1. Trang chủ
  2. » Giáo án - Bài giảng

ĐỢT 2 ĐỀ 3 ĐỀ THI HSG LỚP 11 SỞ HÀ NAM 2019

12 448 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 1,26 MB

Nội dung

Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề THI HSG 11 YÊN LẠC – VP - 2019 – TỔ ĐỀ THI CHỌN HSG KHỐI 11 SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NAM MƠN TỐN TIME: 180 PHÚT Câu (4,0 điểm) [1D1-3.5-4] Tính tổng nghiệm phương trình sau � � � 3 � �  � 2sin �x  � cos �x  sin � 3x  � � 4� � 4� � � � 0 cos x  2 [1D1-1.1-3] Tìm m để hàm số �  � x ��  ; � 2� � y  0;1000  m  sin x  cos x  2sin x cos x sin 2017 x  cos 2019 x  xác định với Câu (4,0 điểm) [1D2-5.4-2] Một người A đứng gốc O trục số x ' Ox Do say rượu nên người A bước ngẫu nhiên sang trái sang phải trục tọa độ với độ dài bước đơn vị  n �2  người A quay trở lại gốc tọa độ O Tính xác suất để sau n bước [1D2-5.2-3] Cho hình vng cỡ 9.9 tâm O tạo từ 9.9 hình vng đơn vị Hai hình vng đơn vị gọi kề bên chúng có cạnh chung Một bọ ban đầu O Mỗi lần di chuyển bọ nhảy ngẫu nhiên từ tâm hình vng đơn vị đứng sang tâm hình vng đơn vị kề bên Tính xác suất để bọ sau bước nhảy quay lại điểm O [1D2-5.2-3] Cho hình lập phương tâm O ghép từ 9.9.9 hình lập phương đơn vị Hai hình lập phương đơn vị gọi kề bên chúng có chung mặt Con bọ ban đầu tâm O Mỗi bước nhảy bọ nhảy từ tâm khối lập phương đơn vị đứng sang tâm khối lập phương đơn vị kề bên Tính xác suất để bọ sau bước nhảy quay lại điểm O Câu (2,0 điểm) Cho dãy số  un  xác định sau u  dãy số n Tính u1  2019 � � un 1  2un  n  n ��* � un n �� 3n lim Câu (2,0 điểm) [1D4-2.3-3] Tính giới hạn Câu (8,0 điểm) L  lim x �0 x   3x  x2 Tìm số hạng tổng quát Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề THI HSG 11 YÊN LẠC – VP - 2019 – TỔ [1H3-5.6-4] Cho hình lập phương ABCD A ' B ' C ' D ' cạnh a Lấy hai điểm M , N cho uuuu r uuuu r uuur uuuu r AM  k AC ', CN  tCD ' với t.k �0 Tính độ dài MN theo a MN song song với B ' D [1H3-5.7-4] Cho hình chóp S ABCD có đáy hình bình hành tâm O Gọi M điểm di    qua M song song với hai đường động cạnh BC ( M khác B C ) Mặt phẳng thẳng SB , AC Xác định thiết diện hình chóp cắt mp tích lớn    Xác định vị trí M để thiết diện có diện [1H2-4.6-4] Cho hình lập phương ABCD A ' B ' C ' D ' tâm O cạnh có độ dài Gọi uuuu r uuur uuu r uuuu r AM  AA ', CP  CC '    thay đổi qua M , P đồng M , P hai điểm cho 4 Mặt phẳng thời cắt hai cạnh BB ', DD ' N Q Tìm giá trị lớn giá trị nhỏ chu vi tứ giác MNPQ Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề THI HSG 11 YÊN LẠC – VP - 2019 – TỔ GIẢI CHI TIẾT ĐỀ THI CHỌN HSG SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NAM KHỐI 11 Câu (4,0 điểm) [1D1-3.5-4] Tính tổng nghiệm phương trình sau � � � 3 � �  � 2sin �x  � cos �x  sin � 3x  � � 4� � 4� � � � 0 cos x  2 [1D1-1.1-3] Tìm m để hàm số �  � x ��  ; � 2� �  0;1000  m  sin x  cos x  2sin x cos x sin 2017 x  cos 2019 x  xác định với y Lời giải [1D1-3.5-4] Tính tổng