1. Trang chủ
  2. » Giáo án - Bài giảng

Ham so rat hay luon

26 36 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 2,9 MB

Nội dung

Câu Câu Câu Câu Câu Câu Câu Câu Hàm số y  ax  bx  c , ( a  0) đồng biến khoảng sau đậy? b � � � � b � �  � �  ;  ��  ;  �� ��;  � � � ��;  � a a 4a 4a � � � � � � � � A B C D Cho hàm số y   x  x  Khẳng định sau sai? �;1 A.Trên khoảng  hàm số đồng biến 2; � �;  B.Hàm số nghịch biến khoảng  đồng biến khoảng  3; � C.Trên khoảng  hàm số nghịch biến 4; � �;  D.Hàm số nghịch biến khoảng  đồng biến khoảng  Hàm số y  x  x có biến thiên khoảng (2;+) A.tăng B.giảm C.vừa tăng vừa giảm D.không tăng không giảm Hàm số y  x  x  11 đồng biến khoảng khoảng sau đây? A ( 2; �) Câu 10 C (2; �) Khoảng đồng biến hàm số y  x  x  �; 2  �;  2; � A  B  C  D (�;2) D  2; � f x  mx  x  m Tìm tất giá trị dương tham số m để hàm số   nghịch biến 1;   A m �1 B 2 �m �1 C  m �1 D  m  a �0  P P Cho hàm số bậc hai y  ax  bx  c  có đồ thị   , đỉnh   xác định công thức nào?  �  � � � b �b �b  � � b I�  ; I�  ; I�; I�  ; � � � � 4a � 4a � 2a � A � 2a B � a C �a 4a � D � 2a P  : y  3x2  x    P ? Cho parabol Điểm sau đỉnh A Câu B (�; �) I  0;1 �1 � I �; � B �3 � �1 2� I � ; � C � 3 � �1 � I � ; � D �3 � Trục đối xứng đồ thị hàm số y  ax  bx  c , (a �0) đường thẳng đây? b c  x x x 2a 2a 4a A B C D.Khơng có I 2;1 Điểm  đỉnh Parabol sau đây? 2 A y  x  x  B y  x  x  C y  x  x  D y   x  x  P : y  ax  x  b I 1; 5  Câu 11 Xác định hệ số a b để Parabol   có đỉnh  a  a  a  a  � � � � � � � � b  2 b2 b3 b  3 A � B � C � D � Câu 12 A 1;0  Biết hàm số bậc hai y  ax  bx  c có đồ thị đường Parabol qua điểm  có I  1;  đỉnh Tính a  b  c A B C D a, b, c  �; a Câu 13 Biết đồ thị hàm số y  ax  bx  c ,  Tính giá trị biểu thức T  a  b  2c 0 qua điểm A T  22 B T  A  2;1 C T  có đỉnh I  1;  1 D T  Câu 14 Cho hàm số y  ax  bx  c (a �0) có đồ thị (P) Biết đồ thị hàm số có đỉnh I (1;1) qua 2 điểm A(2;3) Tính tổng S  a  b  c A B C 29 D Câu 15 Cho Parabol (P): y  ax  bx  c có đỉnh I (2;0) ( P) cắt trục Oy điểm M (0; 1) Khi Parabol (P) có hàm số A  P : y   Câu 16 1 x  3x   P  : y   x  x   P  : y   x  x   P  : y   x2  2x 1 4 4 B C D Bảng biến thiên hàm số y  2 x  x  bảng sau đây? A B C D Câu 17 Đồ thị sau đồ thị hàm số y  x  x  A.Hình Câu 18 B.Hình C.Hình D.Hình Bảng biến thi hàm số y  2 x  x  bảng sau đây? A B C Câu 19 Cho Parabol A m  4, n  3  P  : y  x  mx  n B m  4, n  D P I 2;  1 ( m, n tham số) Xác định m, n để   nhận đỉnh  C m  4, n  3 Câu 20 Tìm giá trị nhỏ hàm số y  x  x  A 3 D m  4, n  B C D 13 Câu 21 Bảng biến thiên hàm số y   x  x  là: A B C D Câu 22 Bảng biến thiên hàm số y   x  x  ? A B C D Câu 23 Cho parabol y  ax  bx  c có đồ thị hình vẽ đây.Khẳng định đúng? A a  0, b  0, c  B a  0, b  0, c  C a  0, b  0, c  D a  0, b  0, c  Câu 24 qua ? Hàm số bậc hai sau có đồ thị parabol có đỉnh A B C D Câu 25 Đồ thị hàm số y  ax  bx  c , (a �0) có hệ số a A a  B a  C a  D a  2 Câu 26 Cho hàm số y   x  x  Hàm số đồng biến khoảng đây? �;3  3; � �;6  6; � A  B C  D  Câu 27 Nếu hàm số y  ax  bx  c có a  0, b  c  đồ thị