1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn sư phạm Cung tham số, cung chính quy, cung song chính quy và ứng dụng

73 107 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 73
Dung lượng 699,34 KB

Nội dung

TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI KHOA TOÁN ===***=== TRẦN THANH HẢI CUNG THAM SỐ, CUNG CHÍNH QUY, CUNG SONG CHÍNH QUY VÀ ỨNG DỤNG KHỐ LUẬN TỐT NGHIỆP ĐẠI HỌC Chuyên ngành: Hình học Người hướng dẫn khoa học Th.S Trần Văn Nghị HÀ NỘI - 2013 LỜI CẢM ƠN Trong thời gian thực đề tài khóa luận tốt nghiệp, bảo tận tình thầy hướng dẫn phía nhà trường tạo điều kiện thuận lợi em có q trình nghiên cứu, tìm hiểu học tập nghiêm túc để hồn thành khóa luận Kết thu khơng nỗ lực thân mà cịn có giúp đỡ q thầy cơ, gia đình bạn Em xin bày tỏ lòng biết ơn sâu sắc tới thầy cô giáo giúp đỡ em Đặc biệt thầy Trần Văn Nghị thầy hướng dẫn, hỗ trợ em hoàn thành tốt đề tài phương pháp, lý luận nội dung suốt thời gian thực khóa luận tốt nghiệp Hà Nội, tháng năm 2013 Sinh viên Trần Thanh Hải LỜI CAM ĐOAN Khóa luận hồn thành tìm hiểu, nghiên cứu thân hướng dẫn tận tình thầy giáo Trần Văn Nghị Trong khóa luận có tham khảo kết nghiêm cứu nhà khoa học Em xin khẳng định kết khóa luận khơng chép từ đề tài Em xin chịu hoàn toàn trách nhiệm lời cam đoan Hà Nội, tháng năm 2013 Sinh viên Trần Thanh Hải MỤC LỤC MỞ ĐẦU Chương KIẾN THỨC CHUẨN BỊ 0.1 Không gian vectơ Euclide 0.2 Một số hệ tọa độ thường dùng 0.3 Giải tích vectơ Chương CUNG THAM SỐ 10 1.1 Định Nghĩa 10 1.2 Ví dụ 10 1.3 Một số dạng tập 11 Chương CUNG CHÍNH QUY 24 2.1 Cung quy 24 2.2 Độ dài tham số hóa tự nhiên cung quy 25 2.3 Độ cong cung quy ý nghĩa hình học độ cong 28 2.4 Một số dạng tập 30 Chương CUNG SONG CHÍNH QUY 49 3.1 Định nghĩa 49 3.1.1 Cung song quy 49 3.2 Định lý lý thuyết đường 3 51 3.3 Một số dạng tập 52 KẾT LUẬN 68 TÀI LIỆU THAM KHẢO 69 MỞ ĐẦU Lý chọn đề tài Hình học mơn khoa học nghiên cứu tính chất định tính định lượng hình Tùy vào phương pháp nghiên cứu khác mà có ngành hình học khác Hình học Afin, Hình học Xạ ảnh, Hình học Vi phân, Hình học Giải tích, Hình học Đại số, Tơpơ… Hình học Vi phân ngành hình học ứng dựng phép tính vi phân vào giải tốn hình học Ở khái niệm cung quy cung song quy khái niệm ban đầu để tiếp cận lý thuyết đường 3 Với mong muốn tìm hiểu sâu đối tượng nói hướng dẫn thầy hướng dẫn, định chọn đề tài để trình bày khóa luận tốt nghiệp đại học Mục đích nghiên cứu Mục đích khóa luận hệ thống phân dạng dạng tập cách chi tiết cung tham số, cung quy cung song quy Đối tượng phạm vi nghiên cứu a) Đối tượng nghiên cứu Đối tượng nghiên cứu cung tham số, cung quy cung song quy b) Phạm vi nghiêm cứu Phạm vi nghiên cứu lý thuyết tập cung tham số, cung quy cung song quy Nhiệm vụ nghiên cứu Nhiệm vụ nghiên cứu phân loại, hệ thống dạng tập cung tham số, cung quy cung song quy Phương pháp nghiên cứu Phân tích tổng hợp kiến thức Cấu trúc khóa luận Khóa luận gồm chương: Chương 0: Kiến thức chuẩn bị Chương 1: Cung tham số Chương 2: Cung quy Chương 3: Cung song quy Chương KIẾN THỨC