1. Trang chủ
  2. » Giáo án - Bài giảng

Đề + đáp án chính thức tuyển sinh vào 10 tỉnh Nam Định(2008-2009)

3 1,8K 7
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 212,5 KB

Nội dung

Sở giáo dục - đào tạo nam định Đề chính thức đề thi tuyển sinh năm học 2009 2010 Môn : Toán - Đề chung Thời gian làm bài 120 phút, không kể thời gian giao đề Bài 1 (2,0 điểm)Trong mỗi Câu từ 1 đến Câu 8 đều có bốn phơng án trả lời A, B, C, D; Trong đó chỉ có một phơng án đúng. Hãy chọn phơng án đúng để viết vào bài làm. Câu 1. Trên mặt phẳng tọa độ Oxy, đồ thị các hàm số y = x 2 và y = 4x + m cắt nhau tại hai điểm phân biệt khi và chỉ khi A. m > 1. B. m > - 4. C. m < -1. D. m < - 4 Câu 2. Cho phơng trình3x 2y + 1 = 0. Phơng trình nào sau đây cùng với phơng trình đã cho lập thành một hệ phơng trình vô nghiệm A. 2x 3y 1 = 0 B. 6x 4y + 2 = 0 C. -6x + 4y + 1 = 0 D. -6x + 4y 2 = 0 Câu 3. Phơng trình nào sau đây có ít nhất một nghiệm nguyên ? A. 2 ( 5) 5x = B . 9x 2 - 1 = 0 C. 4x 2 4x + 1 = 0 D. x 2 + x + 2 = 0 Câu 4. Trên mặt phẳng tọa độ Oxy góc tạo bởi đờng thẳng y = 3 x + 5 và trục Ox bằng A. 30 0 B. 120 0 C. 60 0 D.150 0 Câu 5. Cho biểu thức P = a 5 , với a < 0. Đa thừa số ở ngoài dấu căn vào trong dấu căn, ta đợc P bằng: A. 2 5a B. - 5a C. 5a D. - 2 5a Câu 6. Trong các phơng trình sau đây phơng trình nào có hai nghiệm dơng: A. x 2 - 2 2 x + 1 = 0 B. x 2 4x + 5 = 0 C. x 2 + 10x + 1 = 0 D.x 2 - 5 x 1 = 0 Câu 7. Cho đờng tròn (O; R) ngoại tiếp tam giác MNP vuông cân ở M . Khi đó MN bằng: A. R B. 2R C.2 2 R D. R 2 Câu 8.Cho hình chữ nhật MNPQ có MN = 4cm; MQ = 3 cm. Khi quay hình chữ nhật đã cho một vòng quanh cạnh MN ta đợc một hình trụ có thể tích bằng A. 48 cm 3 B. 36 cm 3 C. 24 cm 3 D.72 cm 3 Bài 2 (2,0 điểm) 1) Tìm x biết : 2 (2 1) 1 9x + = 2) Rút gọn biểu thức : M = 4 12 3 5 + + 3) Tìm điều kiện xác định của biểu thức: A = 2 6 9x x + Bài 3 (1,5 điểm) Cho phơng trình: x 2 + (3 - m)x + 2(m - 5) = 0 (1), với m là tham số. 1) Chứng minh rằng với mọi giá trị của m phơng trình (1) luôn có nghiệm x 1 = 2. 2) Tìm giá trị của m để phơng trình (1) có nghiệm x 2 = 1 + 2 2 Bài 4. ( 3,0 điểm) Cho đờng tròn (O; R) Và điểmA nằm ngoài (O; R) .Đờng tròn đờng kính AO cắt đờng tròn (O; R) Tại M và N. Đờng thẳng d qua A cắt (O; R) tại B và C ( d không đi qua O; điểm B nằm giữa A và C). Gọi H là trung điểm của BC. 1) Chứng minh: AM là tiếp tuyến của (O; R) và H thuộc đờng tròn đờng kính AO. 2) Đờng thẳng qua B vuông góc với OM cắt MN ở D. Chứng minh rằng: a) Góc AHN = góc BDN b) Đờng thẳng DH song song với đờng thẳng MC. c) HB + HD > CD Bài 5 (1,5 điểm) 1) Giải hệ phơng trình: 2 2 2 2 0 ( 1) 1 x y xy x y x y xy + = + = + 2) Chứng minh rằng với mọi x ta luôn có: 2 2 (2 1) 1 (2 1) 1x x x x x x+ + > + + Sở giáo dục - đào tạo nam định Đề chính thức đề thi tuyển sinh năm học 2009 2010 Môn : Toán - Đề chung Thời gian làm bài 120 phút, không kể thời gian giao đề Hớng dẫn chấm thi i. hớng dẫn chung 1) Nu thớ sinh lm bi khụng theo cỏch nờu trong ỏp ỏn m vn ỳng thỡ cho im tng phn nh hng dn quy nh . 