hàm số có dạng A B C f x  x2  2x  Câu 28 Hàm số   đồng biến khoảng đây? 1; � 2; � �;1 A  B  C  D D  3; � Câu 29 Cho hàm số y  ax  bx  c, ( a  0, b  0, c  ) đồ thị (P) hàm số hình hình sau: A.Hình (4) B.Hình (2) C.Hình (3) D.Hình (1) A 0; 1 B  1; 1 C  1;1 Câu 30 Parabol y  ax  bx  c qua  , , có phương trình 2 2 A y  x  x  B y  x  x  C y  x  x  D y  x  x  A 1;3 Câu 31 Cho ( P) : y  x  bx  qua điểm  Khi đóA b  1 B b  C b  y Câu 32 Cho hàm số y  ax  bx  c có đồ thị hình bên Khẳng định sau đúng? A a  0, b  0, c  C a  0, b  0, c  B a  0, b  0, c  D b  2 x O D a  0, b  0, c  2 Câu 33 Cho hàm số y  x  3mx  m    , m tham số.Khi m  hàm số đồng biến khoảng nào? �1 � �3 � � 3� � 1� �; � � � ; �� ��; � � ; �� � C � � D �2 � A � � B �4 Câu 34 Cho h số y  ax  bx  c,  a �0  có bảng biến thiên nửa khoảng  0; � hình vẽ đây:Xác định dấu a , b, c A a  0, b  0, c  B a  0, b  0, c  C a  0, b  0, c  D a  0, b  0, c  Câu 35 Cho hàm số y  ax  bx  c có đồ thị parabol hình vẽ Khẳng định sau đúng? A a  0; b  0; c  B a  0; b  0; c  C a  0; b  0; c  D a  0; b  0; c  A  0;6  Câu 36 Parabol y  ax  bx  c đạt cực tiểu x  2 qua có phương trình A y x  2x  B y  x  x  C y  x  x  D y  x  x  y Câu 37 Cho hàm số y  ax  bx  c có đồ thị hình bên.Khẳng định sau đúng? A a  , b  , c  B a  , b  , c  C a  , b  , c  D a  , b  , c  Câu 38 Cho parabol C  2; 11  P  : y  ax  bx  c Tọa độ đỉnh  P là: qua ba điểm A  2; 11 A  1;  , B  1; 4  B  2;5  C  1 O x 1;  D  3;  Câu 51 Cho hàm số y  ax  bx  c có đồ thị bên.Khẳng định sau đúng? A a  0, b  0, c  B a  0, b  0, c  C a  0, b  0, c  D a  0, b  0, c  Câu 35 Parabol y  ax  bx  qua hai điểm M (1;5) N (2;8) có A y  x  x  phương trình B y  x  x  C y  x  x  Câu 32 Cho parabol có đỉnh I  1;   P D y  x  x P A 0;3 có phương trình y  ax  bx  c Tìm a  b  c , biết   qua điểm  A a  b  c  B a  b  c  C a  b  c  D a  b  c  Câu 52 Cho hàm số y  ax  bx  c Có đồ thị hình vẽ đây.Hỏi mệnh đề đúng? A a  0, b  0, c  C a  0, b  0, c  Câu 30 Xác định hàm số B a  0, b  0, c  D a  0, b  0, c  y = ax + bx + c ( 1) biết đồ thị � 1� I� � �; � � � có đỉnh �và cắt trục hồnh điểm có hồnh độ 2 A y =- x + x + B y =- x - x - C y = x - 3x + Câu 53 D y =- x + x - Cho đồ thị hàm số y  ax  bx  c có đồ thị hình vẽ bên dưới.Mệnh đề sau đúng? A a  0, b  0, c  C a  0, b  0, c  B a  0, b  0, c  D a  0, b  0, c  Câu 29 Gọi S tập giá trị m �0 để parabol  P  : y  mx  2mx  m2  2m A 1 B có đỉnh nằm đường thẳng y  x  Tính tổng giá trị tập S C D 2  P  hàm số hình Câu 54 Cho hàm số y  ax  bx  c có a  0; b  0; c  đồ thị hình A.hình  4 B.hình  3 C.hình  2 D.hình  1 Câu 55 Cho hàm số y = ax + bx + c có đồ thị hình vẽ đây.Khẳng định sau đúng? A a  0, b  0, c  B a  0, b  0, c  C a  0, b  0, c  D a  0, b  0, c  Câu 10 Hàm số y  3 x  x  nghịch biến khoảng sau đây? 1� �1 � � �1 �  ; �� � ; �� ��;  � � 6� � � A �6 B � C � � 1� ��; � D � � Câu 56 Hàm số có đồ thị hình vẽ bên ? 