1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu tính chất quang của bột huỳnh quang Ca6P5BO20 pha tạp eu2+ tổng hợp bằng phương pháp đồng kết tủa, ứng dụng trong chiếu sáng nông nghiệp

66 36 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 66
Dung lượng 3,05 MB

Nội dung

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC THÂN KIM LIÊN NGHIÊN CỨU TÍNH CHẤT QUANG CỦA BỘT 2+ HUỲNH QUANG Ca6P5BO20 PHA TẠP Eu TỔNG HỢP BẰNG PHƯƠNG PHÁP ĐỒNG KẾT TỦA, ỨNG DỤNG TRONG CHIẾU SÁNG NÔNG NGHIỆP LUẬN VĂN THẠC SĨ VẬT LÝ THÁI NGUYÊN – 2019 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC –––––––––––––––––––––––– THÂN KIM LIÊN NGHIÊN CỨU TÍNH CHẤT QUANG CỦA BỘT HUỲNH 2+ QUANG Ca6P5BO20 PHA TẠP Eu TỔNG HỢP BẰNG PHƯƠNG PHÁP ĐỒNG KẾT TỦA, ỨNG DỤNG TRONG CHIẾU SÁNG NÔNG NGHIỆP Chuyên ngành: Quang Học Mã số: 8440110 LUẬN VĂN THẠC SĨ QUANG HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS LÊ TIẾN HÀ THÁI NGUYÊN – 2019 LỜI CẢM ƠN Lời tơi xin bày tỏ lòng kính trọng lời cảm ơn chân đến TS Lê Tiến Hà hết lòng dạy dỗ hướng dẫn tơi thực hồn thành luận văn Tôi xin trân trọng cảm ơn đến Ban giám hiệu, khoa Vật lý Cơng nghệ, Phòng Đào tạo thầy cô trong Khoa Vật lý Công nghệ - Trường Đại học Khoa học - Đại học Thái Nguyên nhiệt thành trách nhiệm học viên, nhắc nhở đôn đốc tiến độ học tập Tôi xin trân trọng cảm Ban giám hiệu trường THPT Ngô Sĩ Liên TP Bắc Giang tạo điều kiện giúp đỡ suốt thời gian học nghiên cứu Cuối xin bày tỏ lòng biết ơn tới gia đình, bạn bè đồng nghiệp động viên mặt tinh thần vật chất, giúp tơi có điều kiện học tập nghiên cứu khoa học để có kết ngày hôm Xin trân trọng cảm ơn! Thái Nguyên, ngày 10 tháng 10 năm 2019 Học viên Thân Kim Liên i LỜI CAM ĐOAN Tôi xin cam đoan cơng trình khoa học riêng tối hướng dẫn, nghiên cứu khoa học TS Lê Tiến Hà Các số liệu trình bày Luận văn hoàn toàn trung thực chưa cơng bố nhóm tác giả Các kết luận văn cộng công bố thời gian tới hoàn toàn trung thực ii MỤC LỤC LỜI CẢM ƠN i LỜI CAM ĐOAN ii MỤC LỤC .iii DANH MỤC HÌNH VẼ v DANH MỤC BẢNG BIỂU vii DANH MỤC TỪ VIẾT TẮT .viii MỞ ĐẦU 1 Tính cấp thiết đề tài Mục tiêu nghiên cứu Phạm vi nghiên cứu Phương pháp nghiên cứu Bố cục luận văn Chương TỔNG QUAN VỀ VẬT LIỆU HUỲNH QUANG 1.1.Tổng quan bột huỳnh quang 1.1.1 Cơ chế phát quang vật liệu 1.1.2 Cơ chế phát quang bột huỳnh quang 1.1.3 Tính chất quang ion đất mạng tinh thể 1.1.4 Các đặc trưng bột huỳnh quang 14 1.1.5 Các loại bột huỳnh quang 16 1.2 Các phương pháp tổng hợp bột huỳnh quang 23 1.2.1 Phương pháp phản ứng xẩy pha rắn 23 1.2.2 Phương pháp sol-gel 23 1.2.3 Phương pháp đồng kết tủa 24 1.2.4 Phương pháp aerosol 25 1.3 Kết luận chương 25 Chương 26 CÁC KỸ THUẬT THỰC NGHIỆM 26 2.1 Quy trình tổng hợp bột huỳnh quang CaPB phương pháp đồng kết tủa 26 2.2 Thực nghiệm đo đạc 30 2.2.1 Khảo sát hình thái bề mặt kích thước hạt 30 2.2.2 Khảo sát định lượng phần trăm nguyên tố 31 2.2.3 Phổ nhiễu xạ tia X (XRD) 32 2.2.4 Phổ huỳnh quang (PL) kích thích huỳnh quang (PLE) 32 2.3 Kết luận chương 33 Chương 34 CẤU TRÚC VÀ TÍNH CHẤT QUANG CỦA HỌ BỘT HUỲNH QUANG 2+ CaPB PHA TẠP ION Eu 34 3.1 Hình thái bề mặt kích thước hạt họ vật liệu CaPB:Eu 34 3.2 Cấu trúc tinh thể bột huỳnh quang CaPB:Eu 35 2+ 3.3 Tính chất quang bột huỳnh quang CaPB pha tạp ion Eu 38 3.4 Kết luận 43 TÀI LIỆU THAM KHẢO 44 DANH MỤC HÌNH VẼ Hình 1.Giản đồ Jablonski mô tả hấp thụ ánh sáng phát quang .4 Hình 1.2 Sơ đồ mức lượng ion đất hiếmbị tách tương tác điện tử điện tử điện tử - mạng 10 Hình 1.3 Sơ đồ mức lượng ion đất hóa trị bị tách tương tác điện tử - điện tử điện tử - mạng .11 3+ Hình 1.4 Giản đồ mức lượng dịch chuyển quang ion Eu 13 Hình 1.7 Chất lượng ánh sáng với số trả màu khác 16 3+ 2+ Hình 1.8 Phổ phát huỳnh quang calcium halophosphate pha tạp Sb Mn Halophosphate phát ánh sáng trắng 17 Hình 1.9 Phổ kích thích huỳnh quang (PLE) huỳnh quang (PL) (Y,Gd)BO3: 3+ Eu (ex =254nm) .19 3+ 3+ Hình 1.10 Sự truyền lượng từ ion Gd đến ion Eu (Y,Gd)BO3 .19 2+ Hình 1.11 Phổ kích thích huỳnh quang bột BMA:Eu ứng với bước sóng phát xạ 450 nm, đo nhiệt độ phòng với nhiệt độ nung thiêu kết khác 