Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 29 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
29
Dung lượng
603,78 KB
Nội dung
MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT BÁO CÁO KẾT QUẢ NGHIÊN CỨU, ỨNG DỤNG SÁNG KIẾN Lời giới thiệu : Phương trình mũ phương trình lơgarit tốn thường cho đề thi tốt nghiệp THPT đề thi tuyển sinh vào cao đẳng, đại học năm học trước với năm học kỳ thi THPT quốc gia Yêu cầu toán phương trình mũ lơgarit phong phú đa dạng Các em học sinh thường lúng túng bế tắc gặp phải câu hỏi lạ Do đó, em phải biết chuyển toán lạ toán quen thuộc biết cách giải Việc làm đòi hỏi học sinh phải nắm vững lý thuyết phương pháp giải dạng tốn Ngồi ra, em học sinh phải biết tư duy, phân tích, vận dụng phương pháp giải cách khoa học Điều có số em học sinh chưa nắm vững hay nhầm lẫn việc vận dụng Cho nên chọn đề tài: “Một số phương pháp giải phương trình mũ phương trình lơgarit” nhằm giúp học sinh nắm vững lý thuyết phương pháp giải dạng tốn phương trình mũ phương trình lơgarit Hy vọng tài liệu giúp ích cho em học sinh việc ôn tập để kiểm tra thi cử Tên sáng kiến: MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LÔGARIT Tác giả sáng kiến: - Họ tên: Nguyễn Thu Thủy - Địa tác giả sáng kiến:Trường THPT Triệu Thái - Số điện thoại:01676584756 E_mail:nguyenthuthuy.gvtrieuthai@vinhphuc.edu.vn Chủ đầu tư tạo sáng kiến Lĩnh vực áp dụng sáng kiến: Toán học giáo dục Ngày sáng kiến áp dụng lần đầu áp dụng thử: 12/11/2018 Mô tả chất sáng kiến: - Về nội dung sáng kiến: 1.MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ : 1.1 Phương pháp đưa số: 1.1 a) Phương pháp : Biến đổi số đưa phương trình dạng sau: + 0< a 1: af(x)=ag(x) (1) f(x)=g(x) Gv thực hiện: Nguyễn Thu Thủy Trang MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT + 0< a 1: af(x)=b b > f ( x ) = loga b 1.1 b) Ví dụ minh hoạ : Giải phương trình sau: x+2 1) 2) 3) 4) 1 ÷ 9 2x +3 x − = 81x = x −1 3x.2 x+1 = 72 x + x +1 = 3x + 3x + x +10 5) x +5 16 x −10 = 0,125.8 x +15 Bài giải: 1) Ta có phương trình cho tương đương với − x − = 92 x ⇔ − x − = 2x ⇔ x=− x=− Vậy phương trình cho có nghiệm 2) Ta có: PT ⇔ x +3 x − = 22 x − ⇔ x + 3x − = x − ⇔ x2 + x − = x = ⇔ x = −2 Gv thực hiện: Nguyễn Thu Thủy Trang MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT Vậy phương trình cho có nghiệm x = x = −2 3) Ta có: PT ⇔ 3x.2 x.2 = 72 ⇔ x = 36 ⇔ x=2 Vậy phương trình cho có nghiệm x=2 4) Ta có: PT ⇔ 5x + 5.5 x = 3x + 9.3x ⇔ 6.5 x = 10.3x ⇔ x 10 = 3x x 5 ⇔ ÷ = 3 ⇔ x =1 Vậy phương trình cho có nghiệm 5) Điều kiện: x =1 x ≠ 10; x ≠ 15 x +10 x +5 PT ⇔ ( 24 ) x −10 = ( 2−3 ) ( 23 ) x −15 x + 40 x +15 −3 ⇔ x −10 = x −15 x + 40 3x + 15 ⇔ = −3 x − 10 x − 15 x − 80 x ⇔ =0 ( x − 10 ) ( x − 15 ) x = ⇔ x = 20 Gv thực hiện: Nguyễn Thu