1. Trang chủ
  2. » Giáo Dục - Đào Tạo

63 DE DAP AN TOAN TS VAO 10 (12 13)

203 36 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 203
Dung lượng 15,55 MB

Nội dung

C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net TỔNG HỢP 63 ĐỀ THI TUYỂN SINH LỚP 10 TRONG TỒN QUỐC NĂM HỌC 2012 – 2013 MƠN TỐN SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH LỚP 10 THPT Năm học: 2012 – 2013 Mơn thi: Tốn Ngày thi: 21 tháng năm 2012 Thời gian làm bài: 120 phút Bài I (2,5 điểm) x 4 Tính giá trị A x = 36 x 2 � x � x  16  2) Rút gọn biểu thức B  � (với x �0; x �16 ) �: � x 4 x 4� � � x 2 3) Với biểu thức A B nói trên, tìm giá trị x nguyên để giá trị biểu thức B(A – 1) số nguyên Bài II (2,0 điểm) Giải toán sau cách lập phương trình hệ phương trình: 12 Hai người làm chung cơng việc xong Nếu người làm người thứ hồn thành cơng việc người thứ hai Hỏi làm người phải làm thời gian để xong công việc? Bài III (1,5 điểm) �2 �x  y  � 1) Giải hệ phương trình: � �6   � �x y 2) Cho phương trình: x – (4m – 1)x + 3m2 – 2m = (ẩn x) Tìm m để phương trình có hai nghiệm 2 phân biệt x1, x2 thỏa mãn điều kiện : x1  x  Bài IV (3,5 điểm) Cho đường tròn (O; R) có đường kính AB Bán kính CO vng góc với AB, M điểm cung nhỏ AC (M khác A, C); BM cắt AC H Gọi K hình chiếu H AB 1) Chứng minh CBKH tứ giác nội tiếp �  ACK � 2) Chứng minh ACM 3) Trên đọan thẳng BM lấy điểm E cho BE = AM Chứng minh tam giác ECM tam giác vuông cân C 4) Gọi d tiếp tuyến (O) điểm A; cho P điểm nằm d cho hai điểm P, C nằm AP.MB  R Chứng minh đường thẳng PB qua trung điểm đoạn nửa mặt phẳng bờ AB MA thẳng HK Bài V (0,5 điểm) Với x, y số dương thỏa mãn điều kiện x �2y , tìm giá trị nhỏ biểu thức: x  y2 M xy 1) Cho biểu thức A  C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net GỢI Ý – ĐÁP ÁN Bài I: (2,5 điểm) 1) Với x = 36, ta có : A = 36  10   36  2) Với x �, x  16 ta có : � x( x  4) 4( x  4) � x  (x  16)( x  2) x2 B= � � x  16  x  16 � �x  16 = (x  16)(x  16)  x  16 � � x2 � x � x2 2 �  1�   3) Ta có: B( A  1)  � � x  16 � x  � x  16 x  x  16 Để B( A 1) nguyên, x nguyên x 16 ước 2, mà Ư(2) =  �1; �2 Ta có bảng giá trị tương ứng: x 16 1 x 17 15 18 Kết hợp ĐK x �0, x �16 , để B( A 1) nguyên x � 14; 15; 17; 18   2 14 Bài II: (2,0 điểm) Gọi thời gian người thứ hồn thành xong cơng việc x (giờ), ĐK x  12 Thì thời gian người thứ hai làm xong cơng việc x + (giờ) 1 Mỗi người thứ làm (cv), người thứ hai làm (cv) x x 12 12 Vì hai người làm xong công việc nên hai đội làm 1: = (cv) 5 12 Do ta có phương trình 1   x x  12 x2 x �  x( x  2) 12  5x2 – 14x – 24 = ’ = 49 + 120 = 169,  ,  13 7 13 6 7 13 20    (TMĐK) => x  (loại) x  5 5 Vậy người thứ làm xong công việc giờ, người thứ hai làm xong công việc 4+2 = �2 �x  y  � Bài III: (1,5 điểm) 1)Giải hệ: � , (ĐK: x, y�0) �6   � �x y �4 10 �4 � �x  �x  y  �x  x   �x  �x  � � � � �� �� � �2 �� Hệ � � (TMĐK) 2   y  � �  1 �   �   �2 y � � �x y �x y �x y C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net Vậy hệ có nghiệm (x;y)=(2;1) 2) + Phương trình cho có  = (4m – 1)2 – 12m2 + 8m = 4m2 + > 0, m Vậy phương trình có nghiệm phân biệt m �x1  x2  4m + Theo ĐL Vi –ét, ta có: � �x1x2  3m  2m 2 Khi đó: x1  x2  � (x1  x2 )  2x1x2   (4m – 1)2 – 2(3m2 – 2m) =  10m2 – 4m – =  5m2 – 2m – = 3 Ta thấy tổng hệ số: a + b + c = => m = hay m = Trả lời: Vậy C Bài IV: (3,5 điểm) M H E A K O B �  900 ( chắn nửa đường tròn đk AB) 1) Ta có HCB �  900 (do K hình chiếu H AB) HKB �  HKB �  1800 nên tứ giác CBKH nội tiếp đường tròn đường kính HB => HCB 2) Ta có � ACM  � ABM (do chắn � AM (O)) �  HBK � � đtròn đk HB) � (vì chắn HK ACK  HCK Vậy � ACM  � ACK �  900 3) Vì OC  AB nên C điểm cung AB  AC = BC sd � AC  sd BC Xét tam giác MAC EBC có � � � (O) MA= EB(gt), AC = CB(cmt) MAC = MBC chắn cung MC MAC EBC (cgc)  CM = CE  tam giác MCE cân C (1) �  450 (vì chắn cung CB �  900 ) Ta lại có CMB �  CMB �  450 (tính chất tam giác MCE cân C)  CEM �  CEM �  MCE �  1800 (Tính chất tổng ba góc tam giác) MCE �  900 (2) Mà CME Từ (1), (2) tam giác MCE tam giác vuông cân C (đpcm) C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net S C M H P E N A K O B 4) Gọi S giao điểm BM đường thẳng (d), N giao điểm BP với HK Xét PAM  OBM : AP.MB AP OB R�  Theo giả thiết ta có (vì có R = OB) MA MA MB � � Mặt khác ta có PAM ABM (vì chắn cung � AM (O))  PAM ∽  OBM AP OB �   1� PA  PM (do OB = OM = R) (3) PM OM �  900 (do chắn nửa đtròn(O)) � AMS �  900 Vì AMB �  PSM �  900  tam giác AMS vuông M  PAM �  PMS �  900 �  PSM � � PS  PM (4) PMA � PMS �  PMA � Mà PM = PA(cmt) nên PAM Từ (3) (4)  PA = PS hay P trung điểm AS NK BN HN NK HN    Vì HK//AS (cùng vng góc AB) nên theo ĐL Ta-lét, ta có: hay PA BP PS PA PS mà PA = PS(cmt) � NK  NH hay BP qua trung điểm N HK (đpcm) Bài V: (0,5 điểm) Cách 1(không sử dụng BĐT Cô Si) x  y ( x  xy  y )  xy  y ( x  y )  xy  y ( x  y )2 3y   4 Ta có M = = xy xy xy xy x Vì (x – 2y)2 ≥ 0, dấu “=” xảy  x = 2y y 3 y 3 x ≥ 2y  � , dấu “=” xảy  x = 2y x x Từ ta có M ≥ + - = , dấu “=” xảy  x = 2y 2 Vậy GTNN M , đạt x = 2y C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net Cách 2: x  y x2 y x y x y 3x      (  ) Ta có M = xy xy xy y x 4y x 4y x y x y x y ; ta có  �2 1, Vì x, y > , áp dụng bdt Cô si cho số dương 4y x 4y x 4y x dấu “=” xảy  x = 2y x x Vì x ≥ 2y  � , dấu “=” xảy  x = 2y y y Từ ta có M ≥ + = , dấu “=” xảy  x = 2y 2 Vậy GTNN M , đạt x = 2y Cách 3: x  y x2 y x y x y 3y      (  ) xy xy xy y x y x x x 4y x 4y x 4y �2 4, Vì x, y > , áp dụng bdt Cô si cho số dương ; ta có  y x y x y x dấu “=” xảy  x = 2y y 3 y 3 Vì x ≥ 2y  � , dấu “=” xảy  x = 2y x x Từ ta có M ≥ 4- = , dấu “=” xảy  x = 2y 2 Vậy GTNN M , đạt x = 2y Cách 4: 4x2 x2 3x x x2 2 y y  y  y2 2 x  y x 3x Ta có M =       xy xy xy xy xy xy 4y Ta có M = Vì x, y > , áp dụng bdt Co si cho số dương x2 x2 x2 ; y ta có  y �2 y  xy , 4 dấu “=” xảy  x = 2y x x Vì x ≥ 2y  � , dấu “=” xảy  x = 2y y y xy 3 Từ ta có M ≥ + = 1+ = , dấu “=” xảy  x = 2y xy 2 Vậy GTNN M , đạt x = 2y C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.HCM Năm học: 2012 – 2013 MƠN: TỐN ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút Bài 1: (2 điểm) Giải phương trình hệ phương trình sau: a) x  x   �2 x  y  b) � 3x  y  � c) x  x  12  d) x  2 x   Bài 2: (1,5 điểm) x đường thẳng (D): y   x  hệ trục toạ độ b) Tìm toạ độ giao điểm (P) (D) câu phép tính Bài 3: (1,5 điểm) Thu gọn biểu thức sau: x A   với x > 0; x �1 x  x x 1 x  x a) Vẽ đồ thị (P) hàm số y  B  (2  3) 26  15  (2  3) 26  15 Bài 4: (1,5 điểm) Cho phương trình x  2mx  m   (x ẩn số) a) Chứng minh phương trình ln ln có nghiệm phân biệt với m b) Gọi x1, x2 nghiệm phương trình 24 Tìm