20 2+ Hình 1.12 Phổ huỳnh quang bột BMA:Eu với bước sóng kích thích 365 nm, đo nhiệt độ phòng 20 3+ 3+ Hình 1.13 Phổ huỳnh quang LaPO4 pha tạp ion Ce Tb 20 Hình 1.14 Cấu trúc tinh thể Sr6P5BO20 với hướng [1 0] 22 Hình 1.15 Các phối vị ion Sr1, Sr2 mạng Sr6P5BO20 khoảng cách tương ứng Sr – O với vị trí khác .22 Hình Quy trình chế tạo vật liệu phương pháp đồng kết tủa 26 2+ Hình 2.2 Quy trình tổng hợp bột huỳnh quang Ca6P5BO20:Eu phương pháp đồng kết tủa .27 3+ Hình 2.3 Sơ đồ nung thiêu kết bột huỳnh quang Ca6P5BO20:Eu nhiệt độ T 29 Hình 2.4 Sơ đồ lò nung (a), quy trình nâng nhiệt lò nung (b), hệ khí lò nung mẫu mơi trường khí khác (c) .29 Hình 2.5 Thiết bị FESEM-JEOL/JSM-7600F tích hợp đo FESEM EDS Viện Tiên tiến Khoa học Công nghệ (AIST)- Đại học Bách khoa Hà nội 31 Hình 2.7 Hệ huỳnh quang (Nanolog, Horiba Jobin Yvon) nguồn kích thích đèn Xenon cơng suất 450 W có bước sóng từ 250 ÷ 800 nm, viện Tiên tiến Khoa học Công nghệ (AIST), Trường Đại học Bách khoa Hà Nội 33 Hình 3.1 SEM bột huỳnh quang CaPB:Eu nhiệt độ thiêu kết khác .35 Hình 3.2 Giản đồ nhiễu xạ tia X bột huỳnh quang CaPB:Eu nung thiêu kết 1100 C môi trường H2/Ar, khoảng thời gian 36 o o Hình 3.3 X-Ray bột huỳnh quang CaPB:Eu nung thiêu kết 1300 C môi trường H2/Ar, khoảng thời gian 37 Hình 3.4 Giản đồ nhiễu xạ tia X bột huỳnh quang CaPB:Eu nung thiêu kết từ 700 o đến 1300 C môi trường H2/Ar, khoảng thời gian .37 o 2+ Hình 3.5 PL bột CaPB nung nhiệt độ 700 C, với tỷ lệ pha tạp 1% ion Eu , đo nhiệt độ phòng bước sóng kích thích 300 nm 39 o 2+ Hình 3.6 PLE bột CaPB nung nhiệt độ 700 C, với tỷ lệ pha tạp 1% ion Eu , đo nhiệt độ phòng bước sóng phát xạ 430 nm .40 o 2+ o 2+ Hình 3.7 PL bột CaPB nung nhiệt độ 800 C, với tỷ lệ pha tạp 1% ion Eu ,đo nhiệt độ phòng với bước sóng kích thích 300 nm 41 Hình 3.8 PL bột CaPB nung nhiệt độ 800 C, với tỷ lệ pha tạp 1% ion Eu ,đo nhiệt độ phòng với bước sóng kích thích 393 nm 41 o Hình 3.9 PL bột CaPB nung nhiệt độ từ 900 đến 1300 C, với tỷ lệ pha tạp 1% 2+ ion Eu ,đo nhiệt độ phòng với bước sóng kích thích 300 nm .42 DANH MỤC BẢNG BIỂU Bảng 1.1 Phân nhóm nhẹ (phân nhóm xerium) gồm ngun tố, từ CGd: Bảng 1.2 Phân nhóm nặng (phân nhóm terbium) gồm ngun tố, từ Tb÷Lu: Bảng 1.3 Cấu hình ion nguyên tố đất Bảng 2.1 Khối lượng hóa chất để tổng hợp 0,01 mol bột huỳnh quangCa6P5BO20 30 vii vật liệu tổng hợp phân bốtừ 500 ÷ 2000 nm Khi nhiệt độ nung thiêu kết lên đến o 1300 C vật liệu có xu hướng nóng chảy kết đám với Hình 3.1 SEM bột huỳnh quang CaPB:Eu nhiệt độ thiêu kết khác Với kết ảnh SEM thu họ bột huỳnh quang CaPB:Eucho thấy, vật liệu có hình thái bề mặt sắc nét kích thước phân bố nung thiêu kết o khoảng nhiệt độ từ 1000 ÷ 1100 C Ở khoảng nhiệt độ này, kích thước bột phân bố từ 500 đến 2000 nm phù hợp cho việc tráng, phủ bột huỳnh quang thiết bị chiếu sáng LED đền huỳnh quang 3.2 Cấu trúc tinh thể bột huỳnh quang CaPB:Eu Cấu trúc tinh thể mạng ảnh hưởng lớn đến tính chất quang bột huỳnh quang, đặc biệt loại bột huỳnh quang pha tạp ion đất hiến, với mạng tinh thể khác có ảnh hưởng trường tinh thể lên tâm phát xạ khác ion đất Hơn nữa, tương thích bán kính ion nguyên tố cấu thành lên mạng bán kính ion pha tạp làm ảnh hưởng đến khả thay hai loại ion Chính vậy, nghiên cứu chúng tơi tiến hành khảo sát ảnh hưởng nhân tố nhiệt độ nung thiêu kết tỷ lệ ion pha tạp đến cấu trúc vật liệu tổng hợp Trên sở để tìm lời giải thích thấu đáo cho tính chất quang vật liệu tìm điều kiện tối ưu để tổng hợp vật liệu huỳnh quang phù hợp cho định hướng ứng dụng chiếu sáng nơng nghiệp o Hình 3.2 Giản đồ nhiễu xạ tia X bột huỳnh quang CaPB:Eu nung thiêu kết 1100 C môi trường H2/Ar, khoảng thời gian Trên Hình 3.2 giản đồ nhiễu xạ tia X họ bột huỳnh quang CaPB pha tạp o 1% Eu, nung môi trường H2/Ar (10% khí H2) 1100 C, khoảng thời gian Kết cho thấy bột huỳnh quang tổng hợp vật liệu đa pha cấu trúc với pha cấu trúc gồm Ca6P5BO20 xác định thẻ PDF 01-073-3068 , pha cấu trúc Ca3(PO4)2 pha cấu trúc Ca2P2O7 Sự xuất đồng thời nhiều pha cấu trúc trình tổng hợp họ vật liệu X6P5BO20 (X = Sr, Ca, Ba, ) số nhóm nghiên cứu giải thích