Thủy Trang MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT Vậy phương trình cho có nghiệm x = x = 20 1.1 c) Bài tập tự luyện : Giải phương trình sau : Bài : x −7 −7 x +3 3 7 1) ÷ = ÷ 7 3 2) 0,125.4 3) 4) 5) −x 0,25 = ÷ x −8 x2 − x−2 =1 4+ x − x 2 −x x +| x −1| = 22 = ( ) | x−6 | x −5 x +9| 6)32 = ĐS : 1) Bài 2: 1) 2) 3) 4) 5) 6) x = −1 x= 2) 38 3) x = −1 x = 4) x=3 5) x = x =1 6) x = x = x + + 6.5 x − 3.5 x − = 52 3x +1 + 3x + + 3x +3 = 9.5x + x +1 + x+ 3x +1 − 2.3x −2 = 25 3.2 x +1 + 2.5x −2 = 5x + x −2 2.5 x + − x+3 + 375 = 1 2.5 x +1 − x +2 − x + = x +1 1.2 Phương pháp đặt ẩn phụ: Gv thực hiện: Nguyễn Thu Thủy Trang MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT 1.2 a) Các bước giải : * Dạng 1: m.a f ( x) + n.a Cách giải: + Đặt f ( x) t=a + p=0 f ( x) ,t > Phương trình trở thành: + Giải phương trình (*) tìm t, nhận a f ( x) mt + nt + p = t >0 (*) =t + Giải phương trình để tìm x + Kết luận nghiệm phương trình cho * Dạng 2: m.a f ( x ) + n.a − f ( x ) + p = m.a f ( x ) + n Cách giải: Biến đổi PT dạng a f ( x) + p=0 ⇔ m.a f ( x ) + p.a f ( x ) + n = Đến PT có dạng * Dạng 3: m.a f ( x ) + n.(ab) f ( x ) + p.b f ( x ) = Cách giải: + Chia hai vế phương trình cho f ( x) a m ÷ b f ( x) a + n ÷ b b f ( x) a2 f ( x) ta được: + p=0 Đến PT có dạng * Dạng 4: Các phương trình bậc lớn f(x) có dạng tương tự dạng Cách giải dạng tương tự dạng 1.2 b) Ví dụ minh hoạ : Giải PT sau: 1) 2) 3) 32 x +1 − 5.3x + = 3x + 33− x = 12 4.9 x − 12 x + 3.16 x = Bài giải: 1) Ta có: Gv thực hiện: Nguyễn Thu Thủy Trang MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT 32x +1 − 5.3x + = ⇔ 3.( 3x ) − 5.3x + = 2 x = x = log ⇔ 3⇔ x 3 = x = PT ⇔ 3x + 2) 27 = 12 3x ⇔ ( 3x ) − 12.3x + 27 = 3 x = x = ⇔ x ⇔ x = 3 = 3) Ta có: 9x 12 x 4.9 − 12 + 3.16 = ⇔ x − x + = 16 16 x ÷ = x x 4 3 ⇔ ÷ − ÷ + = ⇔ x 4 ÷ = x x x x = ⇔ x =1 1.3 c) Bài tập tự luyện : Giải phương trình sau: 1) 25x - 7.5x + = 2) 3) 4) 5) 32x+8 - 4.3x+5 + 27 = 6.9 x -13.6 x + 6.4 x = ( - )x + ( + )x = 2x −x − 2+ x− x = Gv thực hiện: Nguyễn Thu Thủy Trang MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT 6) 7) 3.8 x + 4.12 x − 18 x − 2.27 x = 2.2 x − 9.14 x + 7.7 x = 8) 52x-1+5x+1=250 9) 9x + 6x = 2.4x 2.8x=12x+27x 10) 11) (3+ 5)x + 16(3− 5)x = 2x+3 12) 3x+33-x=12 13) 14) 15) 4x− x2 − 17) 18) 19) 20) 21) x2 − + 8= 5.32x−1 − 7.3x−1 + 1− 6.3x + 9x+1 4log x +1 − 6log x = 2.3log x x 16) − 12.2x−1− 4 ÷ 7 4x+ x−1 7 ÷ 4 x2 −2 − +2 16 =0 49 − 5.2 x −1+ x2 −2 −6 = 43+ 2cos x − 7.41+cos x − = ( 26 + 15 ) x ( 3x − 3x x ÷− − x−1 ÷ = +2 7+4 ) x ( −2 2− ) x =1 27 x + 12 x = 2.8 x 1.3 Phương pháp lơgarit hố : 1.3 a) Các bước giải : + Biến đổi phương trình dạng : hai vế ln dương Gv thực hiện: Nguyễn Thu Thủy a f ( x) b g( x) c h( x ) =d a f ( x) b g ( x) = d c h( x ) có