ĐỀ TUYỂN SINH VÀO LỚP 10 PHAN BỘICHÂU – NGHỆ AN NĂM HỌC 2003 – 2004 Môn thi: Toán Thời gian làm bài: 150 phút. Bài 1: a. Giải phương trình: 2 9 9 1x x x x− + = − + + b. Giải bất phương trình: 2 4 5 1 1 x x x − + < − Bài 2: a. Giải hệ phương trình: 3 2 3 2 y x y x x y x y − = − = b. Cho f(x) = x 2 + 2x + m = 0 Tìm m để phương trình sau có nghiệm: f(f(x)) = x. Bài 3: Cho hình vuông có tọa độ một đỉnh là A(-4; 5) và một đường chéo đặt trên đường thẳng có phương trình : 7x – y + 8 = 0. Viết phương trình đường thẳng chứa đường chéo thứ hai của hình vuông đó. Bài 4: Cho tam giác ABC. Ba trung tuyến Am. BN, CP của tam giác cắt đường tròn ngoại tiếp tam giác ABC tương ứng tại các điểm R, S, T. Chứng minh rằng nếu MR = NS = PT thì tam giác ABC đều. Bài 5: Trong mặt phẳng (P) cho một đường thẳng (d) và một điểm O có khoảng cách đến (d) bằng a. Trên (d) lấy hai điểm B và C sao cho · · 0 60BOH COH= = ; H là chân đường vuông góc kẻ từ O xuống (d). Trên đường thẳng vuông góc với mặt phẳng (P) tại O, lấy một điểm A sao cho OA = OB. Tính thể tích hình chóp OABC. . ĐỀ TUYỂN SINH VÀO LỚP 10 PHAN BỘI CHÂU – NGHỆ AN NĂM HỌC 2003 – 2004 Môn thi: Toán Thời gian. ứng tại các điểm R, S, T. Chứng minh rằng nếu MR = NS = PT thì tam giác ABC đều. Bài 5: Trong mặt phẳng (P) cho một đường thẳng (d) và một điểm O có khoảng