ngun tố B nhẹ, dễ bay nhiệt độ cao nên trình tổng hợp vật liệu dễ dẫn đến trình hình thành pha cấu trúc X3(PO4)2và pha cấu trúc X2P2O7 Để khảo sát ảnh hưởng nhiệt độ nung thiêu kết lên cấu trúc vật liệu, tiến hành khảo sát phổ nhiễu xạ tia X mẫu bột huỳnh quang CaPB o nung thiêu kết từ 700 đến 1300 C Hình 3.4 giản đồ nhiễu xạ tia X họ bột huỳnh o quang CaPB:Eu nung thiêu kết từ 700 đến 1300 C môi trường H2/Ar, o khoảng thời gian Kết cho thấy, nhiệt độ nung thiêu kết 700 C đỉnh nhiễu xạ có độ bán rộng lớn, cương độ thấp Kết chứng tỏ nhiệt độ nung thiêu kết thấp chất lượng tinh thể kém, phân bố kích thước không đồng đều, vật liệu tồn tiền chất ban đầu chưa phản ứng hết.Khi nhiệt độ nung thiêu kết tăng lên cường độ đỉnh nhiễu xạ tăng lên, vị trí đỉnh sắc nét hơn, độ bán rộng đỉnh giảm Kết cho thấy, nhiệt độ nung thiêu kết tăng chất lượng tinh thể tốt hơn, trình hình thành pha tinh thể từ tiền chất ban đầu rõ ràng o Hình 3.3 X-Ray bột huỳnh quang CaPB:Eu nung thiêu kết 1300 C môi trường H2/Ar, khoảng thời gian o o Ở nhiệt độ 1000 C 1100 C cho thấy đỉnh nhiễu xạ sắc nét, cường độ đỉnh cao, độ bán rộng hẹp Hình 3.4 Giản đồ nhiễu xạ tia X bột huỳnh quang CaPB:Eu nung thiêu kết từ 700 đến o 1300 C môi trường H2/Ar, khoảng thời gian Kết hồn tồn trung hợp với hình ảnh quan sát hình thái bề mặt bột huỳnh quang nhiệt độ Ở nhiệt độ nói trên, biên hạt bột rõ ràng, hạt có o o kích thước phân bố rõ nét Ở nhiệt độ khoảng 1000 C 1100 C vật liệu tổng hợp với ba pha cấu trúc Ca6P5BO20; Ca3(PO4)2 Ca2P2O7 Nhóm vật liệu đa pha cấu trúc nên gọi chúng nhóm vật liệu CaPB Khi nhiệt độ nung o thiêu kết tăng lên 1300 C phổ nhiễu xạ tia X cho thấy vật liệu tồn chủ yếu pha cấu trúc Ca3(PO4)2 độ bán rộng đỉnh phổ lớn Kết cho thấy nhiệt độ cao pha cấu trúc Ca6P5BO20 có xu hướng bị pha vỡ cấu trúc nhiệt độ ngun tử Boron (B) bị bay khỏi mạng cấu trúc tinh thể Sự hình thành ba pha cấu trúc tinh thể nói giải thích phản ứng sau: 6Ca(NO3)2 + 5(NH4)2HPO4 + H3BO3 = Ca6B(PO4)5 + 10(NH4)NO3 + 3H2O + 2HNO3 3Ca(NO3)2 + 2(NH4)2HPO4 = Ca3(PO4)2 + 4(NH4)NO3 + 2HNO3 (3.1) 2Ca(NO3)2 + 2(NH4)2HPO4 = Ca2P2O7 + 4(NH4)NO3 + H2O (3.3) (3.2) Như vậy, để tổng hợp bột huỳnh quang CaPB pha tạp Eu có chất lượng tinh thể tốt, tỷ lệ pha cấu trúc Ca6P5BO20 mong muốn chiếm thành phần chủ yếu vật liệu o vật liệu phải thiêu kết nhiệt độ 1000÷ 1100 C 3.3 Tính chất quang bột huỳnh quang CaPB pha tạp ion Eu 2+ 3+ Với ion Eu , nằm mạng tinh thể khác nhau, phát xạ chúng phát xạ vạch mạng khác không ảnh hưởng lớn đến vị trí đỉnh phát xạ, mà ảnh hưởng đến tỷ lệ cường độ đỉnh phát xạ 2+ tương tác với trường tinh thể Trong với ion Eu , ảnh hưởng trường tinh 2+ thể lên mức lượng lớn Dẫn đến phát xạ ion Eu phát xạ đám, vùng phát xạ kéo dài từ vùng tử ngoại đến vàng tùy thuộc vào mạng tinh thể Do điều kiện chế tạo khác (nhiệt độ nung - khử, tỷ lệ pha tạp Eu khác nhau), thu vật liệu có đặc trưng phát xạ khác Như khảo sát phần 3.1 3.2 nhiệt độ nung thiêu kết ảnh hưởng mạnh đến hình thái bề mặt, kích thước hạt cấu trúc tinh thể nhóm vật liệu 2+ Ca6P5BO20 pha tạp ion Eu Khi nung vật liệu môi trường khí H2/Ar nhiệt độ 3+ nung ảnh hưởng đến khả tương tác khí H2 với ion Eu khả 3+ khuếch tán khí để tương tác với ion Eu nằm sâu tinh thể vật liệu Trên sở đó, chúng tơi khảo sát phụ thuộc tính chất quang vật liệu vào nhiệt độ nung – khử để tìm câu trả lời cho trình phát xạ vật liệu xác định điều kiện tối ưu để tổng hợp vật liệu theo ứng dụng mong muốn 2+ Hình 3.5 trình bày phổ huỳnh quang mẫu bột CaPB pha tạp ion 1% Eu , o nung thiêu kết mơi trường khí H2/Ar nhiệt độ 700 C giờ, đo nhiệt độ phòng với bước sóng kích thích 393 nm Kết cho thấy vật liệu phát xạ vùng bước sóng 400 đến 725 nm với dải phát xạ rộng vùng từ 400 đến 500 nm vạch phát xạ hẹp vùng đỏ với đỉnh 590 nm, 612 nm, 652 nm, 700 nm 750 nm [1] Dải phát xạ rộng vùng bước sóng 400 đến 500 nm trình dịch 2+ chuyển lượng từ trạng thái 4f 5d →4f ion Eu Ca3(PO4)2 [9], [50] mạng tinh thể o 2+ Hình 3.5 PL bột CaPB nung nhiệt độ 700 C, với tỷ lệ pha tạp 1% ion Eu , đo nhiệt độ phòng bước sóng kích thích 300 nm Kết phù