CHUẨN BỊ 0.1 Không gian vectơ Euclide     n khơng gian Euclide n chiều Tích vơ hướng hai vectơ a b     2   kí hiệu a.b , chuẩn a kí hiệu a , a  a.a  a  n không gian Euclide n chiều, tức không gian afin liên kết với không gian vectơ Euclide n chiều  n Khoảng cách hai điểm M , N thuộc  n  MN    Mục tiêu afin  n họ ( O , e1 , e2 ,…, en ), O  n gốc tọa độ,     ( e1 , e2 ,…, en ) sở  n Điểm M   n có tọa độ ( x1 , x ,…, x n ) đối  n  với mục tiêu có nghĩa OM   x i ei Các hàm số x1 , x ,…, x n  n i 1 gọi hàm tọa độ Cũng kí hiệu mục tiêu (hệ tọa độ) afin Ox1 x x n    Khi sở ( e1 , e2 ,…, en ) trực chuẩn, tức   i j 0 ei e j   ij   i j 1 ( i , j = 1, 2, …,n) ta hệ Descartes vng góc Khi đó, M có tọa độ ( x1 , x ,…, x n ), N có tọa độ ( y1 , y ,…, y n ) khoảng cách M , N n  y i 1 i  xi  Sau chọn hệ tọa độ Descartes vng góc  n ta đồng  n với ฀ n với cơng thức tính khoảng cách 0.2 Một số hệ tọa độ thường dùng 0.2.1 Hệ tọa độ Descartes Một hệ tọa độ Descartes Oxy xác định vị trí điểm mặt phẳng cho trước cặp số  x, y  Trong x y giá trị xác định đường thẳng có hướng vng góc với (cùng đơn vị đo) Hai đường thẳng gọi trục tọa độ (hay đơn giản trục) Trục nằm ngang gọi trục hoành, trục nằm dọc gọi trục tung, điểm giao hai trục gọi gốc tọa độ có giá trị  0,0  0.2.2 Hệ tọa độ cực mặt phẳng Trong mặt phẳng ฀ cho hệ tọa độ Descartes vng góc Oxy Xét P  ฀ \ O Giả sử M điểm P , có tọa độ Descartes M  x, y  đặt tương ứng M với cặp số ( r , ) theo cách sau đây:    Đặt r  OM (như r  ) Do M  P nên OM      Ta đặt   Ox,OM y  đặt   2  Ox,OM y      M r  O x Cặp số  r ,  gọi tọa độ cực điểm M cho Kí hiệu M  r ,  M   r ,  Số r gọi bán kính cực M , cịn  gọi góc cực M Từ định nghĩa suy    2 Rõ ràng ta có: r  x  y   x  r cos   y  r sin   Công thức gọi công thức đổi tọa độ tọa độ Descartes tọa độ cực 0.2.3 Hệ tọa độ trụ khơng gian Cho hệ tọa độ Descartes vng góc Oxyz 3 Xét U  3 \ Oz Có thể cho ứng điểm M  x, y, z  U với ba số  r , ,   theo cách sau đây: lấy hình chiếu M M mặt phẳng tọa độ Oxy đặt      r  OM Ta đặt   Ox,OM y  đặt   2  Ox,OM     y    z Bây điểm M tương ứng với số  r , ,   theo xác định Bộ ba số  r , ,   gọi tọa độ trụ M hệ tọa độ Descartes Oxyz viết M  r , ,   hay M   r , ,   Ta thấy r     2 Công thức đổi tọa độ tọa độ Descartes tọa độ trụ:  x  r cos    y  r sin  z    0.2.4 Hệ tọa độ cầu không gian Cho hệ tọa độ Descartes vng góc Oxyz 3 Xét U  3 \ Oz Có thể cho ứng điểm M  x, y, z  U với ba số  r , ,  theo  cách sau: đặt r  OM lấy hình chiếu M M mặt phẳng tọa độ   Oxy Vì M  Oz nên M  O , OM  Khi đó, ta đặt:   y0   Ox, OM       2  Ox, OM y0   z0   OM , OM       2  OM , OM z          Bộ số  r , ,  xác định gọi tọa độ cầu M hệ tọa độ Descartes vng góc Oxyz viết M  r , ,  hay M   r , ,  (trong tọa độ cầu) Rõ ràng r  ,    2 ,      0.3 Giải tích vectơ 0.3.1 Hàm vectơ   Cho tập mở U  ฀ m  m  1 Mỗi ánh xạ  : U   n gọi hàm  vectơ U Ở ฀ m xét với tôpô thường  n không gian vectơ Euclide n - chiều      Nếu  n cho sở e1 , e2 , , en với p U , vectơ   p  có    tọa độ phụ thuộc p, kí hiệu   p   1  