nghiệm phương trình sau � � � 3 � �  � 2sin �x  � cos �x  sin � 3x  � � � 4� � � � 4� 0 cos x   0;1000  Lời giải Tác giả: Hoàng Vũ ; Fb: Hoàng Vũ Giáo viên phản biện: Lê Đức Lộc ; Fb: Lê Đức Lộc  cos x �۹� x ĐK: k 2 � � � 3 � �  � 2sin �x  � cos �x  sin � 3x  � � � 4� � � � 4� 0 cos x  � � � 3 � 2sin �x  � cos �x  � 4� � � � � sin � x  �  � 4� � � � � � �  cos � 2x  � � � 1� �  � � 2� � � � � 2� sin � 4x  �  sin  x    �  2� � � 2� � � � � � � �   sin x    cos x  sin x    �  2sin x  sin 2 x  cos x  sin x   Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề THI HSG 11 YÊN LẠC – VP - 2019 – TỔ � 3sin 2 x  3sin x   � sin x  (nhận) hay sin x  2 (loại) sin x  �x   k , k �� Kết hợp với điều kiện, phương trình có nghiệm Tổng số nghiệm cơng sai d  2 S  0;1000  x 5  k 2 , k �� tổng 500 số hạng cấp số cộng với u1  5 , 500 � 5 � �  499.2 � 250125 � � Câu 1.2 [1D1-1.1-3] Tìm m để hàm số �  � x ��  ; � 2� � y m  sin x  cos x  2sin x cos x sin 2017 x  cos 2019 x  xác định với Lời giải Tác giả: Lê Đức Lộc; Fb: Lê Đức Lộc Phản biện: Tăng Duy Hùng �  � x ��  ; � 2 �thì � � cos�x Với Khi đó: cos 2019 x cos x sin 2017 x  cos 2019 x  �sin 2017 x  cos x   sin 2017 x    sin x   �  � x ��  ; �  sin x   sin x  1 � 1  2 � � với m  sin x  cos x  2sin x cos x �  � y x ��  ; 2017 2019 sin x  cos x  �2 2� � Hàm số xác định với 2015 �  � x ��  ; � 2� � với �  � x ��  ; �2 2� � ۳ m sin x  cos x  2sin x cos x với ۳ m  sin x  cos x  2sin x cos x sin 2017 x  cos 2019 x   �  3 � � � �  � t  sin x  cos x  sin �x  � x ��  ; �� x  ��  ; � t �� 1; � � � �4 � � �; �2 2� � Đặt t �� 1; � m �f  t   t  t  � � Suy Vậy m �  với Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC [1D1-1.1-3] Tìm m để hàm số y Đề THI HSG 11 YÊN LẠC – VP - 2019 – TỔ m  sin x  cos x  2sin x cos x sin 2017 x  cos 2019 x  xác định với �  � x ��  ; � 2� � Lời giải Tác giả: Lê Đức Lộc; Fb: Lê Đức Lộc Phản biện: Tăng Duy Hùng �  � x ��  ; � 2 �thì � � cos�x Với Khi đó: cos 2019 x cos x sin 2017 x  cos 2019 x  �sin 2017 x  cos x   sin 2017 x    sin x   �  � x ��  ; � 2� � với m  sin x  cos x  2sin x cos x �  � y x ��  ; 2017 2019 sin x  cos x  � 2� � Hàm số xác định với m  sin x  cos x  2sin x cos x �  � x ��  ; ۳ 2017 2019 sin x  cos x  � 2� � với  sin x   sin 2015 x    �   �  � x ��  ; �2 2� � ۳ m sin x  cos x  2sin x cos x với  �  3 � � � �  � t  sin x  cos x  sin �x  � x ��  ; �� x  ��  ; �� t �� 1; � � � 2 4 � � � � � � Đặt ; t �� 1; � m �f  t   t  t  � � Suy với Vậy m �  Câu (4,0 điểm) [1D2-5.4-2] Một người A đứng gốc O trục số x ' Ox Do say rượu nên người A bước ngẫu nhiên sang trái sang phải trục tọa độ với độ dài bước đơn vị  n �2  người A quay trở lại gốc tọa độ O Tính xác suất để sau n bước [1D2-5.2-3] Cho hình vng cỡ 9.9 tâm O tạo từ 9.9 hình vng đơn vị Hai hình vng đơn vị gọi kề bên chúng có cạnh chung Một bọ ban đầu O Mỗi lần di chuyển bọ nhảy ngẫu nhiên từ tâm hình vng đơn vị đứng sang tâm hình vng đơn vị