hợp với kết nhiễu xạ tia X vật liệu, nhiệt độ nung o thiêu kết 700 C mạng chủ yếu pha cấu trúc Ca3(PO4)2 với chất lượng tinh thể dẫn đến bất đối xứng hình dạng phổ khoảng bước sóng lớn Dải phát xạ hẹp, có cường độ nhỏ đỉnh 535 nm quy cho trình 2+ dịch chuyển lượng từ trạng thái 4f 5d →4f ion Eu mạng tinh 3+ thể Ca6P5BO20 Dải phát xạ đỏ trình dịch chuyển ion Eu từ trạng thái lượng kích thích D0 trạng thái có mức lượng thấp Fj (với j nhận giá trị 0,1, , 6) Trong đỉnh phát xạ này, đỉnh phát xạ bước sóng 612 nm có cường độ lớn tương ứng với trình dịch chuyển lượng từ trạng thái kích thích D0 trạng thái trạng thái lưỡng cực điện Tuy nhiên, nhận thấy 3+ đỉnh phát xạ ion Eu mạng vật liệu nung thiêu kết 700 o C có độ đối xứng thấp, kết chứng tỏ chất lượng tinh thể vật liệu tổng hợp nhiệt độ không cao Phát xạ bước sóng 612 nm cho cường độ lớn nhất, 3+ tương ứng với trình chuyển dời D0→ F2 ion Eu trường tinh thể vật 3+ liệu suất chuyển dời từ trạng thái D0→ F2 ion Eu lớn so với trạng 3+ thái khác chuyển dời không bị cấm quy tắc chẵn lẻ ion Eu [27] Vị trí đỉnh phát xạ đỏ gần thay đổi không đáng kể mạng tinh thể 3+ khác chúng phát xạ vạch ion Eu bị ảnh hưởng đến trường 3+ tinh thể Nhưng tùy thuộc vào tính chất đối xứng mạng mà ion Eu thay mà tỷ lệ cường độ huỳnh quang đỉnh phát xạ tương ứng với trình dịch chuyển trạng thái lưỡng cực điện lưỡng cực từ khác (chính điều mà ion 3+ Eu dùng làm đầu dò cho cấu trúc trường tinh thể vật liệu) Để tìm hiểu rõ ngn gốc dải phát xạ đỉnh 430 nm, tiến hành đo phổ kích thích huỳnh quang mẫu tương ứng với đỉnh phát xạ Kết phổ kích thích huỳnh quang ứng với đỉnh phát xạ 430 nm Hình 3.6 cho thấy vật liệu hấp thụ mạnh dải bước sóng rộng từ 280 ÷ 360 nm với hai đỉnh kích thích huỳnh quang 300 320 nm Đỉnh kích thích huỳnh quang 300 nm quy cho 2+ trình hấp thụ từ trạng thái 4f → 4f 5d ion Eu mạng hai pha cấu trúc Ca2P2O7 [49], đỉnh kích thích huỳnh quang 320 nm thuộc mạng Ca2(PO4)3 [48] Điều chứng tỏ nung vật liệu mơi trường khí H2/Ar o 3+ 700 C phát xạ vật liệu trình dịch chuyển ion Eu 2+ vùng ánh sáng đỏ trình dịch chuyển ion Eu Ca2P2O7 Ca2(PO4)3 o mạng tinh thể 2+ Hình 3.6 PLE bột CaPB nung nhiệt độ 700 C, với tỷ lệ pha tạp 1% ion Eu , đo nhiệt độ phòng bước sóng phát xạ 430 nm o Đối với mẫu vật liệu nung mơi trường khí H2/Ar nhiệt độ 800 C khoảng giờ, kích thích bước sóng 300 nm (bước sóng kích thích ion 2+ Eu mạng tinh thể Ca2(PO4)3) kết huỳnh quang biểu diễn hình 3.7 Kế cho thấy vật liệu phát xạ mạnh vùng ánh sáng tím (đỉnh 420 nm) xanh (đỉnh 475 nm) Dải phát xạ vùng bước sóng 420 nm quy cho 2+ trình dịch chuyển mức lượng ion Eu mạng tinh thể Ca2P2O7và Ca2(PO4)3, dải phát xạ vùng bước sóng 475 nm q trình dịch 2+ chuyển ion Eu mạng Ca6P5BO20 o 2+ o 2+ Hình 3.7 PL bột CaPB nung nhiệt độ 800 C, với tỷ lệ pha tạp 1% ion Eu ,đo nhiệt độ phòng với bước sóng kích thích 300 nm Hình 3.8 PL bột CaPB nung nhiệt độ 800 C, với tỷ lệ pha tạp 1% ion Eu ,đo nhiệt độ phòng với bước sóng kích thích 393 nm 3+ 2+ o Để khảo sát khả khử ion Eu ion Eu nhiệt độ 800 C mơi trường khí H2/Ar, đo phổ huỳnh quang vật liệu bước sóng kích 3+ thích 393 nm (bước sóng 393 nm bước sóng kích thích ion Eu ) Kết khảo sát hình 3.8 cho thấy vật liệu phát xạ đỏ dải sóng 612 nm Kết o 3+ 2+ chứng tỏ nhiệt độ 800 C ion Eu chưa bị khử hoàn toàn ion Eu o Hình 3.9 PL bột CaPB nung nhiệt độ từ 900 đến 1300 C, với tỷ lệ pha tạp 1% ion 2+ Eu ,đo nhiệt độ phòng với bước sóng kích thích 300 nm Chúng tơi tiến hành khảo sát phổ huỳnh quang nhóm vật liệu tổng hợp o nung mơi trường khí khí H2/Ar từ nhiệt độ 900 đến 1300 C, khoảng thời gian Hình 3.9 kết phổ huỳnh quang nhóm vật liệu kích thích o bước sóng 300 nm Kết cho thấy nhiệt độ nung 900 C ion Eu 2+ 3+ gần o bị khử hoàn toàn ion Eu Đồng thời quan sát thấy nhiệt độ 900 C vật liệu phát xạ mạnh dải bước sóng 475 nm có độ đối xứng khơng cao, điều chứng tỏ nhiệt độ chất lượng tinh thể vật liệu không cao Khi nhiệt độ nung khử vật liệu tăng lên cường độ huỳnh quang đỉnh có xu hướng tăng lên 2+ Điều cho thấy nhiệt độ nung khử tăng trình khuếch tán ion Eu vào 2+ mạng