p  , , n  p    Ta gọi  i : U  ฀ , p  i  p  hàm tọa độ thứ i  Vì p có m tọa độ ฀ m nên i hàm số m biến i   t1 , , tm  , p   t1 , , tm     a) Trường vectơ tiếp xúc đơn vị T thỏa mãn T  s   ae  s   bk ( a, b      số khác không a  b  1), tỏng e  s   cos si  sin s j , i, j , k    sở trực chuẩn 3 , b) Trường vectơ trùng pháp tuyến đơn vị B thỏa mãn    B  s   ae  s   bk (a, b câu a)), c) Trường vectơ pháp tuyến đơn vị N thỏa mãn   N  s  e s Giải     a) Theo giả thiết ta có T  s   ae  s   bk  T  s    a cos s, a sin s, b  Vì    s  tham số hóa tự nhiên cung cần tìm nên T  s    '  s  tương   đương với  T  s   C    s  Suy   s    a sin s  c1 , a cos s  c2 , bs  c3     b) Trường vectơ pháp tuyến đơn vị B thỏa mãn B  s   ae  s   bk       a     B '  s   ae  s    B '   N  B '    a   2    a Trường hợp   a   N   B '  e s   , a 2      T  N  B  e  s    ae  s   bk 2             ae  s   e  s    be  s    k 2 2      ak  be  s  55      Vì e  s  , e  s   , k  hệ trực chuẩn thuận nên suy 2         r   Tds  ask  be  s    c 2  Trường hợp   a N   B '  e s   , 2 a      T  N  B  e  s    ae  s   bk 2              ae  s   e  s    be  s    k 2 2       ak  be  s       Vì e  s  , e  s   , k  hệ trực chuẩn thuận nên suy 2        r   Tds   ask  be  s    c 2    c) N  s   e  s  với N trường vectơ pháp tuyến đơn vị  Ta có: N  s    cos s,sin s,0  ,  N '  s     sin s,cos s,0  ,  N ''  s     cos s,  sin s,0  ,   N  s   N '  s    0,0,1 ,        Ta có: N ''  s   N '  s  '  kT   B   k 'T   k    N   ' B  (1) (2)            Từ (1) (2) ta có: N   k 'T   k    N   ' B    k ' B   'T  2 k '  o k  a Suy ra:  (a,b hàm số)   '    b 56          Ta có: T '  k N  T  a  Nds  a  e  s  ds  T '  s   ae  s    c 2           Mà  '  s   T  s     s    T  s ds    ae  s    c  ds 2          ae  s    cs  D 2  Dạng Mặt phẳng mật tiếp, pháp tuyến chính, trùng pháp tuyến mặt phẳng trực đạc cung điểm song quy Bài Trong 3 , cho cung đinh ốc tròn   t    a cos t , a sin t , bt  a  , b  Viết phương trình mặt phẳng mật tiếp, pháp tuyến chính, trùng pháp tuyến mặt phẳng trực đạc cung điểm song quy Giải Ta có   t    a cos t , a sin t , bt  ,  '  t     a sin t , a cos t , b  ,  " t     a cos t , a sin t ,0  ,  '  t    " t    ab sin t , ab cos t , a  ,  '  t    " t   a a  b  nên  '  t   ''  t  độc lập tuyến tính Vậy  cung song quy Mặt phẳng mật tiếp điểm quy có pháp vectơ  '  t    " t    ab sin t , ab cos t , a  Nên ta có phương trình ab sin t  x  a cos t   ab cos t  y  a sin t   a  z  bt   hay bx sin t  b cos t  az  abt  57 Ta có  '  t   " t     a sin t   a cos t    a cos t   a sin t   b.0  a sin t cos t  a sin t cos t   Do đó,  " t  vectơ phương pháp tuyến   t  Vậy phương trình pháp tuyến điểm song quy   t  x  a cos t y  a sin t z  bt   cos t sin t Dễ thấy vectơ phương trùng pháp tuyến vectơ pháp tuyến mặt phẳng mật tiếp Do đó, phương trình trùng pháp tuyến cần tìm x  a cos t y  a sin t z  bt   b cos t b sin t a Mặt phẳng trực đạc   t  có vectơ pháp tuyến vectơ phương pháp tuyến   t  Do đó, phương trình mặt phẳng trực đạc cần tìm cos t  