1. Trang chủ
  2. » Giáo Dục - Đào Tạo

HỒ THỨC THUẬN mức độ THÔNG HIỂU FILE đề

18 170 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 1,21 MB

Nội dung

Biết rằng tiền lãi hàng năm được nhập vào tiền gốc, hỏi sau đúng 5 năm người đó rút được cả tiền gốc lẫn tiền lãi gần với con số nào sau đâyA. Biết rằng nếu không rút tiền ra khỏi ngân h

Trang 1

MỨC ĐỘ THÔNG HIỂU -TUYỂN CHỌN MŨ-LOGARIT Thầy giáo : Hồ Thức Thuận

Câu 1 Cho hàm số f x lnxx Khẳng định nào dưới đây đúng?

A Hàm số đồng biến trên khoảng 1;

B Hàm số đồng biến trên khoảng  0;1

C Hàm số đồng biến trên khoảng 0;

D Hàm số đồng biến trên các khoảng ;0 và 1;

Câu 2 Cho log 312 a Tính log 1824 theo a

A 3 1

3

a

a

3

a a

3

a a

 .

Câu 3 Với giá trị nào của x thì biểu thức    3 2 

5

f xxxx xác định?

A x 1;  B x  1;0  2;

C x  0; 2  4; D x 0;1

Câu 4 Một người gửi tiết kiệm số tiền 80000000 đồng với lãi suất 6,9%/ năm Biết rằng tiền lãi hàng năm được nhập vào tiền gốc, hỏi sau đúng 5 năm người đó rút được cả tiền gốc lẫn tiền lãi gần với con số nào sau đây?

Câu 5 Tập nghiệm của bất phương trình

2 1 2

1

1 1

x

a

  

  (với a là tham số, a0) là

A ;0 B ; 1

2

  

2

  

Câu 6 Số lượng của loại vi khuẩn A trong một phòng thí nghiệm được tính theo công thức s t   s 0 2t, trong đó s 0 là số lượng vi khuẩn A lúc ban đầu, s t là số lượng vi khuẩn A có sau t phút Biết sau   3

phút thì số lượng vi khuẩn A là 625 nghìn con Hỏi sau bao lâu, kề từ lúc ban đầu, số lượng vi khuẩn A là

20 triệu con?

A 48 phút B 7 phút C 8 phút D 12 phút

Câu 7 Tập nghiệm S của bất phương trình

1 3

x

 

A S 1;  B 1;

3

S 



1

; 3

S  

 . D S   ;1

Câu 8 (Thi Thử Chuyên Hà Tĩnh - Lần 1 2018-2019) Tìm tập xác định của hàm số  1

yxx là

A \ 1; 2   B ;1  2; 

Câu 9 Cho bất phương trình 4x5.2x1160có tập nghiệm là đoạn  a b Tính ;  2 2

Trang 2

Câu 10 Một khu rừng có trữ lượng gỗ là 5 3

4.10 m Biết tốc độ sinh trưởng của các cây lấy gỗ trong khu rừng này là 4% mỗi năm Hỏi sau 5 năm không khai thác, khu rừng đó sẽ có số mét khối gỗ là bao nhiêu?

A 5  5

4.10 1, 4 B 5 5

4.10 1, 04 C 5 5

4.10 0, 04 D 5 5

4.10 0, 4

Câu 11 Tập nghiệm S của bất phương trình

2 4 1

8 2

xx

 

A S   ;1  3;  B S  1;3 .

C S  ;3 D S1; 

Câu 12 (Nguyễn Khuyến 18-19) Một người gửi tiết kiệm vào một ngân hàng với lãi suất 7,5% một năm

Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm ngườiđóthuđược (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giảđịnh trong khoảng thời gian này lãi suất không thay đổi và ngườiđó không rút tiền ra?

A 12 năm B 10 năm C 11 năm D 9 năm

Câu 13 (Sở GD- ĐT Quảng Nam) Tập xác định của hàm số  2

2 3 2

yxx

Câu 14 Biết rằng đồ thị  C của hàm số  3

ln 3

x

y cắt trục tung tại điểm M và tiếp tuyến của đồ thị  C

tại M cắt trục hoành tại điểm N Tọa độ điểm N là

A 1 ; 0

ln 3

1

; 0

ln 3

2

; 0

ln 3

2

; 0

ln 3

Câu 15 (Chuyên Nguyễn Trãi-Hải Dương 18-19) Tổng các nghiệm của phương trình 4x6.2x 2 0

bằng

Câu 16 Tập xác định của hàm sốyln x2 5x6 là

A  2;3 B \ 2;3  C  2;3 D \ 2;3 

Câu 17 Trong hình vẽ bên có đồ thị các hàm số ya x, yb x, ylogc x Hãy chọn mệnh đề đúng trong các mệnh đề sau đây?