Trang MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT + Chọn số thích hợp ( theo số a, b, c) để lấy lơgarit hai vế phương trình + Sử dụng công thức luỹ thưa lơgarit để giải phương trình 1.3 b) Ví dụ minh hoạ : Giải PT sau: 1) 2) 3x.2 x = 3x.5x +1 −5 = 3) 49.2 x = 16.7 x Bài giải: 1) Lấy lơgarit số hai vế phương trình ta được: PT ⇔ log (3x.2 x ) = log 2 ⇔ log 3x + log x = 2 ⇔ x log + x2 = ⇔ x(log + x) = x = ⇔ x = − log 2) Lấy lôgarit số hai vế phương trình làm tương tự phần 3) Ta có: 2 2x 7x ⇔ = ⇔ x − = x − (*) 16 49 PT Lấy lôgarit số hai vế phương trình (*)và làm tương tự phần 1.3c) Bài tập tự luyện : Giải phương trình sau : 1) 3x+3x+1+3x+2=4x+4x+3 Gv thực hiện: Nguyễn Thu Thủy Trang MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT x +1 2) x+2 2 ÷ 5 1 = ÷ 7 3) 5x.3x = x 4) 3x.8 x+ = x 5) 6) 7) 23 = 32 4.9 x −1 = 22 x +1 2x −2 x x 8) x 3x = 1,5 x −1 x +1 = 50 3x 9) 3x.2 x+ = 1.4 Phương pháp sử dụng tính đơn điệu hàm số : 1.4 a) Các bước giải : + Thường biến đổi phương trình cho dạng f (x) = g(x) hay f (x) = c + Nhẩm nghiệm x = x0 + Chứng minh phương trình có nghiệm x = x0 + Với x > x0 ⇒ ⇒ f (x) > f (x0 ) suy phương trình vơ nghiệm + Với x < x0 f (x) < f (x0 ) suy phương trình vơ nghiệm 1.4 b) Ví dụ minh hoạ : Giải phương trình sau: 1) 2) 3x + x = x 3x = − x Bài giải: x 1) PT x 3 4 ⇔ ÷ + ÷ =1 5 5 Ta thấy x=2 nghiệm phương trình Ta chứng minh nghiệm phương trình Gv thực hiện: Nguyễn Thu Thủy Trang MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT x - Thật vậy, xét hàm số: x - x 3 4 f ( x) = ÷ + ÷ 5 5 x 4 3 f ' ( x ) = ÷ ln + ÷ ln < 0, ∀x ∈ IR 5 5 Vì nên f ( x) nghịch biến IR Do đó: x + Với x + Với x 3 4 x > ⇒ f ( x ) < f ( 2) ⇔ ÷ + ÷ < 5 5 , suy PT vô nghiệm x>2 x 3 4 x < ⇒ f ( x ) > f ( 2) ⇔ ÷ + ÷ > 5 5 , suy PT vô nghiệm x0 Mũ hóa số hai vế phương trình ta được: ( log 5− x ) = 22− x ⇔ − x = 22− x ⇔ 22 x − 5.2 x + = 2x = ⇔ x 2 = x = ⇔ (TM ) x = x = 0; x = Vậy PT cho có hai nghiệm 2) Mũ hóa số hai vế phương trình làm tương tự phần 3) Đặt t = log x , chuyển PT ẩn t mũ hóa số hai vế PT làm tương tự phần 2.3 c) Bài tập tự luyện : Giải phương trình sau: 1) – x + 3log52 = log5(3x – 52 - x) 2) log3(3x – 8) = – x log3 log9 x + + 9x ÷ = 2x 3) ( ) lg 6.5x + 25.20x = x + lg25 4) 5) / 6) 7) [ ( )] logx log3 9x − = ( ) logx+3 − 1− 2x + x2 = 1/ ( ) log3 9x+1 − 4.3x − = 3x + 2.4 Phương pháp sử dụng tính đơn điệu hàm số : 2.4 a) Các bước giải : Gv thực hiện: Nguyễn Thu Thủy Trang 17 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT + Tìm điều kiện xác định phương trình log a u − u = log a v − v f ( u ) = f ( v) ⇔ u = v + Chú ý dạng : có dạng , hàm f hàm số đồng biến (hoặc nghịch biến ) tập xác định phương pháp đánh giá hai vế phương trình 2.4 b) Ví dụ minh hoạ : Giải phương trình sau: 