2 2 A y   x  x  B y   x  x  C y  2 x  x  D y  x  x  Câu 14 Tìm tất giá trị b để hàm số y  x  2(b  6) x  đồng biến khoảng  6; � A b �0 B b  12 C b �12 D b �9 Câu 13 Có giá trị nguyên dương tham số m để hàm số y  x   m  1 x  đồng biến khoảng  4; 2018 ? A.0 B.1 C.2 D.3 Câu 57 Đồ thị hàm số sau biểu diễn đồ thị hàm số nào? 2 A y  x B y  x Câu A  C y   x D y x Hàm số y  x  x  đồng biến khoảng nào? �; 1 B  �;1 C  1; � D  1; � Câu 73 Giá trị nhỏ hàm số y  x  x  đạt tạiA x  2 B x  1 C x  D x  Câu 58 Bảng biến thiên sau hàm số ? A y  x  x  C y  x  x  B y  3 x  x  D y  x  x  Câu 17 Gọi S tập hợp tất giá trị tham số m để hàm số y = x + (m - 1) x + 2m - đồng ( - 2; +�) Khi tập hợp ( - 10;10) �S tập nào? biến khoảng ( - 10;5) [ 5;10) ( 5;10) A B C D ( - 10;5] Câu 59 Bảng biến thiên sau hàm số nào? A y  x  x C y   x  x Câu B y  x  x D y   x  x Khoảng nghịch biến hàm số y  x  x  A  �; 4  B  �; 4  C  �;  D  2; � Câu 60 Đồ thị hình vẽ hàm số phương án A;B;C;D sau đây? 2 2 A y  x  x  B y  x  x  C y  x  x  D y  x  x  Câu Cho hàm số y   x  x  Chọn khẳng định A.Hàm số đồng biến � B.Hàm số nghịch biến � 2; � 2; � C.Hàm số đồng biến  D.Hàm số nghịch biến  y   x   m  1 x  1; � Câu 15 Hàm số nghịch biến  giá trị m thỏa mãn: m � m  m � A B C D  m �2 y   x2  m  x  2; � Câu 16 Tìm tất giá trị tham số m để hàm số nghịch biến  m �3 m  3 � � �m �1 �m  3  m  A � C 3 �m �1 D � B Câu 61 Cho parabol y  ax  bx  c có đồ thị hình sau Phương trình parabol A y   x  x  2 B y  x  x  C y  x  x  D y  x  x  Câu 62 Cho parabol y  ax  bx  c có đồ thị hình sau: Phương trình parabol A y   x  x  B y  x  x  C y  x  x  D y  x  x  Câu 63 Đồ thị hình bên đồ thị hàm số bậc hai nào? y A y  x  x  O B y  x  x  x C y   x  3x  D y  2 x  x  Câu 64 Trên mặt phẳng tọa độ Oxy cho Parabol hình vẽ Hỏi parabol có phương trình phương trình đây? 2 A y  x  x  B y  x  3x  C y   x  3x  Câu 65 Cho parabol A 9 Câu 66  P  : y  ax  bx  c,  a �0  B D y   x  x  có đồ thị hình bên Khi 2a  b  2c có giá trị C 6 D Hàm số sau có đồ thị hình bên A y   x  x  B y   x  x  C y  x  x  D y  x  x  Câu 67 Bảng biến thiên bảng biến thiên hàm số hàm số cho bốn phương án A, B, C, D sau đây? A y   x  x Câu 68 B y   x  x  C y  x  x  D y  x  x  Bảng biến thiên sau bảng biến thiên hàm số nào? A y  x  x B y   x  x  C y   x  x  D y   x  x Dạng 3.4 Đồ thị hàm số chứa dấu giá trị tuyệt đối Câu 69 Cho đồ thị hàm số y = - x + x - có đồ thị hình vẽ sau Đồ thị đồ thị hàm số y = - x2 + x - A.Hình B.Hình C.Hình D.Hình Câu 70 Hàm số sau có đồ thị hình bên? A y  x  3x  B y   x2  x  C y   x2  x  D y   x  x  Dạng 4.1 Tìm giá trị lớn nhất, giá trị nhỏ hàm số cho trước P Câu 71 Cho hàm số y  x  x  có đồ thị   Tìm mệnh đề sai P I 1;3 y  4, x � 0;3 A   có đỉnh   B P max y  7, x � 0;3 C   có trục đối xứng x  D Câu 74 Giá trị nhỏ hàm số y  x  x  A 3 B 2 21 C 25 D Câu 75 Khẳng định đúng? 25 y   x  x  A.Hàm số có giá trị lớn 12 25 B.Hàm số y  3 x  x  có giá trị nhỏ 12 25 y   x  x  C.Hàm số có giá trị lớn 25 D.Hàm số y  3 x  x  có giá trị nhỏ 2; 2 Câu 76 Giá trị nhỏ hàm số y  x  x  đoạn  là: 10 Câu 88 2;5 Tìm m để hàm số y  x  x  2m  có giá trị nhỏ đoạn  3 A m  3 B m  9 C m  D m  Câu 89 Tìm số giá trị tham số m để giá trị nhỏ hàm số 0;1 đoạn   A.0 B.1 C.2 f  x   x   2m  1 x  m  