A b c a B c a b C a b c D a c b

Câu 18 Tập nghiệm của bất phương trình 0.3  3

10 log 5 2 x log 9 là

A  ; 2 B 5

2;

2

0;

2

Trang 3

Câu 19 Biết rằng nếu x thỏa mãn 27x27x4048

thì 3x3x 6 

a btrong đó a b,   ;1 a 9

Tổng a b bằng

Câu 20 Với các số thực x y, dương bất kì Mệnh đề nào dưới đây đúng ?

A log2xylog2 xlog2 y B 2

2

2

log log

log

x x

 

 

C

2

log x 2 log x log y

y

 

 

  . D log2 xy log2x.log2 y

Câu 21 (TRƯỜNG THPT YÊN KHÁNH A) Tổng tất cả các nghiệm của phương trình

2x 5x2 log x 7x6 20 bằng

A 17

19

2 .

Câu 22 Cho hàm số

2 2

x e y x

 , mệnh đề nào sau đây đúng?

2

x

yxye B 1 2

2

x

yxye C 1 2

2

x

y xye D 1 2

2

x

y xye

Câu 23 Bất phương trình

2 2

xx

 

  có tập nghiệm là

A 1;3  B 3; C  ; 1  D 1;3 

Câu 24 (TRƯỜNG THPT YÊN KHÁNH A) Tập nghiệm của bất phương trình   2 4 14

x x

là:

A   ; 6 2; B   6 2;

Câu 25 Tập nghiệm của bất phương trình 2 2

4xx64 là

A 1;3 B   ; 1 3;

Câu 26 Cho log2b4, log2c 4 Tính  2

2

Câu 27 (HÀ HUY TẬP - HÀ TĨNH - LẦN 1 - 2019) Có bao nhiêu số nguyên dương trên 0;10 nghiệm  đúng bất phương trình log 32 x 4 log2x1

Câu 28 Với a và b là hai số thực dương tùy ý,

2

b

  bằng

A 2 ln 1ln

2

2

yab

C 2 ln

ln

a y

b

2

yab

Trang 4

Câu 29 Đạo hàm của hàm số  3 

8

yxx là

A

2 3

1

x

3 3

x

1

3 3

x

Câu 30 (Sở GD- ĐT Quảng Nam) Biết rằng phương trình 2  

log xlog 2018x 20190 có hai nghiệm thực x x Tích 1, 2 x x bằng1 2

Câu 31 Tìm đạo hàm của hàm số 2 2

3x x

y 

A

2 2 3

ln 3

y

2

ln 3

x y

2

3x x 2 2 ln 3

y   x

Câu 32 Phương trình 1

4xm.2x  2m 0 có hai nghiệm x , x1 2 thỏa mãn x1x2 3 khi

Câu 33 (Nguyễn Khuyến 18-19) Số nghiệm của phương trình    2

2

log x 2 log x5 log 80 là

Câu 34 Tìm tập xác định của hàm số  2 e

yxx

C   ; 3 1;  D     ; 3 1; 

Câu 35 Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực ?

3

x

y  

3

log x

π 4

e

x

y  

   

Câu 36 (Thi Thử Chuyên Hà Tĩnh - Lần 1 2018-2019) Biết log1227 a Tính log616

A 3

4 3

a

4 3 3

a

4 3 3

a

3

4 3

a

a .

Câu 37 Hàm số yx.2x có đạo hàm là

A y' (1 xln 2)2x B y' (1 x)2x C y'2xx22x1 D y' (1 xln 2)2x.

Câu 38 (HÀ HUY TẬP - HÀ TĨNH - LẦN 1 - 2019) Nghiệm của phương trình

log x 1 log x 3 log 4x3 là:

2

Câu 39 Một người gửi M triệu đồng vào ngân hàng với lãi suất 8, 4% /năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi được nhập vào vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm thì người đó có được nhiều hơn gấp đôi số tiền mang đi gửi?