kề bên Tính xác suất để bọ sau bước nhảy quay lại điểm O Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề THI HSG 11 YÊN LẠC – VP - 2019 – TỔ [1D2-5.2-3] Cho hình lập phương tâm O ghép từ 9.9.9 hình lập phương đơn vị Hai hình lập phương đơn vị gọi kề bên chúng có chung mặt Con bọ ban đầu tâm O Mỗi bước nhảy bọ nhảy từ tâm khối lập phương đơn vị đứng sang tâm khối lập phương đơn vị kề bên Tính xác suất để bọ sau bước nhảy quay lại điểm O Lời giải Một người A đứng gốc O trục số x ' Ox Do say rượu nên người A bước ngẫu nhiên sang trái sang phải trục tọa độ với độ dài bước đơn vị Tính xác suất để  n �2  người A quay trở lại gốc tọa độ O sau n bước Lời giải Tác giả: Tăng Duy Hùng; Fb: Tăng Duy Hùng Phản biện: Bùi Dũng; Fb: Bùi Dũng k �N *   n  k  Trường hợp 1: xác suất người quay trở lại O : P  Trường hợp 2: sang trái n  2k  k �N *  Người quay trở O có k bước sang phải k bước Xác suất bước sang phải là: 0,5 Xác suất bước sang trái là: 0, P  Cnk  0,5  Do xác suất để quay O là: n Cho hình vng cỡ 9.9 tâm O tạo từ 9.9 hình vng đơn vị Hai hình vng đơn vị gọi kề bên chúng có cạnh chung Một bọ ban đầu O Mỗi lần di chuyển bọ nhảy ngẫu nhiên từ tâm hình vng đơn vị đứng sang tâm hình vng đơn vị kề bên Tính xác suất để bọ sau bước nhảy quay lại điểm O Lời giải Tác giả: Bùi Dũng; Fb: Bùi Dũng Phản biện: Lê Mai Hương; Fb: Lê Mai Hương Khi bọ nhảy bước khơng gian mẫu là: 4.4.4.4  256 Ở bước nhảy thứ ta chia trường hợp sau: TH1: Bước bọ nhảy qua B1  B có cách nhảy Bước có hai cách nhảy A1  A2 ( từ B1 ) nhảy A1  A4 ( từ B ) Bước 4: bọ có cách nhảy O Có: 4.2.2.1  16 cách TH2: Bước bọ nhảy qua B3 có cách nhảy Bước có cách nhảy A1 Bước 4: bọ có cách nhảy O Có: 4.1.1.1  cách Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề THI HSG 11 YÊN LẠC – VP - 2019 – TỔ TH2: Bước bọ nhảy O có cách nhảy Bước có cách nhảy ô A1  A2  A3  A4 Bước 4: bọ có cách nhảy O Có: 4.1.4.1  16 cách 16   16  256 64 Vậy xác suất để bọ nhảy bước quay trở O là: Cho hình lập phương tâm O ghép từ 9.9.9 hình lập phương đơn vị Hai hình lập phương đơn vị gọi kề bên chúng có chung mặt Con bọ ban đầu tâm O Mỗi bước nhảy bọ nhảy từ tâm khối lập phương đơn vị đứng sang tâm khối lập phương đơn vị kề bên Tính xác suất để bọ sau bước nhảy quay lại điểm O Lời giải Tác giả: Lê Mai Hương; Fb:Le Mai Huong Mỗi bước bọ nhảy ngẫu nhiên qua tâm hình lập phương đơn vị khác Do không gian mẫu n ( W) = 6.6.6 = 64 Gọi A biến cố “con bọ sau bước nhảy quay lại điểm O ” Xét hệ trục tọa độ không gian gốc O với trục song song cạnh hình lập phương Khi có hai trường hợp sau: TH1: Con bọ nhảy đường thẳng (có đường tương ứng trục tọa độ) có 3.C 24 = 18 TH2: Con bọ nhảy không nhảy đường thẳng (trong trường hợp nhảy trục tọa độ) có 3.4! = 72 Vậy xác suất biến cố A là: Câu (2,0 điểm) Cho dãy số P ( A) = n ( A) 18 + 72 = = n ( W) 72  un  xác định sau u  dãy số n Tính u1  2019 � � un 1  2un  n  n ��* � Tìm số hạng tổng quát un n �� 3n