để thay cho ion Ca tăng lên làm cho mật độ tâm phát xạ tăng đẫn đến cường độ huỳnh quang tăng Cường độ huỳnh quang nhóm vật liệu đạt kết cao o nung nhiệt độ 1100 C với hai dải phát xạ 420 nm 475 nm Kết o chứng tỏ nhiệt độ 1100 C chất lượng tinh thể vật liệu tốt nhất, đồng thời vật liệu tồn hai mạng tinh thể chủ yếu Ca6P5BO20 Ca2(PO4)3 Dải phát xạ bước 2+ sóng 420 nm quy cho q trình dịch chuyển ion Eu mạng Ca2(PO4)3 điện tử dịch chuyển từ trạng thái kích thích 4f trạng thái 4f 5d , 2+ dải phát xạ 475 nm trình dịch chuyển mức lượng ion Eu từ trạng thái 4f trạng thái 4f 5d mạng Ca6P5BO20 o Qua kết hình 3.9 cho thấy nhiệt độ nung lên đến 1300 C cường độ huỳnh quang vật liệu giảm lúc dải phát xạ 400 nm đóng vai trò chủ yếu vật liệu Điều chứng tỏ nhiệt độ cao thành phần pha cấu trúc Ca2(PO4)3 chiếm vai trò chủ yếu vật liệu tổng hợp Các kết mặt huỳnh quang vật liệu phù hợp với q trình phân tích cấu trúc tinh thể nhóm vật liệu tổng hợp Ở nhiệt độ thấp, chất lượng tinh thể với pha cấu trúc Ca2(PO4)3 Ca2P2O7 chiếm tỉ lệ lớn vật liệu Khi nhiệt độ nung thiêu kết tăng lên chất lượng tinh thể tăng, pha cấu trúc Ca6P5BO20 chiếm o tỷ lệ lớn vật liệu nung 1100 C Đồng thời nhiệt độ này, chất lượng tinh o thể nhóm vật liệu tổng hợp tốt Khi nhiệt độ lên đến 1300 C cấu trúc tinh thể Ca6P5BO20 bị phá vỡ nhiệt nguyên tố B dễ bay Đồng thời 2+ nhiệt độ cao chất lượng tinh thể làm cho mật độ thay ion Eu vào mạng giảm, làm tính chất quang vật liệu giảm 3.4 Kết luận Trong chương này, khảo sát cách chi tiết phụ thuộc 2+ hình thái bề mặt, cấu trúc tính chất quang bột huỳnh quang CaPB pha tạp Eu vào nhiệt độ nung tổng hợp vật liệu Kết thu được:  Bột huỳnh quang tổng hợp vật liệu đa pha tinh thể với pha cấu trúc o Ca6P5BO20; Ca3(PO4)2; Ca2P2O7 Ở nhiệt độ nung 700 đến 900 C biên hạt hình thành khơng rõ rệt với hai pha cấu trúc Ca3(PO4)2; Ca2P2O7 chiếm tỷ lệ lớn o thành phần pha vật liệu Ở nhiệt độ nung thiêu kết 1100 C, vật liệu cho kết tinh tốt nhất, có kích thước hạt phân bố đồng với kích thước từ 500 ÷ 2000 nm, có biên hạt trơn mịn, thành phần pha cấu trúc Ca6P5BO20 chiếm tỷ lệ lớn 2+  Đối với bột huỳnh quang CaPB pha tạp ion Eu trình phát xạ ion ảnh hưởng lớn nhiệt độ nung mẫu cấu trúc tinh thể vật liệu thay đổi lớn theo nhiệt độ Mặc dù vật liệu phát xạ mạnh vùng bước sóng từ 400 nm đến 2+ 520 nm, tương ứng với trình dịch chuyển ion Eu từ tạng thái 4f trạng thái 4f 5d Vật liệu cho phát xạ tốt vùng ánh sáng xanh nung khử o nhiệt độ 1100 C 2+ Như vậy, vật liệu CaPB pha tạp ion Eu với kích thước hạt trung bình từ 500 ÷ 2+ 2000 nm, hấp thụ mạnh vùng tử ngoại, có dải phát xạ rộng ion Eu vùng xanh từ bước sóng 375 nm đến 520 nm tùy thuộc vào điều kiện tổng hợp, dải phát 3+ xạ đỏ cường độ mạnh ion Eu Kết cho thấy chế tạo bột huỳnh quang lai màu mạng cho ứng dụng thiết bị chiếu sáng, thiết bị hiển thị màu đặc biệt điot phát ánh sáng trắng thuộc loại UV-blue LED, WLED… TÀI LIỆU THAM KHẢO Tài liệu tiếng việt 3+ 3+ [1] Đinh Xuân Lộc, “Nghiên cứu chế tạo vật liệu nano YVO4:Eu CePO4:Tb tính chất quang chúng,” Luận án tiến sỹ khoa học Vật liệu, Viện khoa học Vật liệu, Viện Hàn lâm Khoa học Công nghệ Việt Nam, May 2013 [2] Nguyễn Vũ, “Chế tạo nghiên cứu tính chất quang vật liệu nano Y2O3:Eu, Tb, Er, Yb,” in Luận án tiến sỹ khoa học Vật liệu, Viện khoa học Vật liệu, Viện Hàn lâm Khoa học Công nghệ Việt Nam, 2006 [3] Phan Văn Độ, “Nghiên cứu tính chất quang ion đất Sm Dy số vật liệu quang học họ Florua oxit ” Luận án tiến sỹ khoa học Vật liệu, Viện khoa học Vật liệu, Viện Hàn lâm Khoa học Công nghệ Việt Nam, Jun 2016 [4] Trần Thị Hồng, “Khảo sát quang phổ thủy tinh Borat - Teluxit pha tạp ion đất ” Lận án tiến sĩ, Apr 2017 [5] Nguyễn Đức Vượng, “Giáo trình nguyên tố đất hiếm,” Đại học KHTN, Jul 3+ 2017 [6] 3+ Phạm Thị Thanh Hiền, “Nghiên cứu tính chất quang thông số cường độ 3+ Judd - Ofelt ion Sm LaPO4” Luận văn, Oct 2016 Tài liệu tham khảo tiến anh 3+ [7] K N Shinde, S J Dhoble, and A Kumar, “Synthesis of novel Dy activated phosphate phosphors for NUV excited LED,” J Lumin., vol 131, no 5, pp 931–937, 2011 [8] D Hou, C.