Câu 40 Phương trình  2 1  x 2 1 x2 20 có tích các nghiệm là?

Trang 5

Câu 41 [HK2 Chuyên Nguyễn Huệ-HN]Tổng tất cả các nghiệm của phương trình 2 2

3 x2.3x 270

bằng:

Câu 42 Một người gửi 300 triệu đồng vào một ngân hàng với lãi suất 7% /năm Biết rằng nếu không rút tiền khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo Hỏi sau

ít nhất bao nhiêu năm, người đó nhận được số tiền nhiều hơn 600 triệu đồng bao gồm cả gốc và lãi? Giả định trong suốt thời gian gửi, lãi suất không đổi và người đó không rút tiền ra

A 10 năm B 11 năm C 12 năm D 9 năm

Câu 43 Biết rằng S là tập nghiệm của bất phương trình  2 

log x 100x2400 2 có dạng

 ;   \ 0

Sa b x Giá trị a b x0 bằng:

Câu 44 (THPT Chuyên Lê Quý Đôn – Quảng Trị - lần 1 – 2019) Một người gửi số tiền 100 triệu đồng vào ngân hàng với lãi suất 0,5%/tháng và ông ta rút đều đặn mỗi tháng một triệu đồng kể từ sau ngày gửi một tháng cho đến khi hết tiền (tháng cuối cùng có thể không còn đủ một triệu đồng) Hỏi ông ta rút hết tiền sau bao nhiêu tháng?

Câu 45 Cho hàm số x

ya (0 a 1) có đồ thị  C Mệnh đề nào sau đây là sai?

A Hàm số luôn đồng biến trên B Đồ thị  C luôn nằm phía trên trục hoành.

C Đồ thị  C luôn đi qua M 0;1 D Đồ thị  C có tiệm cận y0

Câu 46 Tìm tập xác định D của hàm số  2  4

1

yx  

A D     ; 1 1;  B D  1;1

Câu 47 Cho a b c là các số thực dương khác , , 1 Hình vẽ bên dưới là đồ thị của ba hàm số yloga x, logb

yx, ylogc x

Khẳng định nào sau đây là đúng?

A b a c B a b c C a c b D b a c

Câu 48 [HK2 Chuyên Nguyễn Huệ-HN]Tích tất cả các nghiệm của phương trình 2

2 5 4

2 x  x 4 bằng:

5 2

Trang 6

Câu 49 Tập xác định của hàm số  3

4 2

yx  x

A D    3;  B D    3;   \ 5

Câu 50 Tập nghiệm của bất phương trình  

2

5

5

x

    là

Câu 51 Giá trị lớn nhất của hàm số 2 x

y x e trên đoạn 1;1 là

A

 1;1 

ln 2 1 max

2

y

 

2 1;1

C

1;1

maxy 1 e

 

1;1

ln 2 1 max

2

y

Câu 52 Bất phương trình 6.4x13.6x6.9x 0 có tập nghiệm là?

A S     ; 1 1;  B S    ; 2 2;

C S     ; 1 1;  D S     ; 2 1; 

Câu 53 Cho log27 a log9b25 và log27 b log9a2 7 Giá trị của ab bằng

Câu 54 Cho 9x9x14 Khi đó biểu thức 2 81 81

11 3 3

M

  có giá trị bằng

Câu 55 Số nghiệm của phương trình 2x4x 6 là

A Phương trình đã cho vô nghiệm B 2

Câu 56 (SỞ GD THANH HÓA_14-04-2019) Cho alog2mAlog 16m m, với 0 m 1 Mệnh đề nào sau đây đúng?

a A

a

a A

a

C A (4 a a) D A (4 a a)

Câu 57 Số nghiệm của phương trình log2 2 4 3

x

Câu 58 Cho log 53 a, log 63 b, log 223 c Tính log3 90

11

  theo a , b , c

A P2a b c  B P2a b c  C P2a b c  D P a 2b c

Câu 59 (SGD Hưng Yên - 2019) Một người gửi 50 triệu đồng vào ngân hàng theo thể thức lãi kép với lãi suất 6,5%/năm, kì hạn 1 năm Hỏi sau 5 năm người đó rút cả vốn lẫn lãi được số tiền gần với số nào nhất trong các số tiền sau? (Biết lãi suất hàng năm không đổi)

A 53,3 triệu đồng B 64,3 triệu đồng

C 68,5 triệu đồng D 73 triệu đồng

Câu 60 Phương trình 2 1 1

6x 5.6x  1 0 có hai nghiệm x , 1 x2 Khi đó tổng hai nghiệm x1x2 là

Câu 61 Số nghiệm của phương trình  2 

2

log x 4 x 4 2 là

Trang 7

Câu 62 Tính đạo hàm của hàm số 2

2x

x

y 

'

4x

x

'

2x

x

C 1  2 ln 2

'

2x

x

'

2x

x

Câu 63 Phương trình f x 0 với   4 3 2 1

2

f x  xxx  

  có bao nhiêu nghiệm?