lim Lời giải Tác giả: Nguyễn xuân Giao; FB: giaonguyen Phản biện: Vũ Ngọc Tân; FB: Vũ Ngọc Tân Ta có un 1  2un  n  � un 1   n  1   un  n  * v  Đặt  un  n với n �� Khi ta có dãy n n ��* v1  2018 � � v  2vn n ��* thỏa mãn �n 1 n 1 n 1 n 1 cấp số nhân có cơng bội q  �  v1.q  2018.2 � un  2018.2  n Vậy un  2018.2 n1  n Sản phẩm Group FB: STRONG TEAM TỐN VD VDC Ta có Đề THI HSG 11 N LẠC – VP - 2019 – TỔ n � un 2018.2n 1  n �2 � n � lim  lim  lim � 1009 � � n � n �� 3n n �� n ��� 3n �3 � � � � n �2 � lim � � lim nn  n �� � � ; n �� (Vì ) Câu (2,0 điểm) [1D4-2.3-3] Tính giới hạn x   3x  x2 L  lim x �0 Lời giải Tác giả:Vũ Ngọc Tân ; Fb: Vũ Ngọc Tân Phản biện: Đỗ Hải Thu; Fb: Đỗ Hải Thu � x    x  1 3 x    x  1 x   3x   lim �  L  lim x �0 � x x2 x �0 � x Ta có : � � x    x  1  lim �  x �0 x    x  1 �x x2 �  � �  lim � x �0 �x �     x2 x    x  1 � � 1  lim �  x �0 � 2x 1  x 1 �    x2  x    x  1  3x  1  3x   x  1   x  1  3x  1 2  x  3x  3x  1  3 x   x  1   x  1 x  3 � � � �  3 x   x  1   x  1    � � � � � � � � � � � � � � � 1   1  2 Vậy L Câu (8,0 điểm) [1H3-5.6-4] Cho hình lập phương ABCD A ' B ' C ' D ' cạnh a Lấy hai điểm M , N cho uuuu r uuuu r uuur uuuu r AM  k AC ', CN  tCD ' với t.k �0 Tính độ dài MN theo a MN song song với B ' D [1H3-5.7-4] Cho hình chóp S ABCD có đáy hình bình hành tâm O Gọi M điểm di    qua M song song với hai đường động cạnh BC ( M khác B C ) Mặt phẳng thẳng SB , AC Xác định thiết diện hình chóp cắt mp tích lớn    Xác định vị trí M để thiết diện có diện [1H2-4.6-4] Cho hình lập phương ABCD A ' B ' C ' D ' tâm O cạnh có độ dài Gọi uuuu r uuur uuu r uuuu r AM  AA ', CP  CC '    thay đổi qua M , P đồng M , P hai điểm cho 4 Mặt phẳng Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề THI HSG 11 YÊN LẠC – VP - 2019 – TỔ thời cắt hai cạnh BB ', DD ' N Q Tìm giá trị lớn giá trị nhỏ chu vi tứ giác MNPQ Lời giải uuuu r uuuu r AM  k AC ', M , N ABCD A ' B ' C ' D ' a Cho hình lập phương cạnh Lấy hai điểm cho uuur uuuu r CN  tCD ' với t.k �0 Tính độ dài MN theo a MN song song với B ' D Lời giải Tác giả: Đỗ Hải Thu; Fb: Đỗ Hải Thu Phản biện: Tran Quoc An A' D' B' C' M N z A x D B C y uuu r r uuur u r uuur r BA  x , BC  y , BB '  z Đặt r u r u r r r r x y  0, y z  0, z x  Vì ABCD A ' B ' C ' D ' hình lập phương cạnh a nên uuuu r uuu r uuuu r uuu r uuuu r uuu r uuuu r uuu r uuu r uuur uuur uuu r BM  BA  AM  BA  k AC '  BA  k BC '  BA  BA  k BC  BB '  BA r u r r   1 k  x  k y  k z uuur uuur uuur uuur uuuu r uuur uuur uuuu r r u r r BN  BC  CN  BC  tCD '  BC  t CD  CC '  t x  y  t z uuuu r uuur uuuu r r u r r r u r r r u r r � MN  BN  BM  t x  y  t z  �  t  k  x   k y  t  k z �1  k  x  k y  k z �       � uuuur uuur uuur uuu r uuur uuur r u r r B ' D  BD  BB '  BA  BC  BB '  x  y  z � t � t  k 1  m � � uuuu r uuuur � � MN  mB ' D � � 1 k  m � � k � � t  k  m � � m � � Vì MN / / B ' D nên uuuu r 1r 1u r 1r r u r r � MN  x  y  z  x  y  z 4 4 u u u u r r