m để biểu thức M = đạt giá trị nhỏ x1  x22  x1 x2 Bài 5: (3,5 điểm) Cho đường tròn (O) có tâm O điểm M nằm ngồi đường tròn (O) Đường thẳng MO cắt (O) E F (ME 0; x �1       x x( x  1) x  x  � x( x  1) �x � � B  (2  3) 26  15  (2  3) 26  15 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 1  (2  3) 52  30  (2  3) 52  30 2 1  (2  3) (3  5)  (2  3) (3  5) 2 1  (2  3)(3  5)  (2  3)(3  5)  2 Câu 4: a/ Phương trình (1) có ∆’ = m2 - 4m +8 = (m - 2)2 +4 > với m nên phương trình (1) có nghiệm phân biệt với m b c b/ Do đó, theo Viet, với m, ta có: S =   2m ; P =  m  a a 24 24 6  M= = ( x1  x2 )  x1 x2 4m  8m  16 m2  2m  6  Khi m = ta có (m  1)  nhỏ (m  1)  6 � M  lớn m = � M  nhỏ m = (m  1)  (m  1)  K Vậy M đạt giá trị nhỏ - m = T Câu B a) Vì ta có hai tam giác đồng dạng MAE MBF Q MA MF A S � MA.MB = ME.MF  Nên ME MB (Phương tích M đường tròn tâm O) V H b) Do hệ thức lượng đường tròn ta có M O F E MA.MB = MC2, mặt khác hệ thức lượng tam giác vuông MCO ta có MH.MO = MC2 � MA.MB = MH.MO P nên tứ giác AHOB nội tiếp đường tròn c) Xét tứ giác MKSC nội tiếp đường C tròn đường kính MS (có hai góc K C vng) Vậy ta có : MK2 = ME.MF = MC2 nên MK = MC Do MF đường trung trực KC nên MS vng góc với KC V d) Do hệ thức lượng đường tròn ta có MA.MB = MV.MS đường tròn tâm Q Tương tự với đường tròn tâm P ta có MV.MS = ME.MF nên PQ vng góc với MS đường trung trực VS (đường nối hai tâm hai đường tròn) Nên PQ qua trung điểm KS (do định lí trung bình tam giác SKV) Vậy điểm T, Q, P thẳng hàng C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.ĐÀ NẴNG Năm học: 2012 – 2013 MƠN: TỐN ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút Bài 1: (2,0 điểm) 1) Giải phương trình:(x + 1)(x + 2) = �2 x  y  1 2) Giải hệ phương trình: � �x  y  Bài 2: (1,0 điểm) y Rút gọn biểu thức A  ( 10  2)  y=ax Bài 3: (1,5 điểm) Biết đường cong hình vẽ bên parabol y = ax 1) Tìm hệ số a 2) Gọi M N giao điểm đường thẳng y = x + với parabol Tìm tọa độ điểm M N x Bài 4: (2,0 điểm) 2 Cho phương trình x – 2x – 3m = 0, với m tham số 1) Giải phương trình m = 2) Tìm tất giá trị m để phương trình có hai nghiệm x1, x2 khác thỏa điều kiện x1 x2   x2 x1 Bài 5: (3,5 điểm) Cho hai đường tròn (O) (O’) tiếp xúc A Kẻ tiếp tuyến chung BC,B  (O),C(O’) Đường thẳng BO cắt (O) điểm thứ hai D 1) Chứ`ng minh tứ giác CO’OB hình thang vng 2) Chứng minh ba điểm A, C, D thẳng hàng 3) Từ D kẻ tiếp tuyến DE với đường tròn (O’) (E tiếp điểm) Chứng minh DB = DE BÀI GIẢI Bài 1: 1) (x + 1)(x + 2) =  x + = hay x + =  x = -1 hay x = -2 5y  15 ((1)  2(2)) �2 x  y  1 (1) � �y  3 2)  � � � x  7 2y �x  y  (2) � �x  1 Bài 2: A  ( 10  2)  = (  1)  = (  1) (  1) = (  1)(  1) = Bài 3: 1) Theo đồ thị ta có y(2) =  = a.22  a = ½ 2) Phương trình hồnh độ giao điểm y = x đường thẳng y = x + : 2 x + = x  x2 – 2x – =  x = -2 hay x = y(-2) = ; y(4) = Vậy tọa độ điểm M N (-2 ; 2) (4 ; 8) Bài 4: 1) Khi m = 1, phương trình thành : x2 – 2x – =  x = -1 hay x = (có dạng a–b + c = 0) 2) C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net x1 x2    3( x12  x22 )  x1 x2  3(x1 + x2)(x1 – x2) = 8x1x2 Với x1, x2  0, ta có : x2 x1 Ta có : a.c = -3m2  nên   0, m b c Khi   ta có : x1 + x2 =   x1.x2 =  3m  a a Điều kiện để phương trình có nghiệm  mà m    > x1.x2 <  x1 < x2 Với a =  x1 = b '  ' x2 = b '  '  x1 – x2 =  '   3m Do