D.3 � 1� f  x   x  �m  �x  m m  f  x  M  max f  x  x� 1;1 x� 1;1 � m� Câu 90 Cho hàm số Đặt Gọi S tập M  m  hợp tất giá trị tham số m cho Tính tổng bình phương phần tử thuộc S A.0 B.1 C.2 D.4 y  x   m  1 x  m  3m  Câu 91 Cho hàm số , m tham số Giá trị m để giá trị nhỏ hàm số lớn thuộc khoảng sau đây? m � 1;  m � 3;9  m � 5;1 m � 2;  A B C D Câu 92 Tìm tất giá trị tham số a để giá trị nhỏ hàm số y  f  x   x  4ax  a  x  0; 2 đoạn  1;  4 1;  1 A B C   D         y  x   m  1 x  m  3m  m Câu 93 Cho hàm số , tham số Tìm tất giá trị m để giá trị nhỏ hàm số lớn A m  2 B m  C m  D m  Câu 94 Gọi S tập hợp tất giá trị dương tham số m để giá trị nhỏ hàm số y  f  x   x  4mx  m  2m 2; 0 đoạn  Tính tổng T phần tử S T T T  2 A T  B C D Câu 95 Cho hàm số   y  x  m  m  x  4m  m2   m �0  Gọi giá trị lớn nhất, giá trị nhỏ 0;1 y;y y  y2  hàm số  Số giá trị m để A B C D Câu 96 Giả sử hàm số y   x2  x    x   x  1  2 biểu thức K  a  b A K  145 B K  144 có tập giá trị C K  143 W � a; b� � � Hãy tính giá trị D 169 Dạng 5.1 Sự tương giao đồ thị hàm số tường minh số liệu Câu 97 Giao điểm parabol (P ) : y  x  3x  với đường thẳng y  x  là: 1;0 ; 3;2 0; 1 ; 2; 3 1;2 ;  2;1 2;1 ; 0; 1 A    B  C  D    Câu 98 Tọa độ giao điểm  P  : y  x2  4x với đường thẳng d : y   x  12 A C M  0;   M   3;1 , , N  2;   N  3;   D M  1;  3 , N  2;   B M  1;  1 , N  2;  Câu 99 Cho hàm số y  x  3x  Khẳng định sau đúng? A.Đồ thị hàm số không cắt trục tung B.Đồ thị hàm số cắt trục hoành gốc tọa độ C.Đồ thị hàm số khơng có trục đối xứng D.Đồ thị hàm số cắt trục tung điểm có tung độ Câu 100 Tọa độ giao điểm đường thẳng d : y   x  parabol y  x  x  12  2;6   4;8 B  2;   4;8   2; 2   4;  D  2;   4;  A C Câu 101 Hoành độ giao điểm đường thẳng y   x với ( P) : y  x  x  A x  0; x  B x  C x  0; x  D x  A a; b  B c; d  P : y  x  x2 Câu 102 Gọi   tọa độ giao điểm    : y  x  Giá trị b  d A.7 B 7 C.15 D 15 P y  f  x f x  1  x  x  x �� Câu 103 Cho parabol   có phương trình thỏa mãn  Số giao P điểm   trục hoành là: A.0 B.1 C.2 D.3 2 Câu 104 Cho hai parabol có phương trình y  x  x  y  x  x  Biết hai parabol cắt hai điểm A B ( x A  xB ) Tính độ dài đoạn thẳng AB A AB  B AB  26 C AB  10 D AB  10 Dạng 5.2 Biện luận tương giao đồ thị theo tham số m Câu 105 Giá trị m đồ thị hàm số y  x  x  m cắt trục hoành hai điểm phân biệt? 9 9 m m m m 4 4 A B C D 2 Câu 106 Hàm số y  x  x  có đồ thị hình bên.Tìm giá trị m để phương trình x  x  m  vô nghiệm A m  2 B m  1 C m  D m  13 10; 4  Câu 107 Hỏi có giá trị m nguyên nửa khoảng  để đường thẳng d : y    m  1 x  m  P : y  x  x2 cắt parabol   hai điểm phân biệt nằm phía trục tung? A.6 B.5 C.7 D.8 P : y  x  mx d : y   m  2 x  Câu 108 Cho parabol   đường thẳng   , m tham số Khi parabol đường thẳng cắt hai điểm phân biệt M, N, tập hợp trung điểm I đoạn thẳng MN là: A.một parabol B.một đường thẳng C.một đoạn thẳng D.một điểm P Câu 109 Cho hàm số y  x  x có đồ thị   Gọi S tập hợp giá trị tham số m để đường P thẳng d : y  x  m cắt đồ thị   hai điểm phân biệt A, B cho trung điểm I đoạn AB � nằm đường thẳng d : y  x  Tổng bình phương