-G Ma, H Liang, and M G Brik, “Electron-Vibrational Interaction 2+ in the 5d States of Eu Ions in Sr6-xEuxBP5O20 (x = 0.01-0.15),” ECS J Solid State Sci Technol., vol 3, no 4, pp R39–R42, 2014 [9] Y Shuanglong, C Xianlin, Z Chaofeng, Y Yunxia, and C Guorong, “Eu , 2+ Mn Co-doped (Sr,Ba)6BP5O20 A novel phosphor for white-LED,” Opt Mater (Amst)., vol 30, no 1, pp 192–194, 2007 2+ [10] C Qin, Y Huang, W Zhao, L Shi, and H J Seo, “Luminescence spectroscopy 2+ and crystallographic sites of Sm doped in Sr6BP5O20,” Mater Chem Phys., vol 121, no 1–2, pp 286–290, 2010 [11] H Ehrenberg, S Laubach, P C Schmidt, R McSweeney, M Knapp, and K C Mishra, “Investigation of crystal structure and associated electronic structure of Sr6BP5O20,” J Solid State Chem., vol 179, no 4, pp 968–973, 2006 2+ [12] S M Lee and K C Choi, “Enhanced emission from BaMgAl10O17:Eu by localized surface plasmon resonance of silver particles,” Opt Exp., vol 18, no 12, p 12144, 2010 [13] Zhang X., Zhang J., Huang J., Tang X., and Gong M (2010), “Synthesis and 2+ luminescence of Eu doped alkaline-earth apatites for ap.lication in white LED”, J Lumin., vol 130, No 4, pp.554–559 [14] V T K Lien, C V Ha, L T Ha, and N N Dat, “Optical properties of CdS and CdS/ZnS quantum dots synthesized by reverse micelle method,” J Phys Conf Ser., vol 187, 2009 [15] L Tien Ha, N D T Kien, P H Hoang, T T Duong, and P T Huy, “Synthesis 2+ 3+ and Optical Properties of Eu and Eu Doped SrBP Phosphors Prepared by Using a Co-precipitation Method for White Light-Emitting Devices,” J Electron Mater., vol 45, no 7, pp 3356–3360, Jul 2016 [16] L D Tuyen et al., “Synthesis, Structures and Properties of Emission Nanomaterials Based on Lanthanide Oxides and Mix oxides,” Trans Mater Res Soc Japan, vol 35, no 2, pp 417–422, 2014 [17] V H Chu, T H Lien Nghiem, T H Le, D L Vu, H N Tran, and T K Lien Vu, “Synthesis and optical properties of water soluble CdSe/CdS quantum dots for biological applications,” Adv Nat Sci Nanosci Nanotechnol., vol 3, no 2, Jun 2012 [18] T K Anh et al., “Great enhancement of monodispersity and luminescent properties of Gd2O3:Eu and Gd2O3:Eu@Silica nanospheres,” Mater Sci Eng B Solid-State Mater Adv Technol., vol 241, no January, pp 1–8, 2019 [19] P Van Tuan et al., “Silicon nanowires prepared by thermal evaporation and their photoluminescence properties measured at low temperatures,” Adv Nat Sci Nanosci Nanotechnol., vol 2, no 1, 2011 [20] Jablonski, “Efficiency of anti-Stokes fluorescence in dyes,” Nature, no 131, pp 839–840, 1933 [21] H Yamamoto, Nitride Phosphors and Solid-State Lighting, vol 20115622 2011 [22] V B Pawade, H C Swart, and S J Dhoble, “Review of rare earth activated blue emission phosphors prepared by combustion synthesis,” Renewable and Sustainable Energy Reviews, vol 52 2015 [23] K A Katsuo Muramami, “A new deluxe fluorescent lamp with a color rendering index of 99.” pp 6–11, 1979 [24] S V Upadeo and S V Moharil, “Radiation-induced valence changes in Eu doped phosphors,” J Phys Condens Matter, vol 9, no 3, pp 735–746, 1997 [25] B Zhou, Z Li, and C Chen, “Global potential of rare earth resources and rare earth demand from clean technologies,” Minerals, vol 7, no 11, 2017 [26] Yin S., Shinozaki M., and Sato T (2007), “Synthesis and characterization of wire-like and near-spherical Eu2O3 doped Y2O3 phosphors by solvothermal reaction”, J Lumin., vol 126, No 2, pp 427–433 [27] M Kumar, T K Seshagiri, and S V Godbole, “Fluorescence lifetime and Judd3+ Ofelt parameters of Eu doped SrBPO5,” Phys B Condens Matter, vol 410, no 1, pp 141–146, 2013 [28] V S SASTRI, J.