dβ fi ❤ë✐ tư tr➯♥ ❝→❝ t➟♣ ❝♦♠♣❛❝t ❝õ❛ Ω ✈ỵ✐ ♠é✐ ✤❛ ❝❤➾ sè β ✳ ❉♦ ✤â✱ {fi } ❤ë✐ tö t❤❡♦ tæ♣æ ❝õ❛ C ∞ (Ω)✱ ❝❤ù♥❣ tä ❊ ❧➔ t➟♣ ❝♦♠♣❛❝t✳ ❱➟② C ∞(Ω) ❝â t➼♥❤ ❝❤➜t Heine − borel✳ ✣à♥❤ ♥❣❤➽❛ ✶✳✶✿ ❍đ♣ ❝õ❛ t➜t ❝↔ ❝→❝ ❦❤ỉ♥❣ ❣✐❛♥ DK ❦❤✐ ❑ ❝❤↕② tr➯♥ t➟♣ t➜t ❝↔ ❝→❝ t➟♣ ❝♦♠♣❛❝t ❝õ❛ Ω✱ ❣å✐ ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ t❤û ✭❤❛② ❦❤ỉ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ ❝ì ❜↔♥✮ tr➯♥ Ω✱ ❦➼ ❤✐➺✉ ❧➔ ❉✭Ω✮✳ ❍✐➸♥ ♥❤✐➯♥✱ ❉✭Ω✮ ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ✈❡❝tì ✈ỵ✐ ♣❤➨♣ ❝ë♥❣ ✈➔ ♣❤➨♣ ♥❤➙♥ ✈ỵ✐ ✈ỉ ữợ tổ tữớ tr ự ❱ỵ✐ ♠é✐ φ ∈❉✭Ω✮ t❤➻ φ N = max {|Dα φ(x)| : x ∈ Ω, |α| ≤ N } , N = 1, 2, ❣å✐ ❧➔ ❝❤✉➞♥ ❝õ❛ ❤➔♠ φ✳ ✣à♥❤ ♥❣❤➽❛ ✶✳✷✿ ❈❤♦ Ω ❧➔ ♠ët t➟♣ ❦❤æ♥❣ ré♥❣ ✈➔ ♠ð tr♦♥❣ Rn ❛✮ ❱ỵ✐ ♠å✐ t➟♣ ❝♦♠♣❛❝t K ỵ K tổổ ổ ❣✐❛♥ F rechet DK ✳ ❜✮ β ❧➔ t➟♣ t➜t t ỗ ố W D() s ❝❤♦ DK ∩ W ∈ τK ✈ỵ✐ ♠å✐ t➟♣ ❝♦♠♣❛❝t K ⊂ Ω✳ ❝✮ τ ❧➔ ❤å ❝õ❛ t➜t ❝↔ ❝→❝ ❤ñ♣ ❝õ❛ ❝→❝ t➟♣ ❤ñ♣ ❝â ❞↕♥❣ φ + W ✱ ✈ỵ✐ φ ∈❉✭Ω) ✈➔ W ∈ β✳ ✣à♥❤ ỵ ởt tổổ ổ D(Ω) ✈➔ β ❧➔ ♠ët ❝ì sð ✤à❛ ♣❤÷ì♥❣ ❝õ❛ τ ✳ ❜✮ D(Ω) ✈➔ τ ❝ị♥❣ ❧➔ ♠ët ❦❤ỉ♥❣ tỡ ỗ ữỡ ự sỷ V1 ∈ τ, V2 ∈ τ, φ ∈ V1 ∩ V2✳ ✣➸ ❝❤ù♥❣ ♠✐♥❤ ✭❛✮ t❛ ❝➛♥ ❝❤ù♥❣ ♠✐♥❤✿ φ + W ⊂ V1 ∩ V2, ∀W ∈ β ✭✯✮ t tỗ t i D(Ω) ✈➔ W ∈ β s❛♦ ❝❤♦✿ ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ φ = φi + Wi ⊂ Vi , (i = 1, 2) ✶✵ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ ❜✳ P❤➨♣ ♥❤➙♥ ♠ët sè ✈ỵ✐ ♠ët ❤➔♠ s✉② rë♥❣✿ ❈❤♦ f ∈ D′ (Ω) ✈➔ λ ∈ R t❤➻ λf ∈ D′ (Ω) ✤÷đ❝ ①→❝ ✤à♥❤ t❤❡♦ q✉② t➢❝✿ λf, ϕ = λ f, ϕ , ∀ϕ ∈ D (Ω) ❱ỵ✐ ❤❛✐ ♣❤➨♣ t♦→♥ tr➯♥ t❤➻ D′ (Ω) trð t❤➔♥❤ ♠ët ❦❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤✳ ✷✳✷ ✣↕♦ ❤➔♠ ❝õ❛ ❤➔♠ s✉② rë♥❣✳ ✣à♥❤ ♥❣❤➽❛ ✷✳✸✿ ❈❤♦ u ∈ D (Ω) t❤➻ ♣❤✐➳♠ ❤➔♠ t✉②➳♥ t➼♥❤ ′ ∂ α u, φ = (−1)|α| u, ∂ α φ , φ ∈ D (Ω) α ❧➔ ✤❛ ❝❤➾ sè✱ ✤÷đ❝ ❣å✐ ❧➔ ✤↕♦ ❤➔♠ s✉② rë♥❣ ❝➜♣ α ❝õ❛ ❤➔♠ s✉② rë♥❣ u ✈➔ ✤÷đ❝ ❦➼ ❤✐➺✉ ❧➔ ∂ α u✳ ◆➳✉ | u, φ | ≤ C φ ✈ỵ✐ ♠å✐ φ ∈ DK ✱ t❤➻ | ∂ α u, φ | ≤ C ∂ α φ N ≤C φ N +|α| ❚ø ✤â t❛ ❝â ∂ α u ∈ D′ (Ω)✳ ❱➔ t❛ ❝â ❝æ♥❣ t❤ù❝ ∂ α ∂ β u = ∂ α+β u, ∀u ∈ D′ (Ω) , ∀α, β ❧➔ ❝→❝ ✤❛ ❝❤➾ sè✳ ❚r♦♥❣ tr÷í♥❣ ❤đ♣ f ❧➔ ❝→❝ ❤➔♠ t❤÷í♥❣ ❦❤↔ ✈✐ t❤➻ t❤➻ ✤↕♦ ❤➔♠ t❤❡♦ ♥❣❤➽❛ s✉② rë♥❣ trò♥❣ ợ t tổ tữớ f ∈ C (Ω) t❤➻ ∂j (f φ)dxj = Ω ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ Ω ∂f ∂φ φ+ f ∂xj ∂xj ✶✻ =0 ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ t ỵ t õ ∂j (f φ)dx1 dxn = Ω ❚ø ✤â s✉② r❛ Ω ∂j f φdx = − f ∂j φdx Ω ❱➻ ✈➟②✱ ♥➳✉ f ∈ C (Ω) t❤➻ ❝ô♥❣ ①→❝ ✤à♥❤ ♠ët ❤➔♠ s✉② rë♥❣ f ∈ D′ (Ω)✱ ✈➔ f (x)ϕ (x)dx f, ϕ = Ω ❱➼ ❞ö ✷✳✺✿ ❍➔♠ ❍❡❛✈✐s✐❞❡   H (x) =  ♥➳✉ x ≥ ♥➳✉ x < Ð ✤➙② H : R → {0, 1} , Ω = R ✈➔ +∞ +∞ 1.φ (x) dx H (x)φ (x) dx = H, φ = −∞ ❚❛ ❝â +∞ −∞ +∞ ∂φ (x) dx H (x)∂φ (x) dx = − ∂H, φ = (−1) H, ∂φ = − = φ (x) +∞ = φ (0) = δ, φ , ∀φ ∈ D (R) ❱➟② ∂H = δ ✳ ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ ✶✼ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❱➼ ❞ö ✷✳✻✿ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ ❍➔♠ f (x) = ln |x| ❚❛ ❝â f : R\ {0} → R, x → ln |x|✱ ❦❤✐ ✤â f ❧➔ ❤➔♠ ❦❤↔ t➼❝❤ ✤à❛ ♣❤÷ì♥❣ tr➯♥ R✳ ❉♦ ✤â f ❧➔ ♠ët ❤➔♠ s✉② rë♥❣ ✈ỵ✐ +∞ f (x)φ (x) dx, ∀φ ∈ D (R) f, φ = −∞ ❚❛ t➼♥❤ ∂f ✱ t❛ ❝â✿ +∞ f (x)∂φ (x) dx ∂f, φ = (−1) f, ∂φ = − −∞ +∞ ln |x| ∂φ (x) dx =− −∞ +∞ 0 −∞  +∞ −ε − lim+  ε→0 ln |x| ∂φ (x) dx ln |x| ∂φ (x) dx − =− ✣➦t u = ln |x| , dv = ✤÷đ❝✿ ε ∂φ (x) dx ∂f, φ = lim+ ε→0    ✱ ✈➔ →♣ ❞ư♥❣ ❝ỉ♥❣ t❤ù❝ t➼❝❤ ♣❤➙♥ tø♥❣ ♣❤➛♥✱ t❛ t❤✉ −ε [φ (ε) − φ (−ε)] ln ε + φ (x) dx + x −∞  = lim+  ε→0 −ε φ (x) dx + x −∞ ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ ln |x| ∂φ (x) dx ln |x| ∂φ (x) dx − −∞  +∞ ε ✶✽ +∞ ε   φ (x) dx  x  φ (x)  dx , x ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ tr♦♥❣ ✤â lim+ [φ (ε) − φ (−ε)] ln ε = 0✳ Ð ✤➙② ❤➔♠ ε→0 ♣❤÷ì♥❣✱ tù❝ x x ❦❤æ♥❣ ♣❤↔✐ ❧➔ ❤➔♠ ❦❤↔ t➼❝❤ ✤à❛ ∈ / L1loc (R) ♥➯♥ t❛ ❦❤æ♥❣ t❤➸ ①❡♠ ❤➔♠ s✉② rë♥❣ ❚✉② ♥❤✐➯♥✱ t❛ ❝â t❤➸ ✤à♥❤ ♥❣❤➽❛ ❝õ❛ ❤➔♠ ln |x| ✈➔ x ❇✐➸✉ t❤ù❝ lim+ ε→0 ❧➔ t➼❝❤ ♣❤➙♥ ❝❤➼♥❤✳ x x ữợ t ởt s rở t❤✉ë❝ D′ (R) ❧➔ ✤↕♦ ❤➔♠ ∈ D′ (R) \L1loc (R)✳ ◆❤÷ ✈➟②✱ ∂ ln |x| = x1 ✳ −ε −∞ φ(x) dx x +∞ + ε φ(x) dx x t❤÷í♥❣ ✤÷đ❝ ❦➼ ❤✐➺✉ ❧➔ +∞ −∞ φ(x) dx x ữủ ỵ ỵ trú s❝❤✇❛rt③✮ ❇➜t ❦➻ ♠ët ❤➔♠ s✉② rë♥❣ ♥➔♦ ✤➲✉ ❧➔ ✤↕♦ ❤➔♠ ✤à❛ ♣❤÷ì♥❣ ❝õ❛ ♠ët ❤➔♠ ❧✐➯♥ tư❝✳ ◆â✐ ❝→❝❤ ❦❤→❝✿ ∀T ∈ D′ (Ω) , ∀x0 ∈ Ω tỗ t ởt Vx0 x0 tr tỗ t f C (Vx0 ) tỗ t t tỷ r s ❝❤♦ T |Vx0 = ∂f tr♦♥❣ D′ (Vx0 ) tr♦♥❣ ✤â T |Vx0 ❧➔ ♠ët ❤↕♥ ❝❤➳ ❝õ❛ ❚ tr➯♥ Vx0 ứ ỵ s rở t↕♦ t❤➔♥❤ ♠ët ❦❤æ♥❣ ❣✐❛♥ ♥❤ä ♥❤➜t✱ tr♦♥❣ ✤â✱ ❝→❝ ❤➔♠ ❧✐➯♥ tư❝ ✤➲✉ ❦❤↔ ✈✐ ✈ỉ ❤↕♥ ✈➔ ❝ơ♥❣ ❝❤ù❛ t➜t ❝↔ ❝→❝ ❤➔♠ t❤✉ë❝ Lploc , p = 1, 2, , ∞✳ ✷✳✸ ❑❤æ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ ❣✐↔♠ ♥❤❛♥❤ ✈➔ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ s✉② rë♥❣ t➠♥❣ ❝❤➟♠✳ ✣à♥❤ ♥❣❤➽❛ ✷✳✹✳ ❑❤æ♥❣ ❣✐❛♥ S(R ) ❧➔ ❦❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ❝♦♥ ❝õ❛ C n ∞ n (R ) ①→❝ ✤à♥❤ ❜ð✐ t➟♣ ❤ñ♣ ❝→❝ ❤➔♠ sè f tr➯♥ Rn s❛♦ ❝❤♦ xα Dβ f (x) ❜à ❝❤➦♥ tr➯♥ Rn ✈ỵ✐ ♠é✐ α, β ∈ Zn+ ✳ S(Rn ) = f ∈ C ∞ (Rn ) : xα Dβ f (x) < Cα,β , ∀α, β ∈ Z+n ❑❤ỉ♥❣ ❣✐❛♥ S(Rn ) ✤÷đ❝ tr❛♥❣ ❜à ❜ð✐ ❤å ❝→❝ ❝❤✉➞♥✿ f ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ α,β = sup xα Dβ f (x) , ∀α, β ∈ Z+n x∈Rn ✶✾ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ ❈→❝ ♣❤➛♥ tû ❝õ❛ S(Rn ) ✤÷đ❝ ❣å✐ ❧➔ ❝→❝ ❤➔♠ ❣✐↔♠ ♥❤❛♥❤✳ ❑❤ỉ♥❣ ❣✐❛♥ S(Rn ) ✤÷đ❝ ❣å✐ ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ ❣✐↔♠ ♥❤❛♥❤✳ ✣à♥❤ ♥❣❤➽❛ ✷✳✺✳ ❈→❝ ♣❤✐➳♠ ❤➔♠ t✉②➳♥ t➼♥❤ ❧✐➯♥ tö❝ tr➯♥ S(R ) ✤÷đ❝ ❣å✐ ❧➔ ❤➔♠ s✉② n rë♥❣ t➠♥❣ ❝❤➟♠✳ ❑❤ỉ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ❝õ❛ ❝→❝ ❤➔♠ s✉② rë♥❣ t➠♥❣ ❝❤➟♠ ✤÷đ❝ ❦➼ ❤✐➺✉ ❧➔ S ′ (Rn )✳ ❱➟② T ∈ S ′ (Rn ) ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ T : S(Rn ) → C ❧✐➯♥ tö❝ ✈➔ fn → f tr➯♥ S(Rn )✱ ♥❣❤➽❛ ❧➔ ❤➔♠ T (fn ) → T (f ) tr➯♥ C✳ ❇ê ✤➲ ✷✳✶✳ ❚ø T (f ) − T (f ) = T (f n n − f ) ✈➔ fn → f tr➯♥ S(Rn ) ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ (fn − f ) → tr➯♥ S(Rn )✱ t❛ t❤➜② ♠ët →♥❤ ①↕ t✉②➳♥ t➼♥❤ tr➯♥ S(Rn ) ❧➔ ❧✐➯♥ tö❝ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ ♥â ❧✐➯♥ tö❝ t↕✐ ∈ S(Rn )✳ ỵ t t T : S(R ) → S(R ) t❤♦↔♥ ♠➣♥ |T (f )| ≤ n n S(Rn ), ∀α, β ∈ Zn+ t❤➻ T ∈ S ′ (Rn ) f α,β , ∀f ∈ ❈❤ù♥❣ ♠✐♥❤✿ ⑩♣ ❞ư♥❣ ❜ê ✤➲ tr➯♥✱ ❝❤ó♥❣ t❛ ❝❤➾ ❝➛♥ ❝❤ù♥❣ ♠✐♥❤ ❚ ❧✐➯♥ tö❝ t↕✐ ✵✳ ❚❤➟t ✈➟②✱ ♥➳✉ fn → tr➯♥ S(Rn ) t❤➻ fn α,β ❙✈✿ P❤ị♥❣ ❚❤à ❚❤✉ ✷✵ ♥❣❤➽❛ ❧➔ ❚ ❧✐➯♥ tư❝ t↕✐ ✵✳ ❱➟② T ∈ S ′ (Rn )✳ → ✈➔ |T (f )| ≤ f α,β → ❦❤✐ n → ∞✱ ❑✸✺●✲ ❙P ❚♦→♥ ❈❤÷ì♥❣ ✸ ❚➑❈❍ ❈❍❾P ❈Õ❆ ❍❆■ ❍⑨▼ ❙❯❨ ❘❐◆● ❚❍❊❖ ◆●❍➒❆ ▼■❑❯❙■◆❙❑■ ✸✳✶ ❚➼❝❤ ❝❤➟♣ ❈❤♦ ≤ p < ∞✱ ✤➦t Lp (Rn ) = { f ①→❝ ✤à♥❤ ✈➔ ✤♦ ✤÷đ❝ tr➯♥ Rn : Rn |f (x)|p dx < ∞}✱ tr♦♥❣ ✤â t➼❝❤ ♣❤➙♥ ✤÷đ❝ ❤✐➸✉ t❤❡♦ ♥❣❤➽❛ ▲❡❜❡s❣✉❡✳ ❑❤✐ tr❛♥❣ ❜à ❝❤✉➞♥ p f Lp = Rn |f (x)| dx p , t❤➻ Lp (Rn ) t❤➔♥❤ ♠ët ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ◆➳✉ f, g ∈ Lp (Rn ) t❤➻ t➼❝❤ ❝❤➟♣ ❝õ❛ f ✱ g ❦➼ ❤✐➺✉ ❧➔ f ∗ g ✤÷đ❝ ①→❝ ✤à♥❤ ♥❤÷ s❛✉✿ (f ∗ g) (x) = Rn f (y) g (x − y)dy ✷✶ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ ❚❛ ❝â t❤➸ ❝❤ù♥❣ ♠✐♥❤ ✤÷đ❝ t➼❝❤ ❝❤➟♣ (f ∗ g) (x) tỗ t ỡ f g L1 (Rn) ✈➔ f ∗ g L ≤ f L g L ✳ ✣✐➲✉ ♥➔② ❧➔♠ ❝❤♦ L1 (Rn) trð t❤➔♥❤ ♠ët ✤↕✐ sè ❜❛♥❛❝❤✱ ♥❤÷♥❣ ❦❤ỉ♥❣ ❝â ♣❤➛♥ tû ✤ì♥ ✈à✳ ❚❛ ❝â t❤➸ ✤à♥❤ ♥❣❤➽❛ t➼❝❤ ❝❤➟♣ ❝õ❛ f ∈ L1 (Rn) ✈➔ g ∈ Lp (Rn )✱1 ≤ p < ∞✳ ❚✐➳♣ t❤❡♦✱ t❛ ✤➲ ❝➟♣ tỵ✐ t➼❝❤ ❝❤➟♣ ❝õ❛ u ∈ D′ (Rn) ✈➔ ρ ∈ D′ (Rn)✿ ✣à♥❤ ♥❣❤➽❛ ✸✳✶✿ ◆➳✉ u ∈ D′ (Rn) ✈➔ ρ ∈ D (Rn) t❤➻ 1 (ρ ∗ u) (x) = u (y) , ρ (x − y) , x ∈ Rn ✈➔ ❤➔♠ ♥➔② ❧➔ ♠ët ♣❤➛♥ tỷ C (Rn) r ỵ tt s rở t➼❝❤ ❝❤➟♣ ❝õ❛ ❤❛✐ ❤➔♠ s✉② rë♥❣ ❧➔ ♠ët ❝æ♥❣ ❝ư ♠↕♥❤ ✈➔ ♥â ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛ ♥❤÷ s❛✉✿ ✣à♥❤ ♥❣❤➽❛ ✸✳✷✿ ◆➳✉ u, v ∈ D′ (Rn)✱ t❛ ❣å✐ t➼❝❤ ❝❤➟♣ ❝õ❛ u ✈➔ v✱ ❦➼ ❤✐➺✉ ❧➔ u ∗ v ❧➔ ♣❤✐➳♠ ❤➔♠ t✉②➳♥ t➼♥❤ s❛✉✿ u ∗ v, φ = u (y) , v (x) , φ (x + y) , ∀φ ∈ D (Rn ) ❉ü❛ ✈➔♦ ✤à♥❤ ♥❣❤➽❛ tr➯♥ t❤➻ ♣❤✐➳♠ ❤➔♠ t✉②➳♥ t➼♥❤ u ∗ v ∈ D′ (Rn)✳ ❍ì♥ ♥ú❛✱ ♥➳✉ ♠ët tr♦♥❣ ❤❛✐ ❤➔♠ u ❤♦➦❝ v ❝â ❣✐→ trà ❝♦♠♣❛❝t t❤➻ t❤❡♦ ✤à♥❤ ♥❣❤➽❛ tr➯♥ t❛ ❝â u ∗ v = v u ú ỵ u = δ ∗ u = u, ∀u ∈ D′ (Rn) ❚❤➟t ✈➟②✱ ✈➻ δ ❧➔ ❤➔♠ ❝â ❣✐→ trà ❝♦♠♣❛❝t ✈➔ u ∗ δ, φ = u(y), δ (x) , φ (x + y) = u(y), φ(y) = u, φ ❍❛② u ∗ δ = u✱ t÷ì♥❣ tü t❛ ❝ơ♥❣ ❝â δ ∗ u = u✳ ❜✮ ✣à♥❤ ♥❣❤➽❛ t➼❝❤ ❝❤➟♣ tr ú ợ trữớ ủ f, g L1 (Rn)✳ ❚❤➟t ✈➟②✱ ✈ỵ✐ ♠å✐ ∀φ ∈ D (Rn)✱ t❛ ✤➦t g (x) φ (y + x)dx h (y) = Rn ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ ✷✷ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ t❤➻ h ∈ L1 (Rn )✳ ❍ì♥ ♥ú❛✱ |h (y)| = Rn |g (x) φ (y + x)|dx = ≤ sup |φ (t)| t∈sup pφ Rn Rn |g (t − y) φ (t)|dt |g (t − y)|dt = c g L1 , ∀y ∈ Rn ❚ø ✤â✱ f (y) , g(x), φ(y + x) = f (y) , h (y) = u, φ = f (y)h(y)dy, Rn ✈➔ |f (y) h (y)| c g L1 tỗ t ụ õ |f (y)| t õ sỹ tỗ t f (y) , g(x), φ(y + x) f ∗ g, φ = = Rn = Rn ❱➟② (f ∗ g) (t) = Rn f (y)g(x)φ(y + x)dxdy Rn ×Rn ( Rn ✱ ♥➯♥ f ∗ g f (y) g (t − y) dy)φ (t) dt, f (y) g (t − y) dy)dt, φ (t) f (y) g (t − y) dy)✳ ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ ✷✸ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt t ss rữợ ❦❤✐ t➻♠ ❤✐➸✉ ✈➲ t➼❝❤ ❤❛✐ ❤➔♠ s✉② rë♥❣ t❤❡♦ q✉❛♥ ✤✐➸♠ ❝õ❛ ▼✐♥❦✉s✐♥s❦✐✱ ❝❤ó♥❣ t❛ s➩ t➻♠ ❤✐➸✉ ✈➲ t➼❝❤ ❝õ❛ ♠ët ❤➔♠ trì♥ ✈➔ ♠ët ❤➔♠ s✉② rë♥❣✿ ✣à♥❤ ♥❣❤➽❛ ✸✳✸ ❈❤♦ ♠ët ❤➔♠ trì♥ f ∈ C ∞ (Ω) ✈➔ ♠ët ❤➔♠ s✉② rë♥❣ u ∈ D′ (Ω)✳ ❚➼❝❤ ❝õ❛ ❤➔♠ f ✈➔ ❤➔♠ u✱ ✤÷đ❝ ❦➼ ❤✐➺✉ ❧➔ f u ✈➔ ✤÷đ❝ ①→❝ ✤à♥❤ ♥❤÷ s❛✉ f u, φ = u, f φ ∀φ ∈ D (Ω) ❑❤æ♥❣ ❦❤â ✤➸ ❝❤ù♥❣ ♠✐♥❤ ✈➳ ♣❤↔✐ ❝õ❛ ✤➥♥❣ t❤ù❝ tr➯♥ ❧➔ ♠ët ❤➔♠ s✉② rë♥❣✳ ❚❤➟t ✈➙②✱ rã r➔♥❣ ♥➳✉ f ∈ C ∞ (Ω) ✈➔ ∀φ ∈ D (Ω)✱ t❤➻ φ ∈ C ∞ (Ω) ✈➔ suppφ ⊂ K ✱ ❑ ❧➔ t➟♣ ❝♦♠♣❛❝t✳ ❉♦ ✤â✱ f φ ∈ C ∞ (Ω) ✈➔ supp(f φ) ⊂ suppφ ⊂ K ⊂ Ω✱ ❤❛② u, f φ ≤ c |α|≤N sup |∂ α (f φ)| ❱➼ ❞ö ✸✳✶ ◆➳✉ δ ∈ D (R) t❤➻ xδ = ′ ❚❤➟t ✈➟②✱ ✈➻ +∞ δ (x) (xφ) (x) dx xδ, φ = δ, xφ = −∞ ✈➔ δ(x) = ❦❤✐ x = 0, δ (x) = ∞ ❦❤✐ x = 0✱ ♥➯♥ xδ, φ = δ (0) (xφ) (0) = 0.φ (0) = 0, ∀φ ∈ D (R) ❱➟② x.δ = 0✳ ◆❣♦➔✐ ✈✐➺❝ ❧➜② t➼❝❤ ❝õ❛ ♠ët ❤➔♠ trì♥ ✈➔ ♠ët ❤➔♠ s✉② rë♥❣ ♥❤÷ tr➯♥✱ t❛ ❝â t❤➸ ❧➜② t➼❝❤ ❤❛✐ ❤➔♠ s✉② rë♥❣ ❜➜t ❦➻ ✈ỵ✐ ✤ì♥ ✈à ❧➔ ✶✳ ❱➔ ❏✳▼✐❦✉s✐♥s❦✐ ✤➣ t➻♠ r❛ ❝→❝❤ t➼♥❤ t➼❝❤ ❤❛✐ ❤➔♠ s✉② rë♥❣ ❞ü❛ ✈➔♦ ♣❤÷ì♥❣ ♣❤→♣ ❝❤➼♥❤ q✉② ✈➔ t✐➳♥ q✉❛ ❣✐ỵ✐ ❤↕♥✳ ❙✈✿ P❤ị♥❣ ❚❤à ❚❤✉ ✷✹ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ ✣à♥❤ ♥❣❤➽❛ ✸✳✹✿ δ−❞➣② m ▼ët δ−❞➣② ❧➔ ♠ët ❞➣② (δn )+∞ n=1 ❝õ❛ ❝→❝ ♣❤➛♥ tû ❝õ❛ R , m = 1, s❛♦ ❝❤♦✿ ❛✮ suppδn ⊂ {x ∈ Rn : x < αn }✱ ✈ỵ✐ αn → ❦❤✐ n → ∞ ❜✮ Rm δn (x) dx = ✭❤♦➦❝ t✐➳♥ tỵ✐ ✶ ❦❤✐ n → ∞✮✳ ◆❤➻♥ ♠ët ❝→❝❤ trü❝ q✉❛♥✱ ởt ữ ởt t tợ t ❉✐r❛❝ δ ✭❤❛② ✤ë ✤♦ ❉✐r❛❝✮ t↕✐ ❣è❝ ✵ ❝õ❛ Rm ✳ ❚r♦♥❣ ✈➔✐ tr÷í♥❣ ❤đ♣ t❛ ♣❤↔✐ ✤à♥❤ ♥❣❤➽❛ ❜ê s✉♥❣ t❤➯♠ t➼♥❤ ❝❤➜t ❝õ❛ δ−❞➣②✳ ▼ët ✈➔✐ ✈➼ ❞ö ❝õ❛ t➼♥❤ ❝❤➜t ❜ê s✉♥❣ ❦❤✐ ✤à♥❤ ♥❣❤➽❛ δ−❞➣②✱ ❝❤➥♥❣ ❤↕♥✿ c1 ✮ ❚r÷í♥❣ ❤đ♣ m = 1✱ t➼♥❤ ❝❤➜t ❜ê s✉♥❣ ✭ t❤❡♦ ▼✐❦✉s✐♥s❦✐✮ ❧➔✿ sup x∈R,n∈N xk+1 (δn )k (x) < +∞, ∀k = 0, 1, ❍♦➦❝ c2 ✮ ❚❤❡♦ Antosik, M ikusinskivSikorski : δn (x) ≥ 0, ∀x ∈ Rm , ∀n ∈ N ❍♦➦❝ c3 ✮ ❚❤❡♦ Itano✿ sup n∈N Rm xk ∂ k δn(k) (x) < +∞, ∀k = 0, 1, ú ỵ r S, T D (Rm ) s rở trữợ ứ ỵ tt s rở t S δn ✈➔ T ∗ δn ✤➲✉ t❤✉ë❝ C ∞ (Rm )✳ ❍ì♥ ♥ú❛✱ lim δn = δ n→∞ tr♦♥❣ D (R ) ♥➯♥ lim T ∗ δn = T ✈➔ lim S ∗ δn = S tr♦♥❣ D (R )✳ ′ ′ m n→∞ ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ m n→∞ ✷✺ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ ✣à♥❤ ♥❣❤➽❛ ✸✳✺ ✭▼✐❦✉s✐♥s❦✐✮✳ ❚❛ ♥â✐ r➡♥❣ ❙ ữủ ợ ợ t S.T ∈ D′ (Rm )✱ ♥➳✉ ✈ỵ✐ ♠å✐ ❞➣② δ ✲ ❞➣② δn tỵ✐ ♠ët ❣✐ỵ✐ ❤↕♥ ✤ë❝ ❧➟♣ ✈ỵ✐ δn✳ ❱➼ ❞ö ✸✳✷✳ ❚❤❡♦ ✤à♥❤ ♥❣❤➽❛ ✸✳✺ t❤➻ t❤➻ (S ∗ δn) (T ∗ δn) ❤ë✐ tö tr♦♥❣ D′ (Rm) ❦❤✐ n→∞ 1 δ = − δ′ x ❚❤➟t ✈➟②✱ ♥➳✉ φ ∈ D (R) ✈➔ ♥➳✉ t❛ ✤➦t δn− (x) = δn (−x) , ∀n = 1, ❑❤✐ ✤â ∗ δn (δ ∗ δn ) , φ x ∗ δn δn , φ x = = = ∗ δn , δn φ x − , δ ∗ δn φ x n ❚❛ ❦❤❛✐ tr✐➸♥ φ = φ (0) + xφ′ (0) + x2ψ (x)✱ t❤➻ ∗ δn (δ ∗ δn ) , φ x = φ (0) − , δ ∗ δn x n + φ′ (0) − , δ ∗ (xδn ) + x n − , δ ∗ x2 ψ δ n x n ❱➻ δn− ∗ δn ❧➔ ♠ët ❤➔♠ ❝❤➤♥ ♥➯♥ ❤↕♥❣ tû ✤➛✉ t✐➯♥ ❝õ❛ ❜✐➸✉ t❤ù❝ tr➯♥ ❜➡♥❣ ✵✳ ❍↕♥❣ tû ❝✉è✐ ❝ị♥❣ ❝ơ♥❣ t✐➳♥ tỵ✐ ✵ ❦❤✐ n → ∞✳ ✣è✐ ✈ỵ✐ ❤↕♥❣ tû t❤ù ❤❛✐✱ t❛ ✤➦t αn = δn− ∗ (xδn)✳ ❑❤✐ ✤â +∞ φ′ (0) − , δ ∗ (xδn ) x n αn (x) dx, x = −∞ ✈➔ αn− = δn− ∗ ((−x) δn−) = −x (δn ∗ δn−) + (xδn ∗ δn−)✳ ❱➻ ✈➟②✱ ♥➳✉ ψ1 ✈➔ ψ2 t❤✉ë❝ L1 (R) t❤➻ x (ψ1 ∗ ψ2 ) = (xψ1 ) ∗ ψ2 + ψ1 ∗ (xψ2 ) , αn − αn− = x δn ∗ δn− ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ ✷✻ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✈➔ , αn x = , αn x ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ + αn− + , αn x − αn− = , αn x − αn− ❚ø ✤â✱ αn + αn− ❧➔ ♠ët ❤➔♠ ❝❤➤♥✳ ❉♦ ✤â✱ , αn x = +∞ −∞ n→∞ 1 δn ∗ δn− (x) dx = x −∞ ❚ø δn ∈ D (R) , n = 1, 2, ✈➔ lim +∞ 1 αn (x) − αn− (x) dx = x δ R n (x)dx = 1✳ ❚❛ ❝â ∗ δn (δ ∗ δn ) , φ x 1 = φ′ (0) = − δ ′ , φ , ∀φ ∈ D (R) 2 ❍❛② lim n→∞ 1 ∗ δn (δ ∗ δn ) = − δ ′ x ❱ỵ✐ ✤à♥❤ ♥❣❤➽❛ t➼❝❤ ❤❛✐ ❤➔♠ s✉② rë♥❣ ❝õ❛ ▼✐❦✉s✐♥s❦✐ t❛ ❝â t❤➸ ❧➜② t➼❝❤ ♣❤➙♥ ❤❛✐ ❤➔♠ s✉② rë♥❣✳ ❚✉② ♥❤✐➯♥✱ ỏ tỗ t ởt số t t➼❝❤ ❤❛✐ ❤➔♠ s✉② rë♥❣ t❤❡♦ q✉❛♥ ✤✐➸♠ tr➯♥✳ ❚❛ õ s ổ tỗ t t (δ)2 tr♦♥❣ D′ (R) t❤❡♦ ♥❣❤➽❛ ❝õ❛ ✤à♥❤ ♥❣❤➽❛ ✸✳✺ ự trữợ ởt D (R) ✈ỵ✐ suppφ ∈ [−1, 1] ✈➔ R φ (x)dx = 1✳ ❉➣② (δn )+∞ n=1 ✤÷đ❝ ❝❤♦ ❜ð✐ (δn ) (x) = n.φ (nx) ❧➔ ♠ët δ−❞➣②✳ ❚❛ ❝â✿ (δ ∗ δn ) (x) = (δn ) (x) = n.φ (nx) ❱➻ ✈➟②✱ ♥➳✉ ψ ∈ D (R) t❤➻ (δ ∗ δn )2 , ψ = n2 [φ (nx)] ψ (x) dx R ◆➳✉ ψ ≡ tr➯♥ ♠ët ❧➙♥ ❝➟♥ ♥➔♦ ✤â ❝õ❛ ✵✱ t❤➻ 2 R ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ [φ (nx)]2 dx n2 [φ (nx)] dx = n n2 [φ (nx)] ψ (x) dx = R R ✷✼ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ ♠➔ n R ❦❤✐ R [φ (nx)]2 dx → +∞ [φ (nx)]2 dx = ✈➔ n ()2 ổ tỗ t t ♥❣❤➽❛ ▼✐❦✉s✐♥s❦✐✳ ❈❤➼♥❤ tø ❤↕♥ ❝❤➳ tr♦♥❣ ❦➳t q✉↔ ❝õ❛ ❏✳▼✐❦✉s✐♥s❦✐✱ ❝❤♦ ♥➯♥ ✈✐➺❝ ❝➜♣ t❤✐➳t ❝❤♦ tỵ✐ ❧ó❝ ♥➔② ❧➔ t➻♠ r❛ ♠ët ❣✐↔✐ ♣❤→♣ ❦❤→❝✱ ✤➸ ❝â t❤➸ ❣✐↔✐ q✉②➳t tr✐➺t ✤➸ ✈✐➺❝ ❧➜② t➼❝❤ ❤❛✐ ❤➔♠ s✉② rở ỵ tt s rở ữủ rt ①➙② ❞ü♥❣ r➜t t❤➔♥❤ ❝ỉ♥❣ ✈➔ ✤❛♥❣ ✤÷đ❝ sû ❞ư♥❣ rë♥❣ r➣✐✳ ➷♥❣ ✤➣ ✤÷❛ r❛ ♠ët ❦➳t q✉↔ ♠➔ ♥❣÷í✐ t❛ ❣å✐ ✤â ❧➔✿ ❑➳t q✉↔ ❦❤ỉ♥❣ t❤➸ ❝õ❛ ❙❝❤✇❛rt③✳ ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ ✷✽ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ ❑➌❚ ▲❯❾◆ ❚r♦♥❣ t ỵ tt s rở ❝á♥ ❧➔ ♠ỵ✐ ♠➫ ✈➔ ❝â ✤â♥❣ ❣â♣ ❦❤→ q✉❛♥ trå♥❣ tr♦♥❣ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ t✉②➳♥ t➼♥❤✳ ❚❤ỉ♥❣ q✉❛ ✈✐➺❝ ❣✐ỵ✐ t❤✐➺✉ ♠ët sè ❦➼ ❤✐➺✉ ✈➔ ❦❤→✐ ♥✐➺♠ ❝ì sð✱ ✤➦❝ ✤✐➸♠ ✈➔ ♠ët sè t➼♥❤ ❝❤➜t ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ t❤û ❉✭Ω✮ ð ❝❤÷ì♥❣ ■ ✤➸ ♥➯✉ ❝→❝ ✤➦❝ ✤✐➸♠✱ t➼♥❤ ❝❤➜t ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ s✉② rë♥❣ ❉✬✭Ω✮ ð ❝❤÷ì♥❣ ■■✳ ❱➔ ❝✉è✐ ❝ị♥❣ ❧➔ t➻♠ ❤✐➸✉ ✈➲ t➼❝❤ ❝❤➟♣ ✈➔ t➼❝❤ ❝❤➟♣ ❝õ❛ ❤❛✐ ❤➔♠ s✉② rë♥❣ t❤❡♦ ♥❣❤➽❛ ▼✐❦✉s✐♥s❦✐ ð ❝❤÷ì♥❣ ■■■✳ ❑❤â❛ ❧✉➟♥ ♥➔② ✤➣ ❣✐ó♣ tæ✐ t✐➳♣ t❤✉ ✈➔ ♥➙♥❣ ❝❛♦ ❤✐➸✉ ❜✐➳t ✈➲ ❤➔♠ s rở ỗ tớ t ữủ trỏ q trồ ❝õ❛ ♥â tr♦♥❣ t♦→♥ ❤å❝✳ ❚❤æ♥❣ q✉❛ ❦❤â❛ ❧✉➟♥ ♥➔②✱ tỉ✐ ✤➣ ❤å❝ ✤÷đ❝ ❝→❝❤ tr➻♥❤ ❜➔② ♠ët ✤➲ t➔✐ ♥❣❤✐➯♥ ❝ù✉ ❦❤♦❛ ❤å❝✱ ❤å❝ ✤÷đ❝ ❝→❝❤ tr➻♥❤ ❜➔② ♥ë✐ ❞✉♥❣ ❦✐➳♥ t❤ù❝ ♠ët ❝→❝❤ ❝â ❤➺ t❤è♥❣ t❤❡♦ sü ❤✐➸✉ ❜✐➳t ❝õ❛ ♠➻♥❤✳ ❚✉② ♥❤✐➯♥✱ ❞♦ t❤í✐ ❣✐❛♥ ❝â ❤↕♥✱ ♥➯♥ ❦❤â❛ ❧✉➟♥ ❝õ❛ tæ✐ ❝á♥ ♥❤✐➲✉ t❤✐➳✉ sât✱ rt ữủ sỹ õ ỵ ú ù t❤➛② ❝ỉ ✈➔ ❝→❝ ❜↕♥ ✤➸ ❦❤â❛ ❧✉➟♥ ✤÷đ❝ ❤♦➔♥ t❤✐➺♥ ❤ì♥✳ ❍➔ ◆ë✐✱ t❤→♥❣ ✵✺ ♥➠♠ ✷✵✶✸ ❚→❝ ❣✐↔ P❤ò♥❣ ❚❤à ❚❤✉ ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ ✷✾ ❑✸✺●✲ ❙P ❚♦→♥ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ ❚⑨■ ▲■➏❯ ❚❍❆▼ ❑❍❷❖ ❬✶❪ ◆❣✉②➵♥ P❤ö ❍② ✭✶✾✾✷✮✱ ●✐→♦ tr➻♥❤ ❣✐↔✐ t➼❝❤ ❤➔♠✱ ✣↕✐ ❤å❝ s÷ ♣❤↕♠ ❍➔ ◆ë✐ ✷✳ ỵ tt s rở ❦❤æ♥❣ ❣✐❛♥ s♦❜♦❧❡✈✳ ❬✸❪ ❚↕ ◆❣å❝ ❚r➼✱ ✭✷✵✵✹✮✱ ❚❤❡ ❝♦❧♦♠❜❡❛✉ t❤❡♦r② ♦❢ ❣❡♥❡r❛❧✐③❡❞ ❢✉♥❝t✐♥♦♥s✱ ❑❞❱ ✐♥✲ st✐t✉t❡✱ ❋❛❝✉t❧② ♦❢ s❝✐❡♥❝❡ ❯♥✐✈❡rs✐t② ♦❢ ❆♠st❡r❞❛♠ ❚❤❡ ◆❡t❤❡r❧❛♥❞s✳ ❬✹❪ ❏✳❋✳ ❈♦❧✉♠❜❡❛✉✱ ✭✶✾✽✹✮ ◆❡✇ ❣❡♥❡r❛❧✐③❡❞ ❢✉♥❝t✐♥♦♥s ❛♥❞ ♠✉❧t✐♣❧✐❝❛t✐♦♥s ♦❢ ❞✐s✲ tr✐❜✉t✐♦♥✱ ◆♦rt❤ ❍♦❧❧❛♥❞✱ ▼❛t❤✳ ❙t✉❞✐❡s ✽✹ ❆♠st❡r❞❛♠✳ ❤tt♣✿✴✴❞❛t✉❛♥✺♣❞❡s✳✇♦r❞♣r❡ss✳❝♦♠✴ ❙✈✿ P❤ò♥❣ ❚❤à ❚❤✉ ✸✵ ❑✸✺●✲ ❙P ❚♦→♥ ... ♥❣❤✐➺♣ ❈❤✉②➯♥ ♥❣➔♥❤ ❣✐↔✐ t➼❝❤ ✺✳ ❈➜✉ tró❝ ❦❤â❛ ❧✉➟♥✳ ◆ë✐ ❞✉♥❣ ❝õ❛ ❦❤â❛ ỗ ữỡ ữỡ ổ tỷ ữỡ ợ t ởt số ❦❤→✐ ♥✐➺♠ ❝â tr♦♥❣ ♥ë✐ ❞✉♥❣ ❦❤â❛ ❧✉➟♥✳ ✲ ◆➯✉ ✤à♥❤ ♥❣❤➽❛ ✈➔ ❝→❝ t➼♥❤ ❝❤➜t ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ ❤➔♠... ❦❤æ♥❣ ♥➡♠ tr♦♥❣ φ2 + W ✳ ❉♦ ✤â✱ φ1 ❧➔ t➟♣ ✤â♥❣ t÷ì♥❣ ✤è✐ tr♦♥❣ τ ✳ ❚❛ ✤✐ ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ♣❤➨♣ t số tr D() tữỡ t ợ tổổ ✳ P❤➨♣ ❝ë♥❣ ❧➔ τ −❧✐➯♥ tư❝✱ ✈➻ ✈ỵ✐ ♠å✐ φ1, φ2 ∈ D(Ω) ✈➔ φ1 + φ2 + W ∈ τ ✈ỵ✐... ỗ ữỡ ❚r♦♥❣ s✉èt ❝❤÷ì♥❣ ♥➔②✱ t❛ ❧✉ỉ♥ ❣✐↔ sû ❑ ❧➔ ♠ët t➟♣ ♠ð ❦❤æ♥❣ ré♥❣ ❝õ❛ Ω✳ ❚❛ t❤ø❛ ♥❤➟♥ ởt số t q s ỵ ởt t ỗ ố D() ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ V ∈ β ✳ ❜✮ ❈→❝ tỉ♣ỉ τK ❝õ❛ DK trị♥❣ ✈ỵ✐ tỉ♣ỉ ❝õ❛

Ngày đăng: 30/06/2020, 20:14