x  a cos t   sin t  y  a sin t   hay x cos t0  ysin t0  a  Bài Chứng minh tính chất sau cung song quy định hướng 3 (có hướng) với độ xoắn khác điểm tương đương a) Tiếp tuyến tạo góc khơng đổi với phương cố định, b) Pháp tuyến song song với mặt phẳng cố định, c) Trùng pháp tuyến tạo góc khơng đổi với phương cố định, d) Tỉ số độ xoắn độ cong hàm hằng,  DT D 2T  D 3T e)     (trong T trường vectơ tiếp xúc đơn vị dọc  ds ds  ds  D iT D  Di 1T     i  ) ds i ds  ds i 1  58 Giải Trước hết, ta chứng minh  a  b  c   Thật vậy, giả sử a vectơ có phương khơng đổi tạo với tiếp   tuyến cung  góc khơng đổi  T , a   : góc khơng đổi         Ta có T a  cos   T '.a   k a.N   N a  ( k  ) Điều tương đương với pháp tuyến ln song song với mặt  phẳng cố định mặt phẳng có vectơ pháp tuyến a tức  a  b        Ta có N a   a  N   aB '         a.B  cos  a.B  sin  Điều chứng tỏ trùng pháp tuyến tạo với phương a góc khơng đổi, tức  a  c  Ta chứng minh  b  c        c   N a   a kT   R   k cos  r sin       k  cos   cot   const sin  (vì k  sin   , sin    k cos    cos   điều mâu thuẫn với giả thiết) Ta chứng minh  d  c      Xét b  T  B k         Ta có b '  T ' B '  N   N  b vectơ đơn vị k k            Mà b.N   T  B  N   N  b k  59   d  c Ta chứng minh  d  e  Ta có T '  kN , T ''  k ' N  kN '  k  kT   B   k ' N , T '''  k ' N  kN '  3k k '  ' k   ' k  B   k '' k   k  N , '  T ' T ''.T '''  k   k '    Vậy T ' T '' T '''  k      const T ' T '' T '''  điểm k k dấu hiệu để cung  cung đinh ốc Bài Tìm cung song quy  3 mà mặt phẳng mật tiếp nó: a) Thẳng góc với phương cố định b) Song song với đường thẳng cố định (và tiếp tuyến không song song với đường thẳng đó) Giải   a) Gọi  : J  3 , t    t  tham số hóa tự nhiên  Giả sử a   vectơ đơn vị cố định mà mặt phẳng mật tiếp thẳng góc với a   Với tham số tự nhiên  ta có vectơ trùng pháp tuyến B // a       Do đó, B   a  B '  hay  N     Vậy  cung phẳng    b) Giả sử b  , b  song song với mặt phẳng mật tiếp với tham số     hóa tự nhiên  ta có B  b hay B.b        B ' b    N b    Nb  Lấy s0 thuộc J Nếu tồn           s  J để t  t0 , s  , N  t  b  kết hợp với B  t  b  ta suy T  t  // b 60      Do đó, T  t   b Suy T  t   k  t  N  s   k  t   trái với giả thiết  cung song quy Vậy phải tồn dãy tn  J cho tn  t0   n   N  tn  b  Từ suy   tn   Do đó,   t0   lim  tn   n  Vậy   t   , t  J hay  cung phẳng Dạng Tính độ cong, độ xoắn cung song quy Bài Chứng minh rằng: a) Cung thẳng có độ cong k  b) Cung có độ cong khơng cung thẳng Giải a) Giả sử cung thẳng  có tham số hóa tự nhiên:   : ฀   n , t    t   O  te Khi D '  nên k  t   , t  ฀ suy k  t   dt Vậy cung phẳng có độ cong k  cung phẳng b) Giả sử cung  cung song quy có tham số hóa tự nhiên  : J   n k  t        Từ ta có T '  t   nên T '  t   , t  J Suy T  t   a ( a vectơ hằng)      Vì  '  t   a    t   O  ta  b với a , b vectơ Tức ảnh  nằm đường thẳng Bài Chứng minh rằng: cung song quy cung phẳng   61 Giải Giả sử  cung song quy có độ xoắn không điểm Ta chứng minh  cung phẳng Xét  : J   , t    t  tham số hóa tự nhiên Từ công thức