-C BÜNZLI, V R RAO, G V S RAYUDU, and J R PERUMAREDDI, “Kinetics and Mechanisms of Rare Earth Complexation,” Mod Asp Rare Earths Their Complexes, pp 481–567, 2003 [29] J G Li, Q Zhu, X Li, X Sun, and Y Sakka, “Colloidal processing of 3+ Gd2O3:Eu red phosphor monospheres of tunable sizes: Solvent effects on precipitation kinetics and photoluminescence properties of the oxides,” Acta Mater., vol 59, no 9, pp 3688–3696, 2011 3+ [30] T Isobe, “Glycothermally synthesized YAG:Ce nanophosphors for blue LEDs,” ECS J Solid State Sci Technol., vol 2, no 2, pp 3012–3017, 2013 [31] V Pankratov, A I Popov, A Kotlov, and C Feldmann, “Luminescence of nano and macrosized LaPO4:Ce,Tb excited by synchrotron radiation,” Opt Mater (Amst)., vol 33, no 7, pp 1102–1105, 2011 [32] V Pankratov, A I Popov, A Kotlov, and C Feldmann, “Luminescence of nano- and macrosized LaPO4:Ce,Tb excited by synchrotron radiation,” Opt Mater (Amst)., vol 33, no 7, pp 1102–1105, 2011 [33] G H Dieke and H M Crosswhite, “The Spectra of the Doubly and Triply Ionized Rare Earths (1963),” vol 2, no 7, pp 675–686 [34] V Kumar, “Frequency Upconversion in Rare Earth Ions,” Solid State Laser, 2012 [35] W M Yen, Measurements of phosphor Properties 2007 [36] S J Dhoble, S V Moharil, and T K Gundu Rao, “Correlated ESR, PL and TL studies on Sr5(PO4)3Cl:Eu thermoluminescence dosimetry phosphor,” J Lumin., vol 126, no 2, pp 383–386, 2007 [37] P P Mokoena et al., “Enhanced UVB emission and analysis of chemical states 3+ 3+ of Ca5(PO4)3OH:Gd , Pr phosphor prepared by co-precipitation,” J Phys Chem Solids, vol 75, no 8, pp 998–1003, 2014 [38] J Yu, C Guo, Z Ren, and J Bai, “Photoluminescence of double-color-emitting 2+ 2+ phosphor Ca5(PO4)3Cl:Eu , Mn for near-UV LED,” Opt Laser Technol., vol 43, no 4, pp 762–766, 2011 [39] B M J Smets, “Phosphors based on rare-earths, a new era in fluorescent lighting,” Mater Chem Phys., vol 16, no 3–4, pp 283–299, 1987 [40] J Hou, X Yin, Y Fang, F Huang, and W Jiang, “Novel red-emitting 3+ perovskite-type phosphor CaLa1-xMgM′O6:xEu (M′ = Nb, Ta) for white LED application,” Opt Mater (Amst)., vol 34, no 8, pp 1394–1397, 2012 [41] M R Davolos, S Feliciano, A M Pires, R F C Marques, and M Jafelicci, “Solvothermal method to obtain europium-doped yttrium oxide,” J Solid State Chem., vol.171, no.1–2, pp.268–272, 2003 [42] X Wu et al., “Structure characterization and photoluminescence properties of (Y0.95-xGdxEu0.05)2O3 red phosphors converted from layered rare-earth hydroxide (LRH) nanoflake precursors,” J Alloys Compd., vol 559, pp 188–195, 2013 [43] H Van Bui et al., “Structural and photoluminescent properties of nanosized 2+ BaMgAl10O17:Eu blue-emitting phosphors prepared by sol-gel method,” Adv Nat Sci Nanosci Nanotechnol., vol 6, no 3, Sep 2015 3+ [44] B Liu, Y Wang, J Zhou, F Zhang, and Z Wang, “The reduction of Eu to 2+ 2+ Eu in BaMgAl10O17:Eu and the photoluminescence properties of 2+ BaMgAl10O17:Eu phosphor,” J Appl Phys., vol 106, no.5, pp.3–8, 2009 [45] H Van Bui et al., “Structural and photoluminescent properties of nanosized 2+ BaMgAl10O17:Eu blue-emitting phosphors prepared by sol-gel method,” Adv Nat Sci Nanosci Nanotechnol., vol.6, no.3, p 035013, 2015 [46] K C Mishra, M Raukas, G Marking, P Chen, and P Boolchand, “Investigation of Fluorescence Degradation Mechanism of Hydrated 2+ BaMgAl10O17:Eu Phosphor,” J Electrochem Soc., vol 152, no.11, p H183, 2005 [47] Y C Kang, E J Kim, D Y Lee, and H D Park, “High brightness LaPO4:Ce,Tb phosphor particles with spherical shape,” J Alloys Compd., vol 347, no 1–2, pp 266–270, 2002 [48] V Pankratov, A I Popov, L Shirmane, A Kotlov, and C Feldmann, “LaPO4:Ce,Tb and YVO4:Eu nanophosphors: Luminescence studies in the vacuum ultraviolet spectral range,” J Appl Phys., vol 110, no 5, 2011 [49] G Bühler and C Feldmann, “Microwave-assisted synthesis of luminescent LaPO4:Ce,Tb nanocrystals in ionic liquids,” Angew Chemie - Int Ed., vol 45, no 29, pp 4864–4867, 2006 [50] D Hou, X Xu, M Xie, and H Liang, “Cyan emission of phosphor Sr6BP5O20: 2+ Eu under low-voltage cathode ray excitation,” J Lumin., vol 146, pp 18–21, 2014 [51] N Shin, J Kim, D Ahn, and K S Sohn, “A new strontium borophosphate, Sr6BP5O20, from synchrotron powder data,” Acta Crystallogr Sect C Cryst Struct Commun., vol 61, no 5, pp 54–56, 2005 ... ánh sáng xanh ứng dụng chiếu sáng nông nghiệp với tên đề tài chọn là: Nghiên cứu tính chất quang bột huỳnh quang Ca6P5BO20 2+ pha tạp Eu tổng hợp phương pháp đồng kết tủa, ứng dụng chiếu sáng nông. .. THÂN KIM LIÊN NGHIÊN CỨU TÍNH CHẤT QUANG CỦA BỘT HUỲNH 2+ QUANG Ca6P5BO20 PHA TẠP Eu TỔNG HỢP BẰNG PHƯƠNG PHÁP ĐỒNG KẾT TỦA, ỨNG DỤNG TRONG CHIẾU SÁNG NÔNG NGHIỆP Chuyên ngành: Quang Học Mã số:... đèn huỳnh quang ứng dụng cho chiếu sáng dân dụng chiếu sáng sản xuất nơng nghiệp cần có nghiên cứu nâng cao hiệu suất đèn huỳnh quang bột huỳnh quang sử dụng phải có độ bền cao Do việc nghiên cứu