1) log x = − x x = − log x 2) Bài giải: 1) • Điều kiện : x > • Ta thấy x = nghiệm phương trình • Ta chứng minh phương trình có nghiệm x = 2.Thật : + với x > ,ta có f (x) = log2 x đồng biến g(x) = 3− x hàm nghịch biến nên f (x) > f (2) =1 , g(x) < g(2) =1 Do phương trình vơ nghiệm với x > + Tương tự, với x thoả < x < phương trình vơ nghiệm • Vậy, phương trình cho có nghiệm x = 2) • Điều kiện : x > • Ta thấy x =1 nghiệm phương trình • Ta chứng minh phương trình có nghiệm x =1 Thật : 2x + với x >1,ta có f( x) = đồng biến g(x) = −log3 x hàm nghịch biến nên f (x) > f (1) = , g(x) < g(1) = Do phương trình vơ nghiệm với x >1 + Tương tự, với x thoả < x v m = B) m ≥ v m = - C) m > v m = - D) m ≥ v m = - 2x −x 2x 2+x − x+ = + x − x 18) Giải phương trình A) {1, 2} B) {- 1, 2} Ta có tập nghiệm : C) {2, - 2} D) {- 2, 4} + 2− x − x = 19) Giải phương trình A) { 1, 2} B) {1, - 1} Ta có tập nghiệm : C) {0, - 1, 1, - 2} D) {- 1, 2} 4|x| − 2|x|+1 + = m 20) Tìm m để phương trình A) m ≥ B) m ≥ - ( + 3) x 21) Giải phương trình A) {- 2, 2} B) {1, 0} Gv thực hiện: Nguyễn Thu Thủy ( − − ) x có nghiệm C) m > - D) m > +2=0 Ta có tập nghiệm : C) {0} D) {1, 2} Trang 23 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT ( x + 2) x2 − x −5 = ( x + 2) x +10 22) Giải phương trình A) {- 1, - 5, 3} B) {-1, 5} 23) Giải phương trình A) {1, - log 2x } −1 = x+1 Ta có tập nghiệm : C) {- 1, 3} D) {- 1, - 3, 5} Ta có tập nghiệm : log B) {- 1, + } C) {- 1, - log } D) { 1, - + log } 24) Giải phương trình x2.2x + 4x + = 4.x2 + x.2x + 2x + Ta có tập nghiệm A) {- 1, 1} B) {- 1, 2} C) {1, - 2} D) {- 1, 1, 2} x x 25) Tìm m để phương trình - 2(m - 1).2 + 3m - = có nghiệm x1, x2 cho x1 + x2 = m= A) m = B) m = C) D) m = x 3-x 26) Giải phương trình - x.2 + - x = Ta có tập nghiệm : A) {0, -1} B) {0} C) {1} D) {2} x x 27) Tìm m để phương trình - 2(m + 1).2 + 3m - = có hai nghiệm trái dấu 8 3 A) - < m < B) m < C) < m < D) m < x x 28) Giải phương trình - 6.2 + = Ta có tập nghiệm : A) {2, 4} B) {1, 2} C) {- 1, 2} D) {1, 4} x x+1 x 29) Giải phương trình + = + 4.3 Ta có tập nghiệm : A) {1, log } B) {2, x2 + x log 1− x2 } +2 =2 2 +2 30) Giải phương trình A) {-1, 1,0} B) {- 1, 0} 4x − 2x 31) Tìm m để phương trình A) m = B) m = 2 C) {2, ( x +1)2 +1 +6=m log } D) {1, 2} Ta có tập nghiệm : C) {1, 2} D) {0, 1} có nghiệm C) m > D) < m < x − 4.3 x + = m 32) Tìm m để phương trình có nghiệm x ∈ [- 2;1 ] A) ≤ m ≤ 6245 B) m ≥ C) m ≥ D) ≤ m ≤ 6245 x+1 33) Giải phương trình = 10 - x Ta có tập nghiệm : A) {1, 2} B) {1, - 1} C) {1} D) {2} 22 x +3 − x − 5.2 34) Giải phương trình A) {6, - 3} B) {1, 6} Gv thực hiện: Nguyễn Thu Thủy x +3 +1 + x+4 = Ta có tập nghiệm : C) {- 3, - 2} D) {- 3, - 2, 1} Trang 24 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT 35) Giải