1. Trang chủ
  2. » Giáo án - Bài giảng

Đột phá toán hình học bản đẹp 2019

248 25 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 248
Dung lượng 45,6 MB

Nội dung

CHƯƠNG VECTƠ, TÍCH VƠ HƯỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG CHUYÊN ĐỀ 1: VECTƠ VÀ CÁC PHÉP TOÁN CỦA VECTƠ PHẦN 1: LÝ THUYẾT TRỌNG TÂM Định nghĩa véc tơ Vectơ đoạn thẳng có hướng, nghĩa hai điểm mút đoạn thẳng rõ điểm điểm đầu, điểm điểm cuối   A Vectơ có điểm đầu A, điểm cuối B ta kí hiệu: AB a     Vectơ kí hiệu là: a, b, x, y, B  Vectơ – không vectơ có điểm đầu trùng điểm cuối Kí hiệu Hai vec tơ phương, hướng, hai vec tơ Đường thẳng qua điểm đầu điểm cuối vectơ gọi giá vectơ    Độ dài đoạn thẳng AB gọi độ dài vectơ AB , kí hiệu AB Ta có AB  AB Hai vectơ có giá song song trùng gọi vectơ phương Hai vectơ hướng Hai vectơ ngược hướng Hai vectơ Hai vectơ phương chúng hướng độ dài Chú ý: Vectơ – không hướng với vectơ Các quy tắc vec tơ    Quy tắc ba điểm: Với ba điểm A, B, C ta có AB  AC  CB    Quy tắc hình bình hành: Cho ABCD hình bình hành ta có: AC  AB  AD    Quy tắc trung điểm: Cho I trung điểm AB, M điểm bất kì: 2MI  MA  MB     Quy tắc trọng tâm: G trọng tâm tam giác ABC: GA  GB  GC      3MG  MA  MB  MC (M điểm bất kỳ)    Quy tắc tam giác hiệu hai vectơ: với ba điểm A, B, C ta có: AB  CB  CA        Vec tơ đối vectơ a kí hiệu a Đặc biệt a  a  0, AB  BA   HDedu - Page PHẦN 2: CÁC DẠNG BÀI TẬP Dạng 1: Xác định vectơ Ví dụ minh họa Ví dụ 1: Cho điểm khơng thẳng hàng, xác định vectơ khác vectơ khơng có điểm đầu điểm cuối điểm trên? A 21 B 42 C 12 D Ví dụ 2: Cho tứ giác ABCD Gọi M, N, P, Q trung điểm AB, BC, CD, DA Khẳng định sau sai?         A MN  QP B QP  MN C MQ  NP D MN  AC Bài tập tự luyện Câu Cho lục giác ABCDEF tâm O Số vectơ khác vectơ khơng, phương với có điểm đầu điểm cuối đỉnh lục giác là: A B C D Câu Gọi M, N trung điểm cạnh AB, AC tam giác ABC Hỏi cặp vectơ sau hướng?         A MN CB B AB MB C MA MB D AN CA Câu Hai vectơ gọi khi: A Giá chúng trùng độ dài chúng B Chúng trùng với cặp cạnh đối hình bình hành C Chúng trùng với cặp cạnh đối tam giác D Chúng hướng và độ dài chúng HDedu - Page Dạng 2: Các phép tốn vectơ Ví dụ minh họa     Ví dụ 1: Cho tam giác ABC điểm M thỏa mãn MA  MB  MC  Mệnh đề sau đúng? A M trung điểm BC B M trung điểm AB C M trung điểm AC D ABMC hình bình hành Ví dụ 2: Cho tam giác ABC Gọi D, E, F trung điểm cạnh BC, CA, AB Hệ thức đúng?             A AB  BE  CF  AB  AC  BC B AB  BE  CF  AF  CE  BD             C AD  BE  CF  AE  BF  CD D AD  BE  CF  BA  BC  AC Ví dụ 3: Cho tam giác ABC có M trung điểm của, I trung điểm AM Khẳng định sau đúng?         A IB  2IC  IA  B IB  IC  2IA          C 2IB  IC  IA  D IB  IC  IA    Ví dụ 4: Cho tam giác ABC vng cân đỉnh C, AB  Tính độ dài AB  AC     A AB  AC  B AB  AC    C AB  AC    D AB  AC     Ví dụ 5: Cho tam giác ABC vng A có ABC  30 BC  a Tính độ dài vectơ AB  AC A a B a C a D a Bài tập tự luyện Câu (ID:8129)Cho tam giác ABC cạnh a Tìm khẳng định đúng?     A AB  AC  a B AB  AC  a   C AB  AC  a   D AB  AC  2a Câu (ID:8223)Cho hình chữ nhật ABCD tâm O Trong mệnh đề sau, mệnh đề đúng?          A AB  BC  BD  B AC  BD  CB  DA         C AD  DA  D OA  BC  DO  Câu (ID:13413)Cho tam giác ABC vuông cân đỉnh A, đường cao AH Khẳng định sau sai?         