phần tử S A B C D 2 d Câu 110 Cho hàm số y  x  3mx  m    , m tham số đường thẳng   có phương trình y  mx  m Tính giá trị tham số m để đồ thị hàm số  1 cắt đường thẳng  d  điểm x1  x2  phân biệt có hồnh độ x1 , x2 thoả mãn 3 m m m 4 A B C m  D Câu 111 (Kiểm tra HKI - Phan Đình Tùng - Hà Nội năm học 2018-2019)Cho hàm số y  x  3x  (1) Giá trị tham số m để đồ thị hàm số   cắt đường thẳng y  x  m hai điểm phân 2 A x;y B x ;x biệt  1  ,  2  thỏa mãn x1  x2  x1 x2  A 10 B 10 C 6 D Câu 112 Có giá trị nguyên m để đường thẳng y  mx  khơng có điểm chung với Parabol y  x2  1? A B C D Câu 113 Tìm tất giá trị m để đường thẳng y  mx   2m cắt parabol y  x  x  điểm phân biệt có hồnh độ trái dấu A m  3 B 3  m  C m  D m �4  P  : y  x   m  1 x  m2  cắt trục hồnh điểm phân biệt có hồnh Câu 114 Tìm m để Parabol x x x x  độ , cho A m  B.Không tồn m C m  2 D m  �2 P : y  x2  2x  Câu 115 Cho parabol   đường thẳng d : y  2mx   3m Tìm tất giá trị m P để   cắt d hai điểm phân biệt nằm phía bên phải trục tung 7 1 m  m 3 A B m  C D m  14 P : y  x2  4x  m Câu 116 Gọi T tổng tất giá trị tham số m để parabol   cắt trục Ox hai điểm phân biệt A, B thỏa mãn OA  3OB Tính T T A T  9 B C T  15 D T  P : y  x   m  1 x  m  Câu 117 Tìm m để Parabol   cắt trục hồnh điểm phân biệt có hồnh x x x x  độ , cho m  A B.Không tồn m C m  2 D m  �2  P  : y  ax  bx  c Tìm a  b  c , biết đường thẳng y  2,5 có điểm P P chung với   đường thẳng y  cắt   hai điểm có hồnh độ 1 Câu 118 Cho parabol A a  b  c  2 B a  b  c  C a  b  c  D a  b  c  1 Dạng 5.3 Bài toán tương giao đồ thị hàm số chứa dấu giá trị tuyệt đối Câu 119 Có giá trị nguyên tham số m để phương trình phân biệt? A.0 B.1 C.2 x2  x   m  có bốn nghiệm D.Vơ số S   a; b  Câu 120 Biết tập hợp tất giá trị tham số m để đường thẳng y  m cắt đồ thị hàm số y  x2  4x  bốn điểm phân biệt.Tìm a  b A a  b  B a  b  1 C a  b  D a  b  2 Câu 121 Biết tập hợp tất giá trị tham số m để phương trình a; b  phân biệt khoảng  Tính a  b A a  b  B a  b  C a  b  Câu 122 Cho hàm số x x2  x   m có nghiệm D a  b  y  f  x   ax  bx  c f 2 m tham số để phương trình C có đồ thị   (như hình vẽ).Có giá trị nguyên x    m  2 f  x   m   có nghiệm phân biệt? y 3 O B A Câu 123 Cho hàm số phương trình f  x   ax  bx  c f  x  m C x D có đồ thị hình vẽ.Với giá trị tham số m có nghiệm phân biệt 15 A  m  Câu 124 Cho hàm số C m  1 ; m  B 1  m  f ( x) = ax2 + bx + c D m  có đồ thị hình vẽ ax2 - bx + c = m m Hỏi có giá trị nguyên tham số để phương trình có nghiệm phân biệt A < m< C m= Câu 125 Cho hàm số B m= D.khơng có giá trị m f ( x ) = ax + bx + c có đồ thị hình vẽ Hỏi với giá trị tham số f ( x ) +1 = m thực m phương trình có nghiệm phân biệt y  O x   A m = B m > C m >- Câu 126 Tìm tất giá trị thực tham số m để parabol y  m  điểm phân biệt A 2  m  1 B  m  Câu 127 Với giá trị m phương trình 9 m� m� 4 A B D m =  P  : y  x2  x  C 2 �m �1 cắt đường thẳng D �m �2 m  x2  5x  có nghiệm thực phân biệt m C D m  y  f  x Câu 128 Cho hàm số có đồ thị hình vẽ bên.Tìm tất giá trị tham số m để đồ thị y  f  x hàm số cắt đường y  m  hệ trục tọa độ điểm phân biệt là? 16 A 3  m  B  m  C.1  m  D 1  m  y  x2  x Câu 129 Tìm tất giá trị m để đồ thị hàm số cắt đường thẳng y  m điểm phân biệt 81 81  m0 m A m  3 B C D m  Câu 130 Cho phương trình có nghiệm thực? A Câu 131 Cho hàm số x2  x  x  m   f  x  m A 1  m  C B f  x   ax  bx  c phương trình Có giá trị tham số m để phương trình D đồ thị hình đưới đây.Tìm tất giá trị tham số m để có nghiệm phân biệt B m  C m  1, m  D  m  f  x   ax  bx  c hình bên.Hỏi có giá trị m nguyên ax  b | x | c  m  0; 2018 đoạn  để phương trình có hai nghiệm phân biệt? Câu 132 Cho đồ thị hàm số y O x     A 2016 Câu 133 Cho hàm số B 2015 f  x   ax  bx  c C 2018 D 2017 có bảng biến thiên sau: 17 f  2017 x  2018    m Tìm tất giá trị thực tham số m để phương trình có ba nghiệm A m  B m  C m  D.không tồn m Câu 134 Cho hàm số f ( x) = ax2 + bx + c có đồ thị hình vẽ bên.Tìm tất giá trị thực tham số m để phương trình f ( - x) + m- 2019 = có nghiệm A m  2015 B m  2016 C m  2017 D m  2019 y  x2  x  Câu 135 Cho đồ thị hàm số hình vẽ Tìm m để phương trình x2  x  m  có nghiệm phân biệt? A 4  m  Câu 136 Cho hàm số B 2  m  y  f  x   ax  bx  c có đồ thị C  m  D 2 �m �2  C  (như hình vẽ): f  x    m  2 f ( x )  m   m Có giá trị ngun tham số để phương trình có nghiệm phân biệt? A B C D Câu 137 Cho hàm số y  f  x có đồ thị hình vẽ 18 Phương trình A f 2 x   f  x  2 0 B có nghiệm? C Câu 138 Hỏi có giá trị m nguyên nửa khoảng x  x 5  m  có hai nghiệm phân biệt? 2016 A B 2008 C 2009 D  0; 2017  để phương trình D 2017 Câu 139 Cho hàm số y  x  x  có đồ thị hình vẽ f x  x2  x  Đặt   ;gọi S tập hợp giá trị nguyên tham số m để phương trình f ( x)  m có nghiệm phân biệt Số phần tử S A B C D P : y  ax  bx  c  a �0  Câu 140 Cho parabol   có đồ thị hình bên Tìm giá trị m để phương ax  bx  c  m trình có bốn nghiệm phân biệt A 1  m  B  m  C �m �3 D 1 �m �3 Dạng Một số câu hỏi thực tế liên quan đến hàm số bậc hai 19 Câu 141 Một ăng - ten chảo parabol có chiều cao h  0,5m đường kính miệng d  4m Mặt cắt m a n , m, n số nguyên dương nguyên qua trục parabol dạng y  ax Biết tố Tính m  n A m  n  B m  n  7 C m  n  31 D m  n  31 Câu 142 Khi bóng đá lên, đạt đến độ cao rơi xuống Biết quỹ đạo bóng cung parabol mặt phẳng với hệ tọa độ Oth, t thời gian (tính giây) kể từ bóng đá lên; h độ cao (tính mét) bóng Giả thiết bóng đá lên từ độ cao 1,2m Sau giây, đạt độ cao 8,5m giây sau đá lên, đạt độ cao 6m Hỏi sau bóng chạm đất kể từ đá lên (tính xác đến hàng phần trăm? A.2,56 giây B.2,57 giây C.2,58 giây D.2,59 giây Câu 143 Khi bóng đá lên đạt độ cao rơi xuống đất Biết quỹ đạo ( a < 0) , bóng cung parabol mặt phẳng tọa độ Oth có phương trình h = at + bt + c t thời gian (tính giây) kể từ bóng đá lên, h độ cao (tính mét) bóng Giả thiết bóng đá lên từ độ cao 1, m sau giây đạt độ cao 8,5m , sau giây đạt độ cao 6m Tính tổng a + b + c A a + b + c = 18,3 B a + b + c = 6,1 C a + b + c = 8,5 D a + b + c =- 15,9 Câu 144 Một hàng buôn giày nhập đôi với giá 40 đơla.Cửa hàng ước tính đôi giày 120  x  bán với giá x đơla tháng khách hàng mua  đôi Hỏi hàng bán đôi giày giá thu nhiều