u r r 2 � MN  MN  x yz 16 r2 r2 r u r u r r r r r2 u 3a  x  y  z  x y  y z  z x   a  a  a   16 16 16      Vậy     MN   a   Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề THI HSG 11 YÊN LẠC – VP - 2019 – TỔ 2 Cho hình chóp S ABCD có đáy hình bình hành tâm O Gọi M điểm di động cạnh BC ( M khác B C ) Mặt phẳng    qua M song song với hai đường thẳng SB , AC    Xác định vị trí M để thiết diện có diện Xác định thiết diện hình chóp cắt mp tích lớn Lời giải Tác giả:Trần Quốc An; Fb:Tran Quoc An Kẻ MN // AC , N �AB , NP // SB , P �SA , PK // MN // AC , K �SC Gọi I  MN �BD Kẻ IQ // SB , Q �SD Suy thiết diện hình chóp cắt mp Ta có: �NP // SB � MK // NP �  SBC  �    MK �  ngũ giác MNPQK Ta có tứ giác MNPK hình bình hành Gọi  góc SB AC Đặt Suy : S MNPK  x �MK    x  SB BM   x  1 � BM  xBC � � BC �MN  x AC BM MK sin   x   x  SB AC sin  Gọi H  IQ �PK QH SH BI BM     x � QH  xOR  x.SB Gọi R trung điểm SD , ta có : OR SO BO BC PK  MN Vì �, AC  QH  SB   � , PK  , ta có : SPQK  SPQH  SQHK  1 PH QH sin   QH HK sin   QH PK sin  2 1  x.SB.x AC.sin   x SB AC.sin  2 Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề THI HSG 11 YÊN LẠC – VP - 2019 – TỔ � 3x2 � � � S MNPQK  SMNPK  SPQK  � x   x   x2 � SB AC.sin   �x  SB AC.sin  � � � � � Do : Cho hình lập phương ABCD A ' B ' C ' D ' tâm O cạnh có độ dài Gọi M , P hai uuuu r uuur uuu r uuuu r AM  AA ', CP  CC '    thay đổi qua M , P đồng thời cắt hai 4 điểm cho Mặt phẳng cạnh BB ', DD ' N Q Tìm giá trị lớn giá trị nhỏ chu vi tứ giác MNPQ Lời giải Tác giả: Nguyễn Văn Đắc; Fb: Đắc Nguyễn Gọi I  MP �OO ' � I trung điểm MP Do hình thang AMPC ta có AM  CP  , tương tự DQ  BN  2.OI  x, y � 0;1 Đặt BN  x, DQ  y x  y  ( MNPQ) �( ABB ' A ')  MN � � ( MNPQ) �(CDD ' C ')  QP �� MN / / QP � ( ABB ' A ') / /(CDD ' C ') � Ta có Chứng minh tương tự MQ / / NP , suy tứ giác MNPQ hình bình hành Suy chu vi tứ giác MNPQ  MN  MQ 2 �3 � �3 � MN   �  x �; MQ   �  y � �4 � �4 � Ta tính 2 � �3 � �3 �� � MNPQ   �  x �  �  y ��  * � �4 � � � � � � chu vi tứ giác Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề THI HSG 11 YÊN LẠC – VP - 2019 – TỔ a  b2  c  d �  a  c    b  d  *) Áp dụng BĐT 2 2 17 �3 � �3 � �3 � �  �  x �  �  y � �  �  x  y �  �4 � �4 � �2 � Dấu "  " xảy x y Suy giá trị nhỏ chu vi tứ giác MNPQ  17 *) Thế y   x vào (*) ta có 2 � �3 � �1 �� MNPQ  �1  �  x �  �  x �� f  x  � �4 � �4 �� � � chu vi tứ giác 2 �3 � �1 � f  x    �  x �  �  x � �4 � �4 � Với 2 5� 17 � 17 �3 � �5  17 �1 � �5  17   �  x � � x     x  x    � � � � � � � � � 4� �4 �4 � � �4 � � 13  17 ( x  x) 13  17 ( x  x) 17     2 �3 � 5(1  x)  17 x �1 � x  17   x   �  x �  �  x � 4 �4 � �4 � Do x x�0,�x Suy maxf ( x)   0;1 f ( x) 17  17 x  x  Suy giá trị lớn chu vi tứ giác MNPQ   17 3x 1 �3 x   x � x  x   3x   3x   3x  � � � 4 12 12 � � Ta có : 1 S MNPQK � SB AC.sin  � S MNPQK SB AC.sin  Do : lớn BM � 3x   3x � x  �  BC

Ngày đăng: 30/03/2020, 17:55

TỪ KHÓA LIÊN QUAN

w