A 2 nghiệm B 3 nghiệm C 0 nghiệm D 1 nghiệm

Câu 64 Tập nghiệm của bất phương trình  2 

2

log x  1 3 là?

A 2; 2 B   ; 3 3;

C   ; 2 2; D 3;3

Câu 65 Cho phương trình 2 5 2

3 x 3x 2 Đặt 1

3x

t  , phương trình đã cho trở thành phương trình nào?

A 3t2  t 2 0 B 27t2  3t 2 0 C 81t2  3t 2 0 D 27t2  3t 2 0

Câu 66 Giả sử ta có hệ thức 2 2

ababa b, 0 Hệ thức nào sau đây là đúng?

2

3

3

a b

lo a b

C 2log3a2blo a3 log3b D 3 2 3 3

2

Câu 67 (TRƯỜNG THPT KINH MÔN) Cho phương trình 4x  5.2x   4 0 có hai nghiệm x1, x2

x1 x2 Tính giá trị của A    x1 x2 x x1 2

Câu 68 (THPT Hậu Lộc -Thanh Hoá lần 2 -18-19) Với a ; b là hai số thực khác 0 tuỳ ý,  2 4

A 4 ln a lnbB 2lna4lnb C 2ln a 4lnb D 4lna2lnb

Câu 69 Với x , y là các số thực dương tùy ý và x1, đặt 2

logx log

x

Pyy Mệnh đề nào dưới đây đúng?

Câu 70 Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập số thực ?

3 log

3

x

y  

   

4

x

y e

 

   

Câu 71 (SỞ GD THANH HÓA_14-04-2019) Tập nghiệm của phương trình

2 2 3

1 1

7 7

x

 

 

A  2 B  1 C 1; 2 D 1; 4

Câu 72 Đặt log 52 a,log 35 b Khi đó log 1524 bằng

A ab 1

1 1

b

1 1

ab

1 3

a b

ab .

Trang 8

Câu 73 Gọi T là tổng các nghiệm của phương trình 2

3

log x5log x 4 0 Tính T

Câu 74 Cho hàm số

1 ln

x y

x

 có đạo hàm bằng:

A

 2

2 ln

1 ln

x x

ln

1 ln

x x x

ln

1 ln

x x

 

 2

1 ln

x

Câu 75 Cho số thực a0, a1 Giá trị của 2

7 3 log (a a ) bằng

A 7

3

6

3

8.

Câu 76 (THPT Chuyên Lam Sơn - lần 2- NĂM HỌC 2018 – 2019) Đặt log 43 a, tính log 8164 theo a

A 3

4

a

3

a

4

3a

Câu 77 Gọi S là tập hợp tất cả các nghiệm nguyên dương của phương trình  2 

log 2 10 xx Số tập con

của S bằng

Câu 78 (SỞ GD THANH HÓA_14-04-2019) Tính đạo hàm của hàm số y log 1  x 1

A

y

 

y

x

 

C

ln10

y

 

y

 

Câu 79 Tập nghiệm của phương trình logx2 2x21 là

Câu 80 Số lượng của loại vi khuẩn A trong một phòng thí nghiệm được tính theo công thức s t   s 0 2t, trong đó s 0 là số lượng vi khuẩn A lúc ban đầu, s t là số lượng vi khuẩn A có sau t phút Biết sau   3

phút thì số lượng vi khuẩn A là 625 nghìn con Hỏi sau bao lâu, kề từ lúc ban đầu, số lượng vi khuẩn A là

20 triệu con?

