Tài liệu tham khảo |
Loại |
Chi tiết |
1. Li, S., P. Wang, and L. Goel, A Novel Wavelet-Based Ensemble Method for Short-Term Load Forecasting with Hybrid Neural Networks and Feature Selection. IEEE Transactions on Power Systems, 2016. 31(3): p. 1788-1798 |
Sách, tạp chí |
Tiêu đề: |
A Novel Wavelet-Based Ensemble Method for Short-Term Load Forecasting with Hybrid Neural Networks and Feature Selection |
|
2. Hong, W.-C., Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model.Energy Conversion and Management, 2009. 50(1): p. 105-117 |
Sách, tạp chí |
Tiêu đề: |
Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model |
|
3. Kavousi-Fard, A., H. Samet, and F. Marzbani, A new hybrid Modified Firefly Algorithm and Support Vector Regression model for accurate Short Term Load Forecasting. Expert Systems with Applications, 2014. 41(13): p. 6047-6056 |
Sách, tạp chí |
Tiêu đề: |
A new hybrid Modified Firefly Algorithm and Support Vector Regression model for accurate Short Term Load Forecasting |
|
4. thương, B.C., Thông tư về Quy định hệ thống điện phân phối, in 39/2015/TT-BCT. 2015, Bộ Công thương: Hà Nội |
Sách, tạp chí |
Tiêu đề: |
Thông tư về Quy định hệ thống điện phân phối", in "39/2015/TT-BCT |
|
5. Gia, L.D. Vai trò của thị trường chứng khoán ở Việt Nam. 2015 [cited 2019 03]; Available from: https://luatduonggia.vn/vai-tro-cua-thi-truong-chung-khoan-o-viet-nam/ |
Sách, tạp chí |
Tiêu đề: |
Vai trò của thị trường chứng khoán ở Việt Nam |
|
6. Taylor, J.W., An evaluation of methods for very short-term load forecasting using minute-by-minute British data. International Journal of Forecasting, 2008. 24(4): p. 645-658 |
Sách, tạp chí |
Tiêu đề: |
An evaluation of methods for very short-term load forecasting using minute-by-minute British data |
|
7. Contreras, J., et al., ARIMA Models to Predict Next-Day Electricity Prices. IEEE Power Engineering Review, 2002.22(9): p. 57-57 |
Sách, tạp chí |
Tiêu đề: |
ARIMA Models to Predict Next-Day Electricity Prices |
|
8. Taskaya-Temizel, T. and M.C. Casey, A comparative study of autoregressive neural network hybrids. Neural Networks, 2005.18(5): p. 781-789 |
Sách, tạp chí |
Tiêu đề: |
A comparative study of autoregressive neural network hybrids |
|
9. Hippert, H.S., D.W. Bunn, and R.C. Souza, Large neural networks for electricity load forecasting: Are they overfitted?International Journal of Forecasting, 2005. 21(3): p. 425-434 |
Sách, tạp chí |
Tiêu đề: |
Large neural networks for electricity load forecasting: Are they overfitted |
|
10. Vapnik, V.N., The nature of statistical learning theory. 1995, New York: Springer-Verlag |
Sách, tạp chí |
Tiêu đề: |
The nature of statistical learning theory |
|
12. Fister, I., et al., A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, 2013. 13: p. 34-46 |
Sách, tạp chí |
Tiêu đề: |
A comprehensive review of firefly algorithms |
|
13. Chou, J.-S., N.-T. Ngo, and A.-D. Pham, Shear Strength Prediction in Reinforced Concrete Deep Beams Using Nature- Inspired Metaheuristic Support Vector Regression. Journal of Computing in Civil Engineering, 2016. 30(11): p. 1-9 |
Sách, tạp chí |
Tiêu đề: |
Shear Strength Prediction in Reinforced Concrete Deep Beams Using Nature-Inspired Metaheuristic Support Vector Regression |
|
14. Chou, J.-S. and A.-D. Pham, Smart Artificial Firefly Colony Algorithm-Based Support Vector Regression for Enhanced Forecasting in Civil Engineering. Computer-Aided Civil and Infrastructure Engineering, 2015. 30(9): p. 715–732 |
Sách, tạp chí |
Tiêu đề: |
Smart Artificial Firefly Colony Algorithm-Based Support Vector Regression for Enhanced Forecasting in Civil Engineering |
|
15. Xiong, T., Y. Bao, and Z. Hu, Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting. Knowledge-Based Systems, 2014. 55: p.87-100 |
Sách, tạp chí |
Tiêu đề: |
Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting |
|
16. Castillo, O. and P. Melin, Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory IEEE Transactions on Neural Networks, 2002. 13(6): p.1395 - 1408 |
Sách, tạp chí |
Tiêu đề: |
Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory |
|
17. Hippert, H.S., C.E. Pedreira, and R.C. Souza, Neural networks for short-term load forecasting: a review and evaluation. IEEE Transactions on Power Systems, 2001. 16(1): p. 44 - 55 |
Sách, tạp chí |
Tiêu đề: |
Neural networks for short-term load forecasting: a review and evaluation |
|
18. Giordano, F., M. La Rocca, and C. Perna, Forecasting nonlinear time series with neural network sieve bootstrap. Computational Statistics & Data Analysis, 2007. 51(8): p. 3871-3884 |
Sách, tạp chí |
Tiêu đề: |
Forecasting nonlinear time series with neural network sieve bootstrap |
|
19. Alameer, Z., et al., Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm. Resources Policy, 2019. 61: p. 250-260 |
Sách, tạp chí |
Tiêu đề: |
Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm |
|
20. Huang, W., Y. Nakamori, and S.-Y. Wang, Forecasting stock market movement direction with support vector machine.Computers & Operations Research, 2005. 32(10): p. 2513-2522 |
Sách, tạp chí |
Tiêu đề: |
Forecasting stock market movement direction with support vector machine |
|
21. Cao, L., Support vector machines experts for time series forecasting. Neurocomputing, 2003. 51: p. 321-339 |
Sách, tạp chí |
Tiêu đề: |
Support vector machines experts for time series forecasting |
|