phương trình 4x + (x - 8).2x + 12 – 2x = Ta có tập nghiệm : A) {1, 3} B) {1, - 1} C) {1, 2} D) {2, 3} x x 36) Giải phương trình (x + 4).9 - (x + 5).3 + = Ta có tập nghiệm : A) {0 , - 1} B) {0, 2} C) {1, 0} D) {1, - 1} x 37) Giải phương trình 34 = 43 log ( log ) A) { log ( log 3) } x Ta có tập nghiệm : log ( log ) B) { log ( log ) } C) { } D) { } x x x+1 38) Giải phương trình - 7.4 + 7.2 - = Ta có tập nghiệm : A) {0, 1, 2} B) {- 1, 2} C) {1, 2} D) {1, - 2} 2 x −2 x−6 = 39) Giải phương trình Ta có tập nghiệm : A) {4; - 2} B) {- 4; 2} C) {- 5; 3} 9x + D) {5; - 3} 54 +3= m 3x 40) Tìm m để phương trình có nghiệm A) m ≥ 30 B) m ≥ 27 C) m ≥ 18 D) m ≥ x x+3 41) Tìm m để phương trình - + = m có nghiệm A) m > - 13 B) m ≥ C) m = - 13v m ≥ D) m = - 13 v m > 42) Giải phương trình 3x - = Ta có tập nghiệm : log log log log A) {1 } B) {1 } C) {1 + } D) {1 + x x+1 43) Tìm m để phương trình - = m có nghiệm A) - 1≤ m ≤ B) m ≥ C) m ≥ D) m ≥ - x x 44) Tìm m để phương trình - + = m có nghiệm x∈ [1; 2] A) m ≥ B) ≤ m ≤ 18 23 C) < m < 18 D) m = v < m < 18 x+3 x-1 45) Giải phương trình + = 2x -1 + 3x Ta có tập nghiệm : 51 log ÷ A) { log ÷ 45 } B) { 45 log ÷ C) { 3 } log ÷ 51 } D) { Gv thực hiện: Nguyễn Thu Thủy } Trang 25 } MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT 2 x − 4.3x + = m 46) Tìm m để phương trình A) < m ≤ B) m ≥ v m = ( + 5) + ( − 5) x 47) Giải phương trình x có nghiệm C) m > v m = D) < m < = 7.2 x Ta có tập nghiệm : 1 2 A) {2, - 2} B) {4, } C) {2, } D) {1; - 1} x x 48) Tìm m để phương trình - 4.3 + = m có nghiệm A) m ≥ - B) m ≥ C) - < m < D) - < m ≤ 49) Giải phương trình 9|x +1| = 27 x −2 Ta có tập nghiệm : A) {2} B) {2, 50) Giải phương trình A) {1, - 1, ± } x2 } C) {1} + ( x − 7).2 x2 + 12 − x = B) {0 , - 1, 2} D) {3, } Ta có tập nghiệm : C) {1, 2} D) {1, - 2} TRẮC NGHIỆM PHƯƠNG TRÌNH LƠGARIT Câu 1: Tập xác định phương trình: A x > - log ( x + 1) − log ( x − x + 1) − log x = B x > C x R Câu 2: Tập xác định phương trình: Câu 3: Phương trình A 11 ≥ log (3 x − 2) = B ∈ B x là: D x log( x − 1) + log ( x − 1) = 25 A x > ≠ ∈ C x R là: ≠ D x có nghiệm là: 25 Câu 4: Số nghiệm phương trình: A B C 29 lnx + ln( 3x − 2) D 87 = là: C D log ( x + x) + log (2 x − 3) = Câu 5: Số nghiệm phương trình: A B Câu 6: Số nghiệm phương trình: A B Gv thực hiện: Nguyễn Thu Thủy C log 52 (5 x) − log 25 (5 x ) − = C là: D là: D Trang 26 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT Câu 7: Số nghiệm phương trình: A B log Câu 8: : Phương trình: A {1; 16} 2 ln x − 3ln x − ln x + 12 = C x + log x = B {1; có tập nghiệm là: } C {1; 4} log ( x − 1) = log ( x + x + 1) Câu 9: Phương trình: A là: D D {4} B - Câu 10: Số nghiệm phương trình: A B có nghiệm là: C D C là: D log x.log (2 x − 1) = log x log ( x − 6) = log ( x − 