lãi nhất? A 80 USD B 160 USD C 40 USD D 240 USD Câu 145 Một bóng cầu thủ sút lên rơi xuống theo quỹ đạo parabol Biết ban đầu bóng sút lên từ độ cao m sau giây đạt độ cao 10 m 3,5 giây độ cao 6, 25 m Hỏi độ cao cao mà bóng đạt mét? A 11 m B 12 m C.13 m D 14 m Câu 146 Một cổng hình parabol có chiều rộng 12 m chiều cao m hình vẽ Giả sử xe tải có chiều ngang m vào vị trí cổng Hỏi chiều cao h xe tải thỏa mãn điều kiện để vào cổng mà khơng chạm tường? A  h  B  h �6 C  h  D  h �7 Câu 147 Trong số hình chữ nhật có chu vi 16 , hình chữ nhật có diện tích lớn bao nhiêu? A 64 B C.16 D 20 Câu 148 Một cổng hình parabol bao gồm cửa hình chữ nhật hai cánh cửa phụ hai bên hình vẽ.Biết chiều cao cổng parabol 4m kích thước cửa 3m x 4m Hãy tính khoảng cách hai điểm A B (xem hình vẽ bên dưới) A.5m B.8,5m C.7,5m D.8m y   x2 có chiều rộng d  8m Hãy tính chiều cao h Câu 149 Một cổng hình parabol dạng cổng (xem hình minh họa bên cạnh) A h  9m B h  7m C h  8m D h  5m Câu 150 Cổng Arch thành phố St.Louis Mỹ có hình dạng parabol (hình vẽ) Biết khoảng cách hai chân cổng 162 m Trên thành cổng, vị trí có độ cao 43 m so với mặt đất (điểm M), người ta thả sợi dây chạm đất (dây căng thẳng theo phương vng góc với mặt đất) Vị trí chạm đất đầu sợi dây cách chân cổng A đoạn 10 m Giả sử số liệu xác.Hãy tính độ cao cổng Arch (tính từ mặt đất đến điểm cao cổng) A 175,6 m B 197,5 m C 210 m D 185,6 m Câu 151 Rót chất A vào ống nghiệm, đổ thêm chất B vào Khi nồng độ chất B đạt đến giá trị định chất A tác dụng với chất B Khi phản ứng xảy ra, nồng độ hai chất giảm đến chất B tiêu thụ hoàn hoàn Đồ thị nồng độ mol theo thời gian sau thể trình phản ứng? A B .C D 21 Câu 152 Cơ Tình có 60m lưới muốn rào mảng vườn hình chữ nhật để trồng rau, biết cạnh tường, Tình cần rào cạnh lại hình chữ nhật để làm vườn Em tính hộ diện tích lớn mà Tình rào được? 2 A 400m B 450m C 350m D 425m PHẦN B LỜI GIẢI THAM KHẢO Dạng Chiều biến thiên hàm số bậc hai Dạng 1.1 Xác định chiều biến thiên thiên hàm số cho trước Câu Chọn B a  Bảng biến thiên Câu Chọn D b 2 2a Đỉnh parabol: Bảng biến thiên hàm số: xI   Câu Câu Dựa vào bảng biến thiên suy khẳng định D sai Chọn B Bảng biến thiên ChọnC Ta có bảng biến thiên: Từ bảng biến thiên ta thấy, hàm số đồng biến khoảng (2; �) Câu ChọnD � b �  ; �� � � Hàm số y  x  x  có a   nên đồng biến khoảng � 2a 22 Vì hàm số đồng biến Câu  2; � ChọnC b � � �;  � � 2a � Hàm số y  x  x  có hệ số a   nên đồng biến khoảng � Câu Câu Câu Vì hàm số đồng biến Chọn D  �;  �;  2; � Do a  1 nên hàm số đồng biến  nghịch biến  Chọn A P : y  f  x   x2  2x   P  có bề lõm Ta có hàm số   hàm số bậc hai có hệ số a  ;nên hướng lên b xI  1 1; � 2a Hoành độ đỉnh parabol Do hàm số đồng biến khoảng  Chọn D a   0;  Hàm số bậc hai có Câu 10 Chọn A  P  : y  f  x   3x  x  b 1 1; � 2a nên hàm số đồng biến  , TXĐ: D  � x Có a  3 , đỉnh S có hồnh độ �1 � � ; �� y  f  x � � Nên hàm số nghịch biến khoảng b 6 a  1  0,  3 �;3 2a  1 Câu 11 Ta có Suy hàm số đồng biến khoảng  Đáp án A Câu 12 Chọn D Khi m  , hàm số trở thành y  x  x  Tập xác định: D  � �3 � I � ; � Đỉnh �2 � Bảng biến thiên: �3 � � ; �� � Hàm số đồng biến �2 23 Dạng 1.2 Xác định m thỏa mãn điều kiện cho trước b a   0,  m 1 m  1; � 2a Câu 13 Hàm số có nên đồng biến khoảng  4; 2018  ta phải có Do để hàm số đồng biến khoảng  m ��� 1;  m m  4; 2018  � Vậy có ba giá trị nguyên dương m thỏa mãn yêu cầu toán 1, 2, Đáp án D Câu 14 Chọn C Hàm số y  f ( x)  x  2(b  6) x  hàm số bậc hai có hệ sơ a   , nên có bảng biến thiên  b  b  2a Từ bảng biến thiên ta có: 6;� � �� 6;  6;�۳ b 6 b 12  ��  b  Hàm số đồng biến  Câu 15 Chọn C Đồ thị hàm số có trục đối xứng đường x  m  Đồ thị hàm số cho có hệ số x âm nên đồng biến  �; m  1 nghịch biến  m  1; � Theo đề, cần: m� 1 m Câu 16 Chọn C y  x  m 1 x  Hàm số có  m  ; � a  1  0;  b  m 1 2a nên hàm số nghịch biến  2; � � m  ; � 2; � Để hàm số nghịch biến  � m  �2 � 2 �m  �2 � 3 �m �1 Câu 17 Chọn B  P  đồ thị y = f ( x) = x2 + (m - 1) x + 2m - Gọi y  f  x hàm số bậc hai có hệ số a = 1 m x  I P   , có Gọi I đỉnh � � 1- m � ; +�� � � � � � Nên hàm số đồng biến khoảng � 1- m �- ۳ m Do để hàm số khoảng S = [ 5; +�) ( - 10;10) �S = [ 5;10) Suy tập Khi ( - 2; +�) Câu 18 Chọn C 24 - Với m  , ta có hàm số biến  1;  f  x   mx  x  m � 2� ; � �� �� � m� 1; �2  � � 2� �; � � m �, suy hàm nghịch � nghịch biến m m Dạng Xác định hàm số bậc hai thỏa mãn điều kiện cho trước Dạng 2.1 Xác định tọa độ đỉnh, trục đối xứng đồ thị hàm số Câu 19 Chọn A  � � b I�  ; � P : y  ax  bx  c  a �0  4a � Đỉnh parabol   điểm � 2a Câu 20 Chọn B 2 b � y  �1 �   x    ��  P  : y  3x  x  �3 � 2a Hoành độ đỉnh �1 � I �; � Vậy �3 � Câu 21 Chọn A Câu 22 Chọn A xI   b  2a Từ loại câu B Hồnh độ đỉnh Thay hoành độ xI   vào phương trình Parabol câu A, C, D, ta thấy có câu A thỏa điều kiện yI  Dạng 2.2 Khi biết tọa độ đỉnh điểm qua Câu 23 Chọn C x I  1 �   1 � a  2a Ta có: I � P  Hơn nên 5  a   b � b  Câu 24 Chọn C � � b 1 �a  b  c  � a b c  � � � � b � b   a � a   � � �  1 � � � a  b  c  � � � 2a c � abc  � � Theo giả thiết ta có hệ: � với a �0 y   x2  x  2 Vậy hàm bậc hai cần tìm Câu 25 Chọn A A 2;1 I 1;  1 Đồ thị hàm số y  ax  bx  c qua điểm   có đỉnh  nên có hệ phương trình 25 �4a  2b  c  c 1 c 1 �4a  2b  c  � � � b � � � � 1 �� b  2a �� b  2a �� b  4 � � 2a �a  b  c  1 � � a  c  1 � a2 � � � �a  b  c  1 Vậy T  a  b  2c  22 Câu 26 Chọn C Vì đồ thị hàm số y  ax  bx  c ( a �0) có đỉnh I (1;1) qua điểm A(2;3) nên ta có hệ: � �a  b  c  �a  b  c  �a  � � � b  4 �4a  2b  c  � �4a  2b  c  � � � � � b � 2a  b  �c  �  1 � 2a 2 2 Nên S  a  b  c =29 26 ...  C  D  Câu 85 Giá trị nhỏ hàm số y  x  2mx  giá trị tham số m A m  �4 B m  C m  �2 D m �� Câu 86 2 Giá trị tham số m để hàm số y  x  2mx  m  3m  có giá trị nhỏ 10 � thuộc... Gọi S tập M  m  hợp tất giá trị tham số m cho Tính tổng bình phương phần tử thuộc S A.0 B.1 C.2 D.4 y  x   m  1 x  m  3m  Câu 91 Cho hàm số , m tham số Giá trị m để giá trị nhỏ hàm... trị tham số a để giá trị nhỏ hàm số y  f  x   x  4ax  a  x  0; 2 đoạn  1;  4 1;  1 A B C   D         y  x   m  1 x  m  3m  m Câu 93 Cho hàm số , tham số

Ngày đăng: 13/04/2020, 19:21

TỪ KHÓA LIÊN QUAN

w