Ngày đăng: 20/05/2020, 01:33

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Đinh Xuân Lộc, “Nghiên cứu chế tạo vật liệu nano YVO 4 :Eu 3+ và CePO 4 :Tb 3+và tính chất quang của chúng,” Luận án tiến sỹ khoa học Vật liệu, Viện khoa học Vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam, May 2013 Sách, tạp chí
Tiêu đề: Nghiên cứu chế tạo vật liệu nano YVO4:Eu3+ và CePO4:Tb3+và tính chất quang của chúng,” "Luận án tiến sỹ khoa học Vật liệu, Viện khoa họcVật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
[2] Nguyễn Vũ, “Chế tạo và nghiên cứu tính chất quang của vật liệu nano Y 2 O 3 :Eu, Tb, Er, Yb,” in Luận án tiến sỹ khoa học Vật liệu, Viện khoa học Vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam, 2006 Sách, tạp chí
Tiêu đề: Chế tạo và nghiên cứu tính chất quang của vật liệu nano Y2O3:Eu,Tb, Er, Yb,” in "Luận án tiến sỹ khoa học Vật liệu, Viện khoa học Vật liệu, ViệnHàn lâm Khoa học và Công nghệ Việt Nam
[3] Phan Văn Độ, “Nghiên cứu tính chất quang của ion đất hiếm Sm 3+ và Dy 3+ trong một số vật liệu quang học họ Florua và oxit ” Luận án tiến sỹ khoa học Vật liệu, Viện khoa học Vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam, Jun.2016 Sách, tạp chí
Tiêu đề: Nghiên cứu tính chất quang của ion đất hiếm Sm3+ và Dy3+ trongmột số vật liệu quang học họ Florua và oxit ” "Luận án tiến sỹ khoa học Vật liệu,Viện khoa học Vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
[4] Trần Thị Hồng, “Khảo sát quang phổ của thủy tinh Borat - Teluxit pha tạp ion đất hiếm ” Lận án tiến sĩ, Apr. 2017 Sách, tạp chí
Tiêu đề: Khảo sát quang phổ của thủy tinh Borat - Teluxit pha tạp ionđất hiếm ” "Lận án tiến sĩ
[7] K. N. Shinde, S. J. Dhoble, and A. Kumar, “Synthesis of novel Dy 3+ activated phosphate phosphors for NUV excited LED,” J. Lumin., vol. 131, no. 5, pp.931–937, 2011 Sách, tạp chí
Tiêu đề: Synthesis of novel Dy3+ activatedphosphate phosphors for NUV excited LED,” "J. Lumin
[8] D. Hou, C.-G. Ma, H. Liang, and M. G. Brik, “Electron-Vibrational Interaction in the 5d States of Eu 2+ Ions in Sr 6-x EuxBP 5 O 20 (x = 0.01-0.15),” ECS J. Solid State Sci. Technol., vol. 3, no. 4, pp. R 39 –R 42 , 2014 Sách, tạp chí
Tiêu đề: Electron-Vibrational Interactionin the 5d States of Eu2+ Ions in Sr6-xEuxBP5O20 (x = 0.01-0.15),” "ECS J. SolidState Sci. Technol
[9] Y. Shuanglong, C. Xianlin, Z. Chaofeng, Y. Yunxia, and C. Guorong, “Eu 2+ , Mn 2+ Co-doped (Sr,Ba) 6 BP 5 O 20 A novel phosphor for white-LED,” Opt. Mater.(Amst)., vol. 30, no. 1, pp. 192–194, 2007 Sách, tạp chí
Tiêu đề: Eu2+,Mn2+ Co-doped (Sr,Ba)6BP5O20 A novel phosphor for white-LED,” "Opt. Mater."(Amst)
[10] C. Qin, Y. Huang, W. Zhao, L. Shi, and H. J. Seo, “Luminescence spectroscopy and crystallographic sites of Sm 2+ doped in Sr 6 BP 5 O 20 ,” Mater. Chem. Phys., vol. 121, no. 1–2, pp. 286–290, 2010 Sách, tạp chí
Tiêu đề: Luminescence spectroscopyand crystallographic sites of Sm2+ doped in Sr6BP5O20,” "Mater. Chem. Phys
[11] H. Ehrenberg, S. Laubach, P. C. Schmidt, R. McSweeney, M. Knapp, and K. C.Mishra, “Investigation of crystal structure and associated electronic structure of Sr 6 BP 5 O 20 ,” J. Solid State Chem., vol. 179, no. 4, pp. 968–973, 2006 Sách, tạp chí
Tiêu đề: Investigation of crystal structure and associated electronic structure ofSr6BP5O20,” "J. Solid State Chem
[12] S. M. Lee and K. C. Choi, “Enhanced emission from BaMgAl 10 O 17 :Eu 2+ by localized surface plasmon resonance of silver particles,” Opt. Exp., vol. 18, no.12, p. 12144, 2010 Sách, tạp chí
Tiêu đề: Enhanced emission from BaMgAl10O17:Eu2+ bylocalized surface plasmon resonance of silver particles,” "Opt. Exp

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w