2) + Câu 11: Số nghiệm phương trình: A B C log ( x − 1) − log x = là: D Câu 12: Phương trình: A B có nghiệm là: C D Đáp án khác log ( x + 1) + log x + = Câu 13: Phương trình: A Câu 14: Phương trình: A B log x + log (4 x) = B có nghiệm là: C có nghiệm là: C log (9 − 4) = x log + log x Câu 15: Phương trình: A Câu 16: Phương trình: A 16 Câu 17: Phương trình: A 24 B log (log x) = B Gv thực hiện: Nguyễn Thu Thủy D có nghiệm là: C có nghiệm là: C log2 x + log4 x + log8 x = 11 B 36 D có nghiệm là: C 45 D log D D 64 Trang 27 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT Câu 18: Phương trình: A { 10; 100} + − lgx + lgx B { 1; 20} log x = − x + 11 Câu 19: Phương trình: A B = có tập nghiệm là: C 1 ; 10 10 có nghiệm là: C 15 ∅ D 21 log x + log x = log x.log x Câu 20: : Phương trình: A {1; 2} B {1; 3} D có tập nghiệm là: C {1; 6} D {1; 9} - Về khả áp dụng sáng kiến: Áp dụng cho học sinh lớp 12 Những thơng tin cần bảo mật (nếu có): không Các điều kiện cần thiết để áp dụng sáng kiến: Học sinh lớp 12 sau học xong chương II giải tích 12 10 Đánh giá lợi ích thu dự kiến thu áp dụng sáng kiến theo ý kiến tác giả theo ý kiến tổ chức, cá nhân tham gia áp dụng sáng kiến lần đầu, kể áp dụng thử (nếu có) theo nội dung sau: 10.1 Đánh giá lợi ích thu dự kiến thu áp dụng sáng kiến theo ý kiến tác giả: Thống kê kết trước học tập tài liệu : Lớp 12A Sĩ số 37 0.0 – 3.5 3.5 - 5.0 12 5.0 - 6.5 6.5 – 8.0 8.0 – 10 >=5.0 18 6.5 – 8.0 8.0 – 10 >=5.0 24 Thống kê kết sau học tập tài liệu : Lớp 12A Sĩ số 37 0.0 – 3.5 3.5 - 5.0 5.0 - 6.5 11 10.2 Đánh giá lợi ích thu dự kiến thu áp dụng sáng kiến theo ý kiến tổ chức, cá nhân: Gv thực hiện: Nguyễn Thu Thủy Trang 28 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT 11 Danh sách tổ chức/cá nhân tham gia áp dụng thử áp dụng sáng kiến lần đầu (nếu có): Số Tên tổ TT chức/cá nhân Lớp 12A3 , ngày tháng năm Thủ trưởng đơn vị/ Chính quyền địa phương Địa Phạm vi/Lĩnh vực áp dụng sáng kiến Trường THPT Triệu Thái , ngày tháng năm CHỦ TỊCH HỘI ĐỒNG SÁNG KIẾN CẤP CƠ SỞ Toán học giáo dục Lập Thạch , Ngày 24 tháng 01 năm 2019 Tác giả sáng kiến Nguyễn Thu Thủy Gv thực hiện: Nguyễn Thu Thủy Trang 29 ... MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT + Chọn số thích hợp ( theo số a, b, c) để lấy lôgarit hai vế phương trình + Sử dụng cơng thức luỹ thưa lơgarit để giải phương trình. .. 2.MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH LƠGARIT: 2.1 Phương pháp đưa số: 2.1 a) Các bước giải : + Tìm điều kiện xác định phương trình Gv thực hiện: Nguyễn Thu Thủy Trang 10 MỘT SỐ PHƯƠNG PHÁP GIẢI... 20 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LƠGARIT 36/ 37/ log 32 x + log 32 x + − = log2 x + 2.log7 x = 2+ log2 x.log7 x 3.MỘT SỐ PHƯƠNG TRÌNH CHỨA THAM SỐ : Bài toán PT Mũ chứa