Frénet, theo giả thiết ta có: B '  t     t  N  t   , t  J       Do đó, B  t   a vectơ cố định Do đó, B  t .T  t   nên a.T  t   hay     a. '  t   Từ đó, với I điểm cố định E , ta có a.I  '  t   C (*) ( C  const ) Suy  có ảnh nằm mặt phẳng    Thật vậy, ta chọn mục tiêu trực chuẩn I , e1 , e2 , e3 E3 ,  đó,   t    x  t  , y  t  , z  t   a  a1 , a2 , a3  tức (*) viết dạng   a1 x  t   a2 y  t   a3 z  t   C  , tức  có ảnh nằm mặt phẳng a1 x  a2 y  a3 z  C  Bài Trong 3 , cho cung có biểu thức tọa độc trực chuẩn sau Tính độ cong độ xoắn cung cho biểu thức sau đây: a)   t    acht , asht , at   a   ,   b)   t   et , et , t , c)   t    2t ,ln t , t   t   , d)   t    cos3 t ,sin t ,cos 2t  , e)   t    t cos t , t sin t , at  t  , t  f)   t    a  t  sin t  ; a 1  cos t  ;4a cos  2   a  0 g)   t    R cos t , R sin t cos t , R sin t  t  ฀ , R  ,   h)   t   et , e t , t 62 t   , Giải a) Ta có:   t    acht , asht , at  ,  '  t    asht , acht , a  ,  " t    acht , asht ,0  ,  '" t    asht , acht ,0  ,  '  t    " t     a 2sht , a 2cht ,1 ,   '  t    " t  . "' t   a sh t  a ch t  a , 3  '  t   a 2sh 2t  a 2ch 2t  a  a 2cht ,  '  t    " t   a 2cht Áp dụng cơng thức tính độ cong độ xoắn ta có: k t    t     '  t    " t   't   a 2cht a 2cht   ' t    " t  . "' t    '  t    " t    , 2ach 2t  a3  2a 4ch 2t 2ach 2t   b) Ta có:   t   et , e  t , t ,  '  t   et , e t , ,  " t    et , e t ,0     "'  t    et , et ,0  ,  '  t    " t    2et , 2et ,2 ,   '  t    " t  . "'  t   2 2,  '  t   e t  e 2 t   e t  e  t ,  '  t    " t   2e2t  2e2t    et  et  Áp dụng công thức tính độ cong độ xoắn ta có: k t    t    '  t    " t   't   et  e  t    et  e   '  t    " t  . "' t    '  t    " t  63  t   et  e  t  2 2e  e t   e t 2 ,  t e  t c) Ta có:   t    2t ,ln t , t   t   ,              '  t    2, ,2t  ,  " t    0,  ,2  ,  "'  t    0,  ,0  , t t t 4 t  '  t    " t    , 4,  ' t    2  ,  '  t    " t    "'  t   4t 4 ,   t  2t  ,  t  t2 t  '  t    " t   16  14    2t 2 t t Áp dụng cơng thức tính độ cong độ xoắn ta có: k t    t    '  t    " t   't  4t  2t t2 ,    2t    2t  1  t      ' t    " t  . "' t    '  t    " t  4t 4  2t   2t  1  2t  2 2 d) Ta có:   t    cos3 t ,sin t ,cos 2t  ,  '  t    3sin t cos t ,3cos t sin t , 2sin 2t  ,  " t    3cos3 t  6cos t sin t , 3sin t  6cos t sin t , 4cos 2t  ,  "'  t    6sin t  21cos t sin t ,6cos3 t  21cos t sin t ,8sin 2t  ,  '  t    " t   12cos3 t sin t , 12cos t sin t , 9cos t sin t  ,   '  t    " t  . "'  t   108sin t cos3 t ,  '  t   9sin t cos t  9cos t sin t  4sin 2t  64 sin 2t ,  '  t    " t   144cos6 t sin t  144cos t sin  81cos t sin t  15 sin 2t Áp dụng cơng thức tính độ cong độ xoắn ta có: k t    t   '  t    " t   't  15 sin 2t ,   125 25 sin t sin 2t   ' t    " t  . "' t     '  t    " t  36sin t cos3 t  4 225sin t cos t 25sin t cos t e) Ta có:   t    t cos t , t sin t , at  ,  '  t    cos t  t sin t ,sin t  t cos t , a  ,  " t    2sin t  t cos t ,2cos t  t sin t ,0  ,  "'  t    3cos t  t sin t , 3sin t  t cos t ,0  ,  '  t    " t    2a cos t  at sin t; 2a