đó, ycbt  3(2)(2  3m )  8(3m ) m    3m  2m (hiển nhiên m = không nghiệm)  4m4 – 3m2 – =  m2 = hay m2 = -1/4 (loại)  m = 1 Bài 5: B C O A O’ E D 1) 2) 3) Theo tính chất tiếp tuyến ta có OB, O’C vng góc với BC  tứ giác CO’OB hình thang vng Ta có góc ABC = góc BDC  góc ABC + góc BCA = 900  góc BAC = 900 Mặt khác, ta có góc BAD = 900 (nội tiếp nửa đường tròn) Vậy ta có góc DAC = 1800 nên điểm D, A, C thẳng hàng Theo hệ thức lượng tam giác vng DBC ta có DB2 = DA.DC Mặt khác, theo hệ thức lượng đường tròn (chứng minh tam giác đồng dạng) ta có DE = DA.DC  DB = DE 10 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 189 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 190 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net SỞ GIÁO DỤC & ĐÀO TẠO ĐỀ THI TUYỂN SINH VÀO LỚP 10 AN GIANG Năm học 2012-2013 -Mơn: TỐN ĐỀ CHÍNH THỨC Khóa ngày 11 -7 -2012 Thời gian làm : 120 phút (Khơng kể thời gian phát đề) SBD……PHỊNG……… Ngày thi: 12-7-2012 Bài (2,5 điểm) a) Rút gọn A = 16 -  36 b) Giải phương trình bậc hai : x2 – 2 x +1 = 3x  y  � c) Giải hệ phương trình : � 2x  y  � Bài (2,0 điểm) Cho hàm số y = x + (*) có đồ thị đường thẳng ( d ) a) Tìm hệ số góc vẽ đồ thị hàm số (*) b) Tìm a để (P): y = ax2 qua điểm M (1 ;2).Xác định tọa độ giao điểm đường thẳng (d) Parabol (P) với a vừa tìm Bài (2,0 điểm) Cho phương trình x2 – (m+1) x + m2 + = a) Với giá trị m phương trình có hai nghiệm phân biệt b) Tìm m để phương trình có hai nghiệm thỏa tích hai nghiệm khơng lớn tổng hai nghiệm Bài (3,5 điểm) Cho đường tròn ( O) bán kính R = cm điểm I nằm đường tròn, biết OI = 4cm.Từ I kẻ hai tiếp tuyến IA IB với đường tròn (A,B tiếp điểm) a) Chứng minh tứ giác OAIB nội tiếp b)Từ I kẻ đường thẳng vng góc với OI cắt tia OA O’.Tính OO’ diện tích tam giác IOO’ � c) Từ O’ kẻ O’C vng góc BI cắt đường thẳng BI C.Chứng minh O’I tia phân giác AO'C Hết 191 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 192 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 193 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 194 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 195 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 196 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 197 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 198 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 199 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 200 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 201 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 202 C:\Users\VAIO\AppData\Local\Temp\Rar$DI00.513\WWW.ToanTrungHocCoSo.ToanCapBa.Net 203 ... C:UsersVAIOAppDataLocalTempRar$DI00.513WWW.ToanTrungHocCoSo.ToanCapBa.Net ĐỀ CHÍNH THỨC 28 C:UsersVAIOAppDataLocalTempRar$DI00.513WWW.ToanTrungHocCoSo.ToanCapBa.Net 29 C:UsersVAIOAppDataLocalTempRar$DI00.513WWW.ToanTrungHocCoSo.ToanCapBa.Net... C:UsersVAIOAppDataLocalTempRar$DI00.513WWW.ToanTrungHocCoSo.ToanCapBa.Net SỞ GIÁO DỤC VÀ ĐÀO TẠO TUYÊN QUANG ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2011 - 2012 MƠN THI: TỐN Thời gian: 120 phút (khơng kể thời gian giao đề)... đồng dạng) ta có DE = DA.DC  DB = DE 10 C:UsersVAIOAppDataLocalTempRar$DI00.513WWW.ToanTrungHocCoSo.ToanCapBa.Net SỞ GD&ĐT VĨNH PHÚC ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC

Ngày đăng: 09/11/2019, 22:44

w