2) Vic chi tit hoỏ thang im ( nu cú ) so vi thanng im trong hng dn chm phi m bo khụng sai lch vi hng dn chm, khụng chia nh di 0,25 imv c thng nht trong Hi ng chm thi. 3) im ton bi khụng lm trũn. II. P N V THANG CHM Bi Cõu ỏp ỏn im Bi 1 (2,0im) Cõu 1 : B, Cõu 2 : C, Cõu 3 : A, Cõu 4 : C Cõu 5 : D, Cõu 6 : A, Cõu 7 : D, Cõu 8 : B (Mi cõu tr li ỳng c 0,25 im) 2,00 Bi 2 (2,0im) Cõu 1 0,75 2 (2 1) 9 2 1 9x x = = 0,50 Gii phng trỡnh trờn c x =5, x = -4 0,25 Cõu 2 0,75 M= 4( 5 3) 2 3 5 3 + 0,50 = 2 5 0,25 Cõu 3 0,50 iu kin xỏc inh ca A l : 2 x 6x 9 0 + 0,25 2 (x 3) 0 x 3 = 0,25 Bi 3 (1,5im) Cõu 1 0,5 Thay x = 2 vo phng trỡnh (1) ta c : 4 + 2(3 m) +2(m 5) = 0 0,25 ng thc trờn luụn ỳng vi mi m , suy ra iu phi chng minh 0,25 Cõu 2 1,0 Phng trỡnh (1) l phng trỡnh bc hai. Theo chng minh trờn, phng trỡnh luụn cú nghim, trong ú x 1 = 2. T nh lý Viột suy ra nghim cũn li ca phng trỡnh l x 2 = m - 5 0,5 Vy phng trỡnh (1) cú nghim x 2 = 1 + 2 2 khi v ch khi m 5 = 1 + 2 2 m 6 2 2 = + 0,5 Bi 4 (3,0 im) d h e c b n m o a Chỳ ý: - Nu bi lm khụng cú hỡnh v thỡ khụng cho im c bi 4. - Hỡnh v sai phn no thỡ ch khụng chm im ca phn ú. Cõu 1 1,5 Xột ng trũn ng kớnh AO cú ã 0 AMO 90= ( gúc ni tip chn na ng trũn) 0,50 AM OM . M OM l bỏn kớnh ca ng trũn(O;R), nờn AM l tip tuyn ca ng trũn (O;R). 0,25 H l trung im ca dõy BC ca (O;R) v BC khụng i qua tõm O nờn OH BC 0,50 ã 0 AHO 90 = . Vy H thuc ng trũn ng kớnh AO. 0,25 Câu 2 (1,5đ) a) ( 0,50điểm) Xét đường tròn đường kính AO có · · AHN AMN= (1) ( hai góc nội tiếp cùng chắn cung AN) 0,25 Theo giả thiết BD OM ⊥ và AM OM ⊥ suy ra BD // AM suy ra · · AMN BDN= (2) ( hai góc đồng vị) Từ (1), (2) suy ra · · AHN BDN= 0,25 b) (0,50 điểm) Theo chứng minh trên ta có · · BHN BDN= . Mặt khác , D và H cùng thuộc nửa mặt phẳng bờ BN nên 4 điểm H,D,B,N cùng thuộc một đường tròn. Xét trên đường tròn này ta có · · BHD BND= (3) ( hai góc nội tiếp cùng chắn cung BD) 0,25 Xét trên đường tròn (O) có · · BND MCD= (4) ( hai góc nội tiếp cùng chắn cung BM). Từ (3),(4) suy ra · · BHD MCD= , mà hai góc này ở vị trí đồng vị đối với hai đường thẳng DH và MC bị cắt bởi đường thẳng BC, suy ra DH // MC 0,25 c) (0,50 điểm) Xét DHC ∆ có DH + HC > CD ( bất đẳng thức trong tam giác) Mà HC = BC ( vì H là trung điểm của BC) Suy ra HB + HD > CD (đpcm) 0,5 Bài 5 1,5 điểm Câu 1 0,75đ Với mọi x, y ta có (xy – 1) 2 +1 ≥ 1 (*) nên hệ phương trình đã cho xác định với mọi x, y 0,25 Từ phương trình đầu của hệ ta có x + y = 2xy , thay vào phương trình thứ hai của hệ ta được: 2xy – x 2 y 2 = 2 (x y) 1− + (**) Nếu hệ có nghiệm thì từ (*),(**) suy ra 2xy – x 2 y 2 ≥ 1 2 (xy 1) 1 xy 1⇒ − ≤ ⇒ = 0,25 Thay xy = 1vào hệ đã cho ta có : x y 2 xy 1 + =   =  Giải hệ trên được x 1 y 1 =   =  Vậy hệ đã cho có một nghiệm x = y = 1. 0,25 Câu 2 0,75đ Xét 2 2 (2x 1) x x 1 (2x 1) x x 1+ − + > − + + (1) Khi thay x bởi –x ta thấy (1) không thay đổi, nên chỉ cần chứng minh (1) đúng với mọi x ≥ 0. 0,25 Với mọi x ta có 2 2 1 3 x x 1 (x ) 0 2 4 − + = − + > và 2 2 1 3 x x 1 (x ) 0 2 4 + + = + + > Vậy : Nếu 1 0 x 2 ≤ ≤ thì (1) luôn đúng. 0,25 Nếu x > 1 2 thì (1) tương đương 2 2 2 2 (2x 1) (x x 1) (2x 1) (x x 1)+ − + > − + + 4 2 4 2 4x x 3x 1 4x x 3x 1⇔ + + + > ++ ( luôn đúng với x > 1 2 ) Vậy ta có điều phải chứng minh. 0,25 . 1 (2 1) 1x x x x x x+ + > + + Sở giáo dục - đào tạo nam định Đề chính thức đề thi tuyển sinh năm học 2009 2 010 Môn : Toán - Đề chung Thời gian làm. đào tạo nam định Đề chính thức đề thi tuyển sinh năm học 2009 2 010 Môn : Toán - Đề chung Thời gian làm bài 120 phút, không kể thời gian giao đề Bài 1

Ngày đăng: 10/09/2013, 15:10

w