A AH  HB  AH  HC B AH  AB  AH  AC     C BC  BA  HC  HA   D AH  AB  AH HDedu - Page Dạng 3: Phân tích vec tơ Quỹ tích vec tơ Phương pháp giải Phân tích vectơ: Sử dụng định lí vectơ phân tích thành vectơ khơng phương Sử dụng quy tắc tam giác, quy tắc hình bình hành phép cộng vectơ, quy tắc ba điểm phép trừ hai vectơ để phân tích vectơ theo nhiều vectơ Quỹ tích vectơ: Để tìm tập hợp điểm M thỏa mãn đẳng thức vectơ ta biến đổi đẳng thức vectơ đưa tập hợp điểm biết   Nếu phương trình có dạng MA  MB , A, B cố định tập hợp điểm M đường trung trực đoạn thẳng AB  Nếu phương trình có dạng MA  a , A cố định, a độ dài biết tập hợp điểm M đường tròn có tâm A, bán kính a Tập hợp điểm cách đường thẳng cắt đường phân giác góc tạo hai đường thẳng Ví dụ minh họa Ví dụ 1: Cho tam giác ABC có M trung điểm BC, I trung điểm AM Khẳng định sau đúng?       A AI  AB  AC B AI  AB  AC 4       C AI  AB  AC D AI  AB  AC 4       Ví dụ 2: Cho tứ giác ABCD cạnh AB, CD lấy điểm M, N cho 3AM  2AB      3DN  2DC Tính vectơ MN theo hai vectơ AD, BC    A MN  AD  BC 3    C MN  AD  BC 3    B MN  AD  BC 3    D MN  AD  BC 3 Ví dụ 3: Cho hình chữ nhật ABCD I giao điểm hai đường chéo Tìm tập hợp điểm M thỏa     mãn MA  MB  MC  MD A Trung trực đoạn thẳng AB C Đường tròn tâm I, bán kính AC B Trung trực đoạn thẳng AD D Đường tròn tâm I, bán kính AB  BC HDedu - Page Ví dụ 4: Cho tam giác ABC cạnh a Biết tập hợp điểm M thỏa mãn đẳng thức      2MA  3MB  4MC  MB  MA đường tròn cố định có bán kính R Tính bán kính R theo a A r  a B r  a C r  a D r  a Bài tập tự luyện Câu (ID:8212) Cho tam giác ABC, E điểm nằm cạnh BC cho BE  BC Hãy chọn đẳng thức đúng?    A AE  3AB  4AC    B AE  AB  AC 4       C AE  AB  AC D AE  AB  AC 4 4    Câu (ID:13287) Cho tam giác ABC có M trung điểm BC Tính AB theo AM BC    A AB  AM  BC    C AB  AM  BC    B AB  BC  AM    D AB  BC  AM Câu (ID: 13471) Cho hai điểm A, B phân biệt cố định, Với I trung điểm AB Tìm tập hợp     điểm M thỏa mãn đẳng thức MA  MB  MA  MB A Đường tròn tâm I, đường kính AB B Đường tròn đường kính AB C Đường trung trực đoạn thẳng AB D Đường trung trực đoạn thẳng IA HDedu - Page Phần BÀI TẬP TỔNG HỢP Câu (ID: 8162) Cho tam giác ABC Nhận định sau sai?     A AB  BC B AB  AC   C AB  BC   D AC,BC không phương Câu (ID:8211) Cho ba điểm phân biệt a, b, c Khi đó:   A Điều kiện cần đủ để A, B, C thẳng hàng AB AC phương   B Điều kiện đủ để A, B, C thẳng hàng với M AB MA phương   C Điều kiện cần để A, B, C thẳng hàng với M AB MA phương   D Điều kiện cần đủ để A, B, C thẳng hàng AB  AC   Câu (ID: 13434) Cho tam giác vng cân ABC A có AB  a Tính AB  AC   A AB  AC  a   a B AB  AC    D AB  AC  a   C AB  AC  2a    Câu (ID:13482) Cho tam giác ABC Có điểm M thỏa MA  MB  MC  A B C D Vô số Câu (ID:8214) Số vec tơ có điểm đầu điểm cuối điểm phân biệt cho trước là: A 12 B 21 C 27 D 30   Câu (ID:8222) Cho tam giác ABC cạnh a Khi AB  AC : a D a Câu (ID:13288) Cho tam giác ABC có M trung điểm BC, G trọng tâm tam giác ABC Khẳng định sau đúng?       A AG  AB  AC B AG  AB  AC 3       C AG  AB  AC D AG  AB  3AC 3 A B a  C    Câu (ID:13474) Cho tam giác ABC cạnh a, trọng tâm G Tìm tập hợp điểm M thỏa mãn     MA  MB  MA  MC A Đường trung trực đoạn thẳng BC C Đường tròn tâm G, bán kính a B Đường tròn đường kính BC D Đường trung trực đoạn thẳng AG Câu (ID:13472) Cho hai điểm A, B phân biệt cố định, với I trung điểm AB Tìm tập hợp     điểm M thỏa mãn đẳng thức 2MA  MB  MA  2MB A Đường trung trực đoạn thẳng AB B Đường tròn đường kính AB C Đường trung trực đoạn thẳng IA D Đường tròn tâm A, bán kính AB HDedu - Page CHƯƠNG VECTƠ, TÍCH VƠ HƯỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG CHUYÊN ĐỀ 2: HỆ TRỤC TỌA ĐỘ PHẦN 1: LÝ THUYẾT TRỌNG TÂM Trục độ dài đại số trục • Định nghĩa: Trục tọa độ (hay gọi tắt trục) đường thẳng xác định điểm O gọi  điểm gốc vectơ đơn vị e • Điểm O gọi gốc tọa độ • Hướng vectơ đơn vị hướng trục  • Ta kí hiệu trục  O; e     • Cho M điểm tùy ý trục  O; e  Khi có số k cho OM  ke Ta gọi số k tọa độ điểm M trục cho    • Cho hai điểm A B trục  O; e  Khi có số a cho AB  ae Ta gọi số a độ dài  đại số vectơ AB trục cho kí hiệu a  AB Hệ trục tọa độ Hệ gồm hai trục tọa độ Ox, Oy vng góc với   Vectơ đơn vị Ox, Oy i , j O gốc tọa độ, Ox trục hoành, Oy trục tung Tọa độ vectơ      u   x; y   u  x; y   u  x i  yj  x gọi hoành độ vectơ u  y gọi tung độ vectơ u Các công thức vectơ:   Cho hai vectơ u   u1 ; u  , v   v1 ; v  u  v1   • uv u  v   • u  v   u1  v1 ; u  v  ;   • u  v   u1  v1 ; u  v  ;  • k u  (ku1 ; ku ), k  R  • Độ lớn vectơ u  u12  u 22   • Hai vectơ u   u1 ; u  , v   v1 ; v  phương có số k cho u1  kv1 u  kv      • Tích vơ hướng: u.v  u v cos  u, v  HDedu - Page  u.v  u1v1  u v   u  v  u1v1  u v   u1v1  u v u.v   • Góc hai vectơ: cos  u; v      u.v u12  u 22 v12  v 22 Tọa độ điểm    M   x; y   OM  x i  yj Các công thức: Cho ba điểm A  x A ; y A  , B  x B ; y B  , C  x C ; y C   • AB   x B  x A ; y B  y A   • AB  AB   x B  x A    yB  yA  • Tọa độ trung điểm I AB: x1  xA  xB y  yB , y1  A 2 • Tọa độ trọng tâm G tam giác ABC: x G  xA  xB  xC y  yB  yC , yG  A 3 • Tọa độ điểm M chia AB theo tỉ số k  1: x M  x A  kx B y  ky B , yM  A 1 k 1 k PHẦN 2: CÁC DẠNG BÀI TẬP Dạng 1: Tọa độ vectơ, tích vơ hướng hai vectơ Ví dụ minh họa      Ví dụ 1: Cho hai vectơ a   2; 4  , b   5;3 Tọa độ vectơ u  2a  b là: A  7; 7  B  9; 11 C  9;5  D  1;5      Ví dụ 2: Trong mặt phẳng Oxy, cho hai vectơ u  1;  , v  1; m  Tìm m để hai vectơ u , v vng góc với A B 1 C D 1   Ví dụ 3: Trong mặt phẳng Oxy, cho hai vectơ u  1;  , v  1; 3 Góc hai vectơ là: A 450 B 600 C 300 D 1350       Ví dụ 4: Cho hai vectơ a , b có giá vng góc với a  4, a  b  Độ dài b bằng: A B C D      Ví dụ 5: Cho hai vectơ a   3;  , b   1; 7  Tìm tọa độ vectơ c biết c.a  9, c.b  20     A c   1; 3 B c   1;3 C c  1; 3 D c  1;3 HDedu - Page    Ví dụ 6: Trong mặt phẳng Oxy, cho hai vectơ a   m;1 , b   3; m   Giá trị m để vectơ a  phương với vectơ b là: m  A  m   m  3 B   m  1  m  3 C  m  m  D   m  1       Ví dụ 7: : Cho ba vectơ a   2;1 , b   3;  , c   7;  Biểu diễn vectơ c qua vectơ a , b  22   b c A a  5  22   b c B a  5  22   b c C a  5  22   b c D a  5 Bài tập tự luyện Câu (ID: 9106) Khẳng định khẳng định sau?   A Hai vectơ a   6;3 b   2;1 ngược hướng với   B Hai vectơ a   5;0  b   4;0  hướng với   C Vectơ c   7;3 vectơ đối vectơ d  7;3   D Hai vectơ a   6;3 b   2;  phương với    Câu (ID:9204) Trong mặt phẳng Oxy, cho ba vectơ a   0;1 , b   1;  , c   3; 2  Tọa độ     vectơ u  3a  2b  4c là: A 10;15  B 15;10  C 10; 15  D  10;15   Câu (ID:8722) Trong mặt phẳng Oxy, cho tam giác ABC có AB  5, AC  5, A  30 Giá trị biểu thức   AB.AC là: 25 25 C D –25 2         Câu (ID:8750) Cho hai vectơ a , b cho a  3, b  5, a, b  1200 Độ dài vectơ a  b bằng: A 25 B   A 19 B C D HDedu - Page Dạng 2: Tọa độ điểm Ví dụ minh họa    Ví dụ 1: Trong mặt phẳng Oxy, cho điểm A 1;3 , B  4;0  Tọa độ điểm M thỏa mãn 3AM  AB  là: A M  4;0  B M  5;3 C M  0;  D M  0; 4  Ví dụ 2: Trong mặt phẳng Oxy, cho điểm A 1;3 , B  4;0  Tìm điểm C đối xứng A qua B A C  7,15  B C  6,14  C C  5,12  D C 15,  Ví dụ 3: Trong mặt phẳng Oxy, cho ba điểm A  2;5  , B 1;1 , C  3;3 điểm E thỏa mãn    AE  3AB  2AC Tọa độ điểm E là: A  3; 3 B  3;3 C  3; 3 D  3;3 Ví dụ 4: Trong mặt phẳng Oxy, cho hai điểm A  1;1 , B  3;3 Tìm tọa độ điểm M trục Oy để tam giác MAB cân M A  4;0  B  4;0  C  0;  D  0; 4  Ví dụ 5: Cho M  2;0  , N  2;  , P  1;3 trung điểm cạnh BC, CA, AB ABC Tọa độ B là: A 1;1 B  1; 1 C  1;1 D 1; 1 Ví dụ 6: Trong mặt phẳng Oxy, cho A  m  1; l  , B  2;  2m  , C  m  3;3 Tìm giá trị m để A, B, C ba điểm thẳng hàng? A m  B m  C m  D m  Ví dụ 7: Cho A 1;  , B  2;6  Điểm M trục Oy cho ba điểm A, B, M thẳng hàng tọa độ  10  A  0;   3 B  0; 10  C 10;0  D  10;0  Ví dụ 8: Cho tam giác ABC với AB  AC  Tính toạ độ điểm D chân đường phân giác góc A, biết B  7; 2  , C 1;   11  A   ;   2 B  2;3 C  2;0   11  D  ;   2 HDedu - Page 10 Bài tập tự luyện Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x  12 y  z    cắt mặt phẳng (P): 3x + 5y – z – = điểm A có tọa độ là: A (2;0;4) B (0;1;3) C (1;0;1) D (0;0;-2)  x  1  t x 1 y  z   Câu Cho điểm A(6;2;-1) hai đường thẳng d :   ; d ' :  y  3  6t M, N 2  z  1  hình chiếu vng góc A đường thẳng d d’ Độ dài MN là: A MN  13 B MN  31 C MN  D MN  41 x  y z 1   mặt phẳng (P): 4x-y-z+7=0 Phương trình đường thẳng 7 d’ hình chiếu đường thẳng d lên mặt phẳng (P) là: Câu Cho đường thẳng d :  x  1  3t  A d ' :  y  1  4t  z   8t   x  1  3t  B d ' :  y   4t  z   8t   x   3t  C d ' :  y  4t  z  3  8t   x  3t  D d ' :  y   4t  z   8t  HDedu - Page 235 Dạng 3: Vị trí tương đối Ví dụ minh họa Ví dụ 1: Trong không gian Oxyz, giá trị m để đường thẳng d: x 1 y  z  song song với mặt   m 2 phẳng (P): x – 3y + 6z = là: A m = -4 B m = -3 C m = -2 D m = Ví dụ 2: Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng (d): x  y  1 z (d’):    x  4t   y   6t Vị trí tương đối đường thẳng d d’ là:  z  1  4t  A d d’ song song với B d d’ trùng C d d’ cắt D d d’ chéo  x   mt  Ví dụ 3: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d):  y  t (d’):  z  1  2t  x  1 t '   y   2t ' z   t '  Tìm tất giá trị m để d cắt d’ A m = Bài tập tự luyện B m = C m = D m = -1  x  3  2t x   t '   Câu Trong hệ tọa độ Oxyz, cho đường thẳng (d):  y  2  3t (d’):  y  1  4t ' Khẳng định  z   4t  z  20  t '   sau đúng: A Đường thẳng d trùng với đường thẳng d’ B Hai đường thẳng d d’ chéo C Đường thẳng d song song với đường thẳng d’ D Đường thẳng d cắt đường thẳng d’ Câu Trong không gian với hệ tọa độ Oxyz, đường thẳng x 1 y z   vuông góc với mặt phẳng 3 1 mặt phẳng sau đây: A 6x – 4y – 2z + = C 6x – 4y + 2z + = B 6x + 4y + 2z + = D 6x + 4y – 2z + = Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x 1 y 1 z    , d’: x 1 y 1 z 1   Vị trí tương đối d d’ là: A Song song với B Cắt điểm M(3;2;6) C Cắt điểm M(3;2;-6) D Chéo HDedu - Page 236 Dạng 4: Góc khoảng cách Ví dụ minh họa Ví dụ 1: Trong khơng gian Oxyz, cho đường thẳng d: x 5 y  z 4   1 d’: x y  z  2017   Góc d d’ là: 1 A 30o B 45o C 60o D 135o Ví dụ 2: Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng (): x 1 y  z 1 điểm A(2;  3 5;-6) Tìm tọa độ điểm M nằm  cho AM  35 A M(1;0;-1) M(5;0;-7) B M(1;-2;-1) M(5;0;-7) C M(1;-2;0) M(5;0;-7) D M(1;-2;-1) M(-3;-4;5) Hướng dẫn Ví dụ 3: Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng (d): x y z 1 mặt phẳng ():   1 x – 2y – 2z + = Tìm điểm A d có hồnh độ dương cho khoảng cách từ A đến () A A(0;0;-1) B A(-2;1-2) C A(2;-1;0) D A(4;-2;1) x  1 t  Ví dụ 4: Trong khơng gian Oxyz, cho đường thẳng d:  y   t , gọi  đường thẳng qua điểm z    A(1;2;3) vectơ phương u  (0; 7; 1) Đường phân giác góc nhọn tạo d  có phương trình là:  x  4  5t  A  y  10  12t z   t   x  4  5t  B  y  10  12t  z  2  t   x   5t  C  y   2t z   t   x   6t  D  y   11t  z   8t  Ví dụ 5: Trong khơng gian với hệ tọa độ Oxyz, cho điểm A(-2;3;1), B(2;3;5) đường thẳng : x 1 y  z   Điểm M   mà MA2+MB2 nhỏ có tọa độ: 1 A M(-1;0;4) B M(1;-2;0) C M(-1;-3;1) D M(2;-3;-2) HDedu - Page 237 Bài tập tự luyện x  1 t  Câu Khoảng cách đường thẳng (d):  y  2t (d’): z   t  A B 5 C x   t   y  4t là:  z   2t  D 2 Câu Trong không gian tọa độ Oxyz, cho mặt phẳng (P): 3x – 2y – z + = đường thẳng d: x 1 y  z  Gọi Q mặt phẳng chứa d song song với (P) Khoảng cách hai mặt phẳng   (P) (Q) là: A 14 B 14 14 C 14 Câu Trong không gian tọa độ Oxyz, cho đường thẳng d: D 14 14 x 1 y z 1   mặt phẳng (P): 2 1 x + y + z + = Khoảng cách đường thẳng d mặt phẳng (P) bằng: A B C 3 D 3 HDedu - Page 238 PHẦN 4: BÀI TẬP TỔNG HỢP x  t  Câu Trong không gian Oxyz, cho đường thẳng (d):  y  1  t Vectơ vectơ phương  z   2t  đường thẳng d?  A u  (1; 1; 2)  B u  (1; 2;0)  C u  (0; 1;6)  D u  (0;1; 6) Câu Trong không gian Oxyz, lập phương trình tắc đường thẳng d qua điểm M(1;-2;3)  x  1  2t  song song với đường thẳng  :  y   t  z  3  t  A d : x 1 y  z    1 1 B d : x 1 y  z    1 C d : x 1 y  z    1 D d : x 1 y  z    1 Câu Trong không gian Oxyz, cho điểm M(2;1;0) đường thẳng  : x 1 y 1 z   Đường thẳng d 1 qua M song song với  là: A x  y 1 z   2 1 B x  y 1 z   1 C x  y 1 z   1 D x  y 1 z   1  x  2  t  Câu Trong không gian Oxyz, cho đường thẳng d :  y  6t Đường thẳng d qua điểm  z  3  điểm sau đây: A M(-1;6;-2) B M(0;12;-3) Câu Trong không gian Oxyz, cho đường thẳng d : C M(1;8;1) D M(1;18;-3) x 1 y 1 z   Điểm M thuộc đường thẳng d có 2 4 cao độ có tọa độ : A M(3;-2;4) B M(4;3;-2) C M(-2;3;-1) Câu Cho điểm A(-1;0;2), B(2;1;-1), C(0;-3;4) đường thẳng d : D M(3;-2;4) x  11 y  z  14   D điểm   thỏa mãn AB  CD Tọa độ điểm đối xứng D qua đường thẳng d là:  2  A D '  ; ;  3 3 B D’(9;0;-5) C D’(5;-3;1) D D’(1;-6;3) HDedu - Page 239 Câu Cho điểm A(2;1;-3), B(-3;5;2) đường thẳng d : x  y z 1   Phương trình đường thẳng đối xứng với đường thẳng AB qua d là:  x  1  7t '  A  y   4t ' z   t '   x   7t '  B  y   4t ' z   t '  Câu Đường thẳng sau song song với d :  x   7t '  C  y  3  4t ' z   t '   x   7t '  D  y   4t '  z  4  t '  x2 y4 z4   3 A x 1 y  z 1   3 B x2 y4 z4   1 C x 1 y  z 1   1 2 D x 1 y  z 1   1 2 x 1 y  z 1   mặt phẳng (P): 1 x + y - z + m = Với giá trị m đường thẳng d song song với mặt phẳng (P) Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: A m  B m = C m > Câu 10 Trong không gian Oxyz, cho đường thẳng d: D m   x  y 1 z  x 1 y 1 z 1     d’: 2 2 Khoảng cách d d’ là: A B C D  x   2t  Câu 11 Trong không gian tọa độ Oxyz, cho điểm A(0;-1;3) đường thẳng d  y  Khoảng cách  z  t  từ A đến đường thẳng d là: A B 14 C D x y 1 z   Xác định tọa độ điểm M trục hoành cho khoảng 2 cách từ M đến  OM với O gốc tọa độ Câu 12 Cho đường thẳng  : A (-1;0;0) (1;0;0) B (2;0;0) (-2;0;0) C (1;0;0) (-2;0;0) D (2;0;0) (-1;0;0) x   t  Câu 13 Góc đường thẳng d :  y  mặt phẳng (P): y – z + = là: z   t  A 30o B 45o C 60o Câu 14 Trong không gian tọa độ Oxyz, cho đường thẳng d : D 90o x  y 1 z    điểm A(1;7;3) Tìm 3 2 tọa độ điểm M thuộc d cho khoảng cách hai điểm A, M 30 , biết M có hồnh độ ngun  51 1 17  A  ; ; B (9;1;-3) C (3;-3;1) D (6;-1;2)  7 7  HDedu - Page 240 CHUYÊN ĐỀ 4: PHƯƠNG TRÌNH MẶT CẦU PHẦN 1: LÝ THUYẾT TRONG TÂM Phương trình tắc mặt cầu Trong không gian Oxyz, mặt cầu  S tâm I  a;b;c  , Ví dụ: có bán kính R có phương trình là: Mặt cầu  S tâm I 1; 2;3 ,bán kính  x  a    y  b   z  c Phương trình tắc mặt cầu là: 2  R  x  1   y     z  3 2  16 Phương trình tổng quát mặt cầu Trong không gian Oxyz, dạng khai triển 2 Phương trình tổng quát mặt cầu là: x + y + z + 2ax + 2by + 2cz + d = với x  y  z  2x + 4y  z   a + b + c  d > phương trình tổng quát mặt cầu tâm I  a;  b;  c  , có bán kính R  a + b2 + c2  d Vị trí tương đối hai mặt cầu Cho hai mặt cầu: Ví dụ: S1  :  x  a1    y  b1    z  c1  I1  a1 ;b1 ;c1  , bán kính R1 2 2  R 22 có tâm Ta có: I1I  2 S2  : x   y  1   z  3 2  có tâm I  0;1;3 , bán kính R  I  a ;b ;c  , bán kính R  a  a1    b2  b1    c2  c1  Cho mặt cầu:  x  1   y     z  3  có tâm I1 1; 2;3 , bán kính R1  S2  :  x  a    y  b2    z  c2   R12 có tâm 2 Nếu: I1I  R1  R , hai mặt cầu  S1  ,  S2  lồng Ta có: I1 I    1  1      3 R1  R  Nếu I1I  R1  R , hai mặt cầu  S1  ,  S2  tiếp xúc R1  R  2  10 Do R1  R  I1 I  R1  R nên hai mặt cầu Nếu R1  R  I1 I  R1  R , hai mặt cầu S1  , S2  cắt theo giao tuyến đường tròn S1  , S2  cắt theo giao tuyến đường tròn Nếu I1I  R1  R , hai mặt cầu  S1  ,  S2  tiếp xúc Nếu I1 I >R1  R , hai mặt cầu  S1  ,  S2  HDedu - Page 241 Vị trí tương đối mặt phẳng mặt cầu Cho mặt cầu  S tâm I  a;b;c  , bán kính R, có phương trình:  S :  x  a    y  b    z  c  2  R Và mặt phẳng  P  có phương trình: Ví dụ: Cho mặt cầu  S tâm I 1;2;3 bán kính R = có phương trình: S : x  y2  z  2x  4y  z    P  : Ax  By  Cz  D  mặt phẳng  P  : x  y  z  Gọi H hình chiếu I lên mặt phẳng  P  Gọi H hình chiếu I lên mặt phẳng  P  Ta có: IH  d  I;  P    Aa+Bb+Cc+D 2 A +B +C Ta có: IH  d  I;  P    Nếu IH > R, mặt phẳng  P  không cắt mặt cầu 1+2+3 12 + 12 + 12 2 3R Vì IH > R, mặt phẳng  P  khơng cắt mặt cầu  S  S Nếu IH  R, mặt phẳng  P  tiếp xúc với mặt cầu S Mặt phẳng  P   S gọi tiếp diện mặt cầu Nếu IH < R, mặt phẳng  P  cắt mặt cầu  S theo thiết diện đường tròn  C  có tâm H, bán kính r xác định theo công thức r  R  IH PHẦN 2: CÁC DẠNG BÀI TẬP Dạng 1: Tìm tâm bán kính phương trình mặt cầu Ví dụ minh họa Ví dụ 1: Trong không gian Oxyz, cho mặt cầu  S :  x + 3   y + 1   z  1  Tâm  S có tọa 2 độ là: A  3; 1;1 B  3; 1;1 C  3;1; 1 Ví dụ 2: Trong khơng gian với hệ tọa độ Oxyz, cho mặt cầu D  3;1  1  S có phương trình x  y  z  2x  4y + z   Tìm tọa độ tâm I bán kính R  S A Tâm I  1; 2; 3 bán kính R  B Tâm I 1; 2;3 bán kính R  C Tâm I  1; 2;3 bán kính R  D Tâm I 1; 2;3 bán kính R  16 HDedu - Page 242 Ví dụ 3: Phương trình  S : x  y  z  2mx + 4y + 2mz  m  5m  phương trình mặt cầu với điều kiện m? A m  m  B  m  m  C  m  D m  Bài tập tự luyện Câu Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S :  x     y  1   z  3  16 Tìm 2 tọa độ tâm I bán kính R mặt cầu  S A I  2; 1; 3 , R  16 B I  2;1; 3 , R  C I  2; 1;3 , R  16 D I  2; 1;3 , R  Câu Trong hệ tọa độ Oxyz, cho mặt cầu  S :  x + 1   y     z  3  12 Khẳng định sai 2 khẳng định sau? A  S qua điểm N  3; 4;  B  S qua điểm M 1;0;1 C  S có bán kính R  D  S có tâm I  1; 2;3 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S : x  y  z  2x  4y   Tìm tọa độ tâm I bán kính R mặt cầu  S A I  1; 2;0  , R  B I  1; 2;0  , R  C I 1; 2;0  , R  D I 1; 2;0  , R  HDedu - Page 243 Dạng 2: Viết phương trình mặt cầu Phương pháp giải Các trường hợp hay gặp phương trình mặt cầu: Trường hợp 1: Mặt cầu tâm I, qua điểm A  x A  x I    yA  yI    zA  zI  Khi bán kính R  IA  2 Trường hợp 2: Mặt cầu đường kính AB,  x  xB yA  yB zA  zB  ; ; Tâm I trung điểm AB  I  A  2   Bán kính R  IA   x A  x I    yA  yI    zA  zI  2 Trường hơp 3: Mặt cầu ngoại tiếp tứ diện ABCD Bước 1: Giả sử phương trình mặt cầu có dạng x  y  z  2ax  2by  2cz  d  với a  b2  c2  d  Bước 2: Vì điểm A, B, C, D thuộc mặt cầu nên ta thay tọa độ A, B, C, D vào hệ phương trình bốn ẩn  x 2A  y 2A  z 2A  2ax A  2by A  2cz A  d   2  x B  y B  z B  2ax B  2by B  2cz B  d   2  x C  y C  z C  2ax C  2by C  2cz C  d   x  y  z  2ax  2by  2cz  d   D D D D D D Bước 3: Giải a, b, c, d , từ tìm phương trình mặt cầu Ví dụ minh họa Ví dụ 1: Trong không gian Oxyz cho A  2;1;0  , B  2; 1;  Viết phương trình mặt cầu  S có tâm B qua điểm A A  S :  x     y  1   z    24 B  S :  x     y  1   z    24 C  S :  x     y  1  z  24 D  S :  x     y  1   z    24 2 2 2 2 2 Ví dụ 2: Trong không gian Oxyz cho A  2;1;0  , B  2; 1;  Viết phương trình mặt cầu  S có đường kính AB A  S : x  y   z  1  24 B  S : x  y   z  1  C  S : x  y   z  1  D  S : x  y   z  1  24 2 2 HDedu - Page 244 Ví dụ 3: Trong khơng gian với hệ tọa độ Oxyz, cho tứ diện ABCO với A 1; 2; 2;  , B  1; 2; 1 , C 1;0; 1 Tìm bán kính mặt cầu  S ngoại tiếp tứ diện ABCO A B 443 C 443 443 10 D Ví dụ 4: Trong khơng gian với hệ tọa độ Oxyz, cho điểm A  2; 1;0  mặt phẳng  P  : x  2y  z   Gọi I hình chiếu vng góc A mặt phẳng  P  Viết phương trình mặt cầu  S qua điểm A có tâm I A  S :  x  1   y  1   z  1  B  S :  x  1   y  1   z  1  C  S :  x  1   y  1   z  1  D  S :  x  1   y  1   z  1  2 2 2 2 2 Ví dụ 5: Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : x 1 y  z  điểm   1 I 1; 2;3 Phương trình mặt cầu có tâm I tiếp xúc với d là: A  x  1   y     z  3  B  x  1   y     z  3  50 C  x + 1   y     z  3  50 D  x  1   y     z + 3  50 2 2 2 2 2 2 Ví dụ 6: Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A  2;1;0  , B  2;3;  đường thẳng  x  2t   d  :  y  Viết phương trình mặt cầu S qua hai điểm A, B có tâm nằm đường thẳng d z  2t  A  S :  x  1   y  1   z    17 B  S :  x  1   y  1   z    C  S :  x  1   y  1   z    D  S :  x  1   y  1   z    16 2 2 2 2 2 2 HDedu - Page 245 Bài tập tự luyện Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm E  2;1;1 , F  0;3; 1 Phương trình mặt cầu  S đường kính EF là: A  S :  x  1   y    z  B  S :  x  1   y    z  C  S :  x  1   y    z  D  S :  x  1   y    z  2 2 2 2 Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm I 1; 2;3 , A 1;1;  Phương trình mặt cầu  S tâm I qua điểm A là: A  S :  x  1   y     z  3  B  S :  x  1   y     z  3  C  S :  x  1   y     z  3  D  S :  x  1   y     z  3  2 2 2 2 2 2 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm I  2;1;1 mặt phẳng  P  : 2x  y  2z   Viết phương trình mặt cầu  S tâm I tiếp xúc với mặt phẳng  P  A  S :  x     y  1   z  1  B  S :  x     y  1   z  1  C  S :  x     y  1   z  1  D  S :  x     y  1   z  1  2 2 2 2 2 2 HDedu - Page 246 Dạng 3: Vị trí tương đối Ví dụ minh họa Ví dụ 1: Trong khơng gian với hệ tọa độ Oxyz, cho điểm I  2;1; 1 mặt phẳng  P  : x  2y  2z   Bán kính mặt cầu  S tâm I tiếp xúc với mặt phẳng  P  là: B 1 A C D Ví dụ 2: Trong hệ tọa độ Oxyz, cho điểm I 1; 2;  mặt phẳng  P  : 2x  2y  z   Viết phương trình mặt cầu  S tâm I cắt mặt phẳng  P  theo đường tròn có chu vi 8π A  S :  x  1   y     z    36 2 C  S :  x  1   y     z    2 313 B  S :  x  1   y     z    313 D  S :  x  1   y     z    313 2 2 2 Ví dụ 3: Trong khơng gian Oxyz, cho mặt cầu  S :  x  1   y     z  3  điểm A  2;3;  2 Xét điểm M thuộc  S cho đường thẳng AM tiếp xúc với  S , M thuộc mặt phẳng có phương trình là? A x  y  z   B 2x  2y  2z  15  C x  y  z   D 2x  2y  2z  15  Bài tập tự luyện Câu Trong phương trình sau, phương trình mặt phẳng tiếp xúc với mặt cầu S :  x  1   y  3   z   2  49 điểm M  7; 1;5  ? A  P1  : 6x  2y  3z  55  B  P2  : 6x  2y  2z  34  C  P3  : 2x  2y  3z  27  D  P4  : 6x  2y  3z  55  Câu Trong không gian vớii hệ tọa độ Oxyz, cho mặt phẳng  S : x  y   z    P  : 3x  4y  12  mặt cầu  Khẳng định sau đúng? A  P  qua tâm mặt cầu  S B  P  tiếp xúc với mặt cầu  S C  P  cắt mặt cầu  S theo đường tròn mặt phẳng  P  qua tâm mặt cầu  S D  P  khơng có điểm chung với mặt cầu  S HDedu - Page 247 PHẦN 3: BÀI TẬP TỔNG HỢP Câu Trong không gian với hệ tọa độ Oxyz, cho phương trình  S : x  y  z  x  y  2z  10  Khẳng định sau đúng? 1  A  S mặt cầu có tâm I  ; ; 1 2  C  S mặt cầu có bán kính R  Câu S1  :  x  Trong không gian B  S phương trình mặt cầu  1 1  D  S mặt cầu có tâm I  ; ; 1  2  46 với hệ tọa độ Oxyz, cho phương trình 1 2 2    y     z  3  4,  S2  :  x  1   y     z  1  9, 2  2 S3  :  2x  1   2y     2z  3  Có phương trình phương trình mặt cầu? A B C D Câu Trong khơng gian với hệ tọa độ Oxyz, phương trình  S : x  y  z  2m x  4my  8m   phương trình mặt cầu với điều kiện m? A m  m   B   m  C m   D m  m   Câu Trong hệ tọa độ Oxyz, cho mặt cầu  S tâm I bán kính R mặt phẳng  α  Nếu d  I,α   R vị trí tương đối mặt cầu  S mặt phẳng  α  là: A Mặt phẳng  α  tiếp xúc với mặt cầu  S B Mặt phẳng  α  cắt mặt cầu  S C Mặt phẳng  α  mặt cầu  S khơng có điểm chung D Mặt phẳng  α  cắt mặt cầu  S tiếp xúc với mặt cầu  S Câu Trong không gian với hệ tọa độ Oxyz, cho điểm I 1; 3; 2  , gọi A giao điểm đường thẳng x  t   d  :  y   t măt phẳng  P  : x  2y  z  Viết phương trình mặt cầu S tâm I qua điểm A z   A  S :  x  1   y  3   z    21 B  S :  x  1   y  3   z    C  S :  x  1   y  3   z    21 D  S :  x  1   y  3   z    25 2 2 2 2 2 2 HDedu - Page 248 Câu 6.Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng  P  : x  y   0,  Q  : x  2y  z  Gọi  S mặt cầu tiếp xúc với mặt phẳng  P  A 1;0;  có tâm thuộc mặt phẳng  Q  Bán kính mặt cầu  S bằng: A B C D 3 Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm I 1; 2; 3 ,A 1;0;  Phương trình mặt cầu  S tâm I qua điểm A là: A  S :  x  1   y     z  3  B  S :  x  1   y     z  3  53 C  S :  x  1   y     z  3  D  S :  x  1   y     z  3  53 2 2 2 2 2 2 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S :  x  1   y     z  3  56 Gọi I 2 tâm mặt cầu  S Giao điểm OI mặt cầu  S có tọa độ là: A  1; 2; 3  3; 6;9  B  1; 2; 3  3; 6;9  C  1; 2; 3  3; 6; 9  D  1; 2; 3  3;6;9  Câu Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S : x  y  z  2x  6y  4z  Biết OA đường kính mặt cầu  S Tọa độ điểm A là: A  1;3;  B 1; 2;3 C  2; 6; 4  D  2;6;  Câu 10 Trong không gian với hệ tọa độ Oxzy, cho mặt cầu  S : x  y  z  2x  4y  6z + m  Tìm m để  S tiếp xúc với mặt phẳng  P  : x  2y  2z   A m  B m  2 C m  10 D m  10 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S : x  y  z  4x  2y  10z + 14  mặt phẳng  P  : x  y  z   Mặt phẳng  P  cắt mặt cầu  S theo đường tròn có chu vi là: A 8π B 4π C 4π D 2π Câu 12 Trong không gian với hệ tọa độ Oxyz, cho điểm I  1; 2; 3 , gọi A giao điểm đường x 1 y  z    mặt phẳng  P  : 2x  2y  z   Viết phương trình mặt cầu  S tâm 3 I qua điểm A thẳng  d  : A  S :  x  1   y     z  3  21 B  S :  x  1   y     z  3  25 C  S :  x  1   y     z  3  21 D  S :  x  1   y     z  3  25 2 2 2 2 2 2 HDedu - Page 249 ... pháp tuyến đường thẳng   Vectơ n  gọi vectơ pháp tuyến (VTPT)  giá vng góc với  Nhận xét:  Một đường thẳng có vô số vectơ pháp tuyến    Nếu n vectơ pháp tuyến  kn  k   vectơ pháp... pháp tuyến   Liên hệ vectơ phương vectơ pháp tuyến: vectơ pháp tuyến vectơ phương vuông góc   với Do  có vectơ phương u   a; b  n   b;a  vectơ pháp tuyến  Phương trình tổng quát đường... Phân tích vec tơ Quỹ tích vec tơ Phương pháp giải Phân tích vectơ: Sử dụng định lí vectơ phân tích thành vectơ không phương Sử dụng quy tắc tam giác, quy tắc hình bình hành phép cộng vectơ, quy tắc

Ngày đăng: 20/02/2020, 16:08

TỪ KHÓA LIÊN QUAN

w