1. Trang chủ
  2. » Giáo án - Bài giảng

PHƯƠNG TRÌNH.doc

2 237 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 189 KB

Nội dung

PHƯƠNG TRÌNH-BÂT PHƯƠNG TRÌNH VÔ TỶ (Nâng Cao) I. Phương pháp biến đổi tương đương 1. Kiến thức cần nhớ: ( ) ( ) ( ) ( ) 2 2 2 1 2 1 2 2 2 1 2 1 1. 2. 0 3. , 4. 0 5. , + + + + = = ⇔ = > = ⇔ = ∀ ≥ ≥ ⇔ ≥ ≥ ⇔ ≥ ∀ n n n n n n n n n n a a a b a b ab a b a b a b a b a b a b a b a b 2. Các dạng cơ bản: * Dạng 1: ( ) ( ) ( ) ( ) ( ) 2 0g x f x g x f x g x  ≥  = ⇔  =   (Không cần đặt điều kiện ( ) 0f x ≥ ) * Dạng 2: ( ) ( ) f x g x> xét 2 trường hợp: TH1: ( ) ( ) 0 0 g x f x  <   ≥   TH2: ( ) ( ) 2 ( ) 0g x f x g x ≥    >   * Dạng 3: ( ) ( ) ( ) ( ) ( ) 2 ( ) 0 0 f x f x g x g x f x g x  ≥  ≤ ⇔ ≥   ≤  Ví dụ 1: Giải phương trình: 01312 2 =+−+− xxx (ĐH Khối D – 2006) Ví dụ 2: Giải bất phương trình: ( ) ( ) ( ) 2 2 4 1 2 10 1 3 2x x x+ ≥ + − + b) Tương tự với 2 dạng: * ( ) ( ) f x g x≥ * ( ) ( ) f x g x< Ví dụ 1: Giải bất phương trình 2 2 6 1 2 0− + − + <x x x Ví dụ 2: Tìm m để phương trình 2 2 1 2x mx m− + = − có nghiêm. Ví dụ 3: Tìm m để phương trình 2 2 3 1x mx x+ − = + có hai nghiệm phân biệt. Ví dụ 4: (ĐH Khối B – 2006). Tìm m để phương trình có hai nghiệm thực phân biệt: 2 2 2 1x mx x+ + = + 3. Các kỹ năng: a. Để bình phương 2 vế phương trình – bất phương trình thì một là ta biến đổi cho 2 vế không âm hai là đặt điều kiện cho 2 vế không âm. Ví dụ 1: Giải bất phương trình: 5 1 1 2 4x x x− − − > − (ĐH Khối A – 2005) Ví dụ 2: Giải phương trình: ( ) ( ) 2 1 2 2− + + =x x x x x Ví dụ 3: Tìm m để phương trình 2 2 2 4 0x mx x− − − = có nghiệm. b. Chuyển về phương trình – bất phương trình tích: - Đặt nhân tử chung, hằng đẳng thức Lưu ý: Để sử dụng phương pháp này ta phải chú ý đến việc thêm, bớt, tách, phân tích . Ví dụ 4: Giải phương trình: 2 7 7x x+ + = . Ví dụ 5: Giải các bất phương trình: a. ( ) 2 2 4 1 1 x x x > − + + b. ( ) 2 2 3 2 3 2 0x x x x− − − ≥ ĐS: a. −1≤x<8, b. { } [ ) 1 ; 2 3; 2   −∞ − +∞     U U . Ví dụ 6: (Khối B – 2007): Chứng minh rằng với mọi giá trị dương của tham số m, phương trình sau có hai nghiệm thực phân biệt: ( ) 2 2 8 2x x m x+ − = − .(1) Một số dạng chuyển thành tích: - Dạng: ( ) ( ) - -a c x b d ax b cx d m + + ± + = Ta biến đổi thành: ( ) ( ) ( )m ax b cx d ax b cx d + ± + = + − + Ví dụ: Giải phương trình: 3 4 1 3 2 5 x x x + + − − = . ĐS: x=2. - Dạng: u+v=1+uv ⇔ (u-1)(v-1)=0 Ví dụ: Giải phương trình: 3 2 3 3 1 2 1 3 2x x x x+ + + = + + + . ĐS: x=0, x=−1. Ví dụ: Giải phương trình: 3 24 4 1 1x x x x+ + = + + . ĐS: x=0, x=1. - Dạng: au+bv=ab+uv ⇔ (u−b)(v−a)=0 Ví dụ 1: Giải phương trình: 2 3 2 1 2 4 3x x x x x x+ + + = + + + . ĐS: x=0, x=1. Ví dụ 2: Giải phương trình: 3 2 2 2 3 3 2 3 2 2x x x x x x x+ + + + = + + + . ĐS: x=0. - Dạng: a 3 −b 3 ⇔ (a−b)(a 2 +ab+b 2 )=0 ⇔ a=b Ví dụ: Giải phương trình: ( ) ( ) 2 2 3 3 2 3 9 2 2 3 3 2x x x x x+ + = + + . ĐS: x=1. c. Chuyển về dạng: A 1 + A 2 + + A n = 0 với ,0 1 i A i n≥ ≤ ≤ khi đó pt tương đương với: , , 1 2 0 0 0L n A A A= = = . Ví dụ 1: Giải phương trình: 2 4 3 3 4 3 2 2 1x x x x x+ + = + + − . Ví dụ 2: Giải phương trình: 2 2 4 2 4x y y x y− − + = + . d. Sử dụng lập phương: Với dạng tổng quát 3 3 3 a b c± = ta lập phương hai vế và sử dụng hằng đẳng thức ( ) ( ) 3 3 3 3a b a b ab a b± = ± ± ± khi đó phương trình tương đương với hệ 3 3 3 3 3 a b c a b abc c  ± =   ± ± =   . Giải hệ này ta có nghiệm của phương trình. Ví dụ: Giải bất phương trình 3 3 3 1 2 2 3x x x− + − = − . ĐS: 3 1; 2; 2 x x x= = = . e. Nếu bất phương trình chứa ẩn ở mẩu: - TH1: Mẩu luôn dương hoặc luôn âm thì ta quy đồng khử mẩu: Ví dụ 1: Giải bất phương trình: ( ) ( ) 2 2 16 7 3 1 3 3 x x x x x − − + − > − − (ĐH Khối A−2004) - TH2: Mẩu âm dương trên từng khoảng thì ta chia thành từng trường hợp: Ví dụ 2: Giải các bất phương trình: a. ( ) 2 2 3 4 9x x x− + ≤ − b. 2 51 2 1 1 x x x − − < − . Bài tập Bài 1: Giải các phương trình sau: a. ( ) 2 2 1 1 0x x x x x x− − − − + − = . b. 2 2 4 5 1 2 1 9 3x x x x x+ + − − − = + . Bài 2: Giải bất phương trình sau: 2 1 2 1 2 2 .x x x− + + ≥ − Bài 3: Giải phương trình 4 3 10 3 2x x− − = − . Bài 4: Giải phương trình 2 2 1 1 3 x x x x+ − = + − . Bài 5: Giải phương trình 2 2 6 1 1x x x+ + = + . Bài 6: Giải các phương trình sau: 1. 2 1 1x x− = + 2. 3 3 2 2 3 1x x− + − = 3. 3 3 3 2 2 2 9x x x+ + − = 4. 3 3 3 1 1 2x x x− + + = 5. 2 1 1 2 4 x x x+ + − = − 6. 2 2 3 3 1 4 x x x − + + = + + Bài 7: Giải các bất phương trình sau: a. 2 1 1 4 3 x x − − < . b. 2 2 2 3 2 6 5 2 9 7x x x x x x+ + + + + ≤ + + . c. 2 2 2 2 2 3 4 5x x x x x x+ − + + − ≤ + − . Bài 8: Giải các phương trình: a. 3 3 2 2 3 3 1x x x x x+ + = + + . b. 4 3 4 3 x x x x + + = + . c. 3 4 3 1 4x x x + = + + . d. 2 2 3 9 4x x x+ = − − . e. 2 2 2 1 4 3 1 2 2 6x x x x x x− + + + = + + . . 2006). Tìm m để phương trình có hai nghiệm thực phân biệt: 2 2 2 1x mx x+ + = + 3. Các kỹ năng: a. Để bình phương 2 vế phương trình – bất phương trình thì một. 1: Giải bất phương trình 2 2 6 1 2 0− + − + <x x x Ví dụ 2: Tìm m để phương trình 2 2 1 2x mx m− + = − có nghiêm. Ví dụ 3: Tìm m để phương trình 2 2 3

Ngày đăng: 09/10/2013, 14:11

TỪ KHÓA LIÊN QUAN

w