A 8 phút B 12 phút C 48 phút D 7 phút

Câu 81 Với các số a b, 0 và a1, giá trị của biểu thức 3 

6

loga ab bằng

A 3 2log a b B 3 1log

2

a b C 2 3log a b D 1 2 log

Câu 82 Tập xác định của hàm số y 2x 1 3 là

1

\

1

;

Câu 83 Với ,a b là hai số thực dương tùy ý,

4

lna e

b bằng

A 4lnalnb1 B 4lnalnb1 C 4lnblna1 D 4lnalnb1

Câu 84 (SGD Nam Định_Lần 1_2018-2019)Tìm giá trị lớn nhất của hàm số   1

2

x

f xe   trên đoạn

 0;3

Trang 9

Câu 85 Đạo hàm của hàm số 1

3x

x

y 

là:

A ln 3  1

3 ln 3x

x

3 ln 3x

C 1  1 ln 3

3x

x

y  

Câu 86 (Thi Thử Cẩm Bình Cẩm Xuyên Hà Tĩnh 2019) Với a b , là hai số thực dương tùy ý,

4

lna e

b bằng

A 4 lna lnb 1 B 4 lna lnb 1 C 4 lna lnb 1 D 4 lnb lna 1

Câu 87 [HK2 Chuyên Nguyễn Huệ-HN]Tích tất cả các nghiệm của phương trình 2

2 5 4

2 x  x 4 bằng:

2

2 .

Câu 88 (Thi Thử Chuyên Hà Tĩnh - Lần 1 2018-2019) Tập nghiệm của bất phương trình 1

2

A 1; 0

1

;

1

; 0

Câu 89 Có bao nhiêu giá trị nguyên của tham số m trên 2018; 2018 để hàm số  2 

yxx m 

có tập xác định là ?

Câu 90 Tập nghiệm của phương trình  2 

2

log x 2x4 2 là

A  0 B  0; 2 C 0; 2  D  2

Câu 91 Tổng tất cả các nghiệm của phương trình log 3.22 x 1 2x1 bằng

A 1

3

Câu 92 (Sở GD- ĐT Quảng Nam) Biết bất phương trình

   

    tập nghiệm là đoạn  a b; Tính

b a

A b a 3 B b a  5 C b a 2 D b a 2 5

Câu 93 Cho   2   1

a   a  Mệnh đề nào dưới đây đúng?

Câu 94 Tổng các nghiệm của phương trình log (7 3 )3  x  2 x

Câu 95 Hàm số yx.2x có đạo hàm là

A y' (1 xln 2)2x B y' (1 xln 2)2x C y' (1 x)2x D y'2xx22x1.

Câu 96 Cho 0;

2

x   

  Biết log sinxlog cosx 1 và   1 

2

xxn Giá trị của n là

Câu 97 Tập nghiệm của bất phương trình  3 

log x  1 log x1 là

A 1;  B  1; 2 C  0;1 D 2; 

Trang 10

Câu 98 [HK2 Chuyên Nguyễn Huệ-HN]Trong các hàm số sau, hàm số nào nghịch biến trên ?

A

3

x

e

y  

  

2 log

3

x

y

 

  

x

y

Câu 99 Tìm tập nghiệm của phương trình  2 

1 2

log x 3x10  3

A  1 B 1; 3   C  1; 2 D  1; 2

Câu 100 Tập nghiệm S của bất phương trình

2 4 1

8 2

xx

 

C S   ;3. D S   ;1  3; .

Câu 101 Hàm số  2 

yxx có đạo hàm dương khi:

A x2; B x3;

C x 1;3 D x  ;1  3;

Câu 102 Tập nghiệm của bất phương trình  2 

3 5

log 2x   x 1 0 là

2

  

1 0;

2

 .

C 1;3

2

 

2

  

Câu 103 (Thi Thử Chuyên Hà Tĩnh - Lần 1 2018-2019) Biết rằng phương trình 2  

5log xlog 9x  1 0

có hai nghiệm x ; 1 x2 Tìm khẳng định đúng?

A x x1 2 5 3 B 1 2

5

1 3

x xC 1 2 1

5

xxD 1 2 1

5

x x  

Câu 104 (Thi Thử Cẩm Bình Cẩm Xuyên Hà Tĩnh 2019) Nghiệm của bất phương trình

log  2 x   5 log  x  1 là

Câu 105 Tích các nghiệm của phương trình  1 

1 5

log 6x 36x  2 bằng

Câu 106 Tính đạo hàm của hàm số 1

2x

x

y 

2x

x

 2

2x

x

2x

x

2x

x

y  

Ngày đăng: 30/10/2019, 22:27

w