sin t  at cos t;2  t  ,   '  t    " t  . "'  t   a  t  6 ,  '  t   cos t  t sin t  2t sin t cos t  sin t  t cos t  2t sin t cos t  a   t  a2 ,  '  t    " t    2a cos t  at sin t    2a sin t  at cos t     t  2  t   a   t  4a  Áp dụng cơng thức tính độ cong độ xoắn ta có: k 0   '     "   '     a    4a     a2 65    a2  a2    , a 1   0    '     "  . "'     '     "  a   6   a    4a  2  3a 1  a  t  g) Ta có:   t    a  t  sin t  ; a 1  cos t  ;4a cos  , 2  t     '  t    a  a cos t , a sin t , 2a sin  , t     ''  t    a sin t , a cos t , a cos  , a   t   '''  t    a cos t , a sin t , sin  , 2 t   t t    '  t    " t    2a sin ; 2a sin cos ; a cos t  a  ,   '  t    " t  . "' t   a t sin ,         a , ' " "'           2   2     ' t    a  a cos t    a sin t   2a  4a sin 2 t    2a sin  2  t  2a cos t , t t t  '  t    " t   4a sin  4a sin cos  a cos t  2a cos t  a    '    2a  a  a  a   ,   a4 a4       a4  a2  a    '     "   2 2 2 66 Áp dụng cơng thức tính độ cong độ xoắn ta có:   k   2      '     "  2       '  2   a2 2 ,  a8 8a          2a  a ' " "'                    2     a a 2        '     "  2 2 h) Ta có   t    R cos t , R sin t cos t , R sin t  ,  '  t     R sin 2t , R cos 2t , R cos t  ,  ''  t    2 R cos 2t , 2 R sin 2t ,  R sin t  ,  '''  t    R sin 2t , 4 R cos 2t ,  R cos t  ,  '  t    " t   R   cos 2t sin t  2cos t sin 2t , 2cos t cos 2t  2sin t cos t ,  ,   '  t    " t  . "' t     cos 2t sin t  2cos t sin 2t  R sin 2t    2cos t cos 2t  2sin t cos t   4 R cos 2t   R cos t  R3 cos t ,  '  t   R sin t cos t  R cos 2t  R cos t  R  cos t ,  '  t    " t   R  3sin t Áp dụng cơng thức tính độ cong độ xoắn ta có: k t    t    '  t    " t   ' t   R  3sin t R 1  cos t    '  t    " t  . "' t    '  t    " t  67   3sin t R 1  cos t  , R cos t 6cos t  R   3sin t  R   3sin t  KẾT LUẬN Phần nội dung khóa luận trình bày cung tham số, cung quy, cung song quy số ứng dụng Sau trình nghiên cứu, em hiểu thêm nhiều kiến thức mới, củng cố cho thêm nhiều kiến thức hình học Mặc dù có nhiều cố gắng song điều kiện khách quan chủ quan, khóa luận khơng tránh khỏi thiếu sót, em mong nhận bảo thầy cô giáo 68 TÀI LIỆU THAM KHẢO [1] Đồn Quỳnh, Hình học Vi phân, NXB GD, 2009 [2] Đồn Quỳnh, Trần Đình Việt, Trương Đức Hinh, Nguyễn Hữu Quang, Bài tập hình học Vi phân, NXBGD, 1993 [3] Phạm Đình Đơ, Hình học Vi phân, NXB ĐHSP, 2010 69 ... tượng nghiên cứu Đối tượng nghiên cứu cung tham số, cung quy cung song quy b) Phạm vi nghiêm cứu Phạm vi nghiên cứu lý thuyết tập cung tham số, cung quy cung song quy Nhiệm vụ nghiên cứu Nhiệm vụ... đó,  '  t   Vậy cung  cung quy Dạng Tìm tham số hóa tự nhiên cung quy Bài Chứng minh cung quy (kể cung quy định hướng) có tham số hóa tự nhiên Giải Giả sử cung quy  có tham số hóa  : J ... dạng tập cung tham số, cung quy cung song quy Phương pháp nghiên cứu Phân tích tổng hợp kiến thức Cấu trúc khóa luận Khóa luận gồm chương: Chương 0: Kiến thức chuẩn bị Chương 1: Cung tham số Chương

Ngày đăng: 30/06/2020, 20:07

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN