Hoµng Nam Ninh - §HSPTN §T: 0956 866 696 C¸c c«ng thøc hµm sè mò logarit cÇn nhí– I - c«ng thøc cña hµm sè mò nm a n a m a + = 1 nm a n a m a − = .2 nm a n m a . .3 = ( ) n b n a n ba .4 = n n n b a b a = .5 nnn baba .6 = n n n b a b a =.7 ( ) n m m nn m aaa == .8 nm m n aa . .9 = 10:1:.10 <<<>>⇔> akhinmakhinmaa nm ; nn balebaba <→< :,,.11 II- C«ng thøc hµm sè logarit 100log.1 ≠<>=⇔= a, DK:bbab a α α 1log01log.2 == a aa ; baba b b a a == log log.3 ; ( ) cbcb aaa loglog.log.4 += cb c b aaa logloglog.5 −= a b a b a b b c c a ln ln lg lg log log log.6 === bb a a log 1 log.7 α α = a b b a log 1 log.8 = 10::loglog.9 <<<>>⇔> ac: khi: bakhicbcb aa 1; III- §¹o hµm cña hµm sè : aayay xx ln'.1 =→= xx eyey =→= '.2 ax yxy a ln 1 'log.3 =→= x yxy 1 'ln.4 =→= IV- Giíi h¹n cña hµm sè: ( ) ex x x =+ ∞→ 1 1lim.2 a x a x x ln 1 lim.3 0 = − → ( ) a x x a x = + → 1 lim.4 0 ( ) e x x a a x log 1log lim.5 0 = + → e x x x = + ∞→ 1 1lim.1 . Hoµng Nam Ninh - §HSPTN §T: 0956 866 696 C¸c c«ng thøc hµm sè mò logarit cÇn nhí– I - c«ng thøc cña hµm sè mò nm a n a m a. bakhicbcb aa 1; III- §¹o hµm cña hµm sè : aayay xx ln'.1 =→= xx eyey =→= '.2 ax yxy a ln 1 'log.3 